l14_ascos_09_lieberman

Upload: aleksandar-szechenyi-6172

Post on 09-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 L14_ASCOS_09_Lieberman

    1/127

    1

    Optical Chemical Sensorsfor Environmental Analysis

    R. A. LiebermanSeptember, 2009

  • 8/7/2019 L14_ASCOS_09_Lieberman

    2/127

    2

    OPTICAL CHEMICAL SENSORS

    Optochemical Detection TechniquesOptochemical Detection Instrumentation

    Optochemical Detection Formats

  • 8/7/2019 L14_ASCOS_09_Lieberman

    3/127

    3

    Optochemical Detection Techniques

  • 8/7/2019 L14_ASCOS_09_Lieberman

    4/127

    4

    Direct Spectroscopy Definition: Measuring the color of light to detect chemicals

    Absorption/Reflectance

    Oldest chemical detection technique UV-Vis-IR still dominates environmental detection

    Modern frontiers: THz, deep UV(?)

    Luminescence Accepted standard for hydrocarbon detection

    Modern frontiers: Single-molecule detection

    Raman Practical at last (made possible by lasers & holofilters)

    Modern frontiers: Extreme signal enhancement (SERS)

  • 8/7/2019 L14_ASCOS_09_Lieberman

    5/127

    5

    Titration Definition: Using chemical reactions to detect

    chemicals

    Oldest analytical chemical detection technique Major thrust in late 19th and early 20th centuries

    Eclipsed by spectroscopy; revived in late 20th century

    Current practice ranges from rediscovered inorganicreagents to fluorescent-labeled antibodies

    Modern frontiers: Increased analyte specificity (MIPs, designed molecules)

    Improved performance (q-dots; NIR dyes)

    New formats (optrodes, arrays, etc. see following slides)

  • 8/7/2019 L14_ASCOS_09_Lieberman

    6/1276

    Refractometry

    Definition: Measuring refractive index to detectchemicals

    First used to measure concentrations in known solutions Total Internal Reflection (e.g., Abbe)

    Common in food, petrochemical, other industries

    Surface Plasmon Resonance

    Used in commercial biochemical detectors

    Modern frontiers: nanophotonics-enabled plasmonics

  • 8/7/2019 L14_ASCOS_09_Lieberman

    7/1277

    Refractometry

    Optical path shift detection

    Grating-based (planar; long-period fiber Bragg)

    Interferometer-based (fiber optic M-Z/F-P, integrated optic) Propagation constant measurements

    Waveguide pointer

    Waveguide cutoff

    Ellipsometry (is this polarimetry?)

    Modern frontier: Coupling refractometry withtitration (e.g. DNA oligos, antibodies, otherrecognition elements)

  • 8/7/2019 L14_ASCOS_09_Lieberman

    8/1278

    Polarimetry Definition:Measuring polarization to detect chemicals

    Optical rotation measurement Classically used to measure sugar concentration Frontier: Chirality measurement for biomolecule detection

    Circular dichroism rarely used in sensing (small signal, shortwavelengths)

    Nephelometry Definition: Measuring elastically scattered light to

    detect chemicals Most-used air quality measurement (particle count)

    Can be used to detect titration reactions

  • 8/7/2019 L14_ASCOS_09_Lieberman

    9/1279

    Optochemical Detection

    Instrumentation

  • 8/7/2019 L14_ASCOS_09_Lieberman

    10/12710

    Optical Elements Integrated Optic Waveguides

    Planar lightwave circuits (PLC) generally SiO2 on Si;

    fabricated using semiconductor processing techniques Polymer integrated optics

    Wide range of materials

    Many fabrication techniques: Embossing; stamp-printing, ink-jetprinting, photolithographic production

    Advanced Materials

    Nano-optical structures Metamaterials

    Controlled-geometry plasmonic features

  • 8/7/2019 L14_ASCOS_09_Lieberman

    11/12711

    Optochemical Detection Formats

  • 8/7/2019 L14_ASCOS_09_Lieberman

    12/12712

    Optochemical Detection Formats Fiber-assisted direct spectroscopy

    Silica fiber technology deployed everywhere Chalcogenide & Fluoride gaining acceptance

    New frontier: new fiber designs (photonic crystal; photonic

    bandgap; hollow-core) will double spectral range Fiber-assisted titration

    Fiber optrodes

    Distributed intrinsic chemical agent sensing

    Multipoint active chemical sensors (gratings/scatteringcenters couple light to sensor element)

  • 8/7/2019 L14_ASCOS_09_Lieberman

    13/12713

    Optochemical Detection Formats Fiber-assisted refractometry

    Tapered fibers

    Fiber-tip Fabry-Perot optrodes

    Long-period fiber Bragg gratings (FBGs)

    Fiber optic Mach-Zehnder interferometers

    Fiber optic SPR probes

    Simple Fresnel reflectance probes

    Fiber-assisted indirect measurements Strain-inducing coatings on fibers with FBGs Strain-inducing coatings on fiber interferometers

    Stain-inducing microbending on fibers in cables

  • 8/7/2019 L14_ASCOS_09_Lieberman

    14/12714

    Integrated optic titration Waveguide arrays with sensor claddings Waveguide arrays with sensor cores

    Interferometers with sensor coatings

    Integrated optic refractometry Interferometers without coatings

    Waveguide pointer

    Plasmon waveguides Passive

    Active

    Optochemical Detection Formats

  • 8/7/2019 L14_ASCOS_09_Lieberman

    15/12715

    ENVIRONMENTAL ANALYSIS

    Environmental MediaEnvironments

    Chemical Targets

  • 8/7/2019 L14_ASCOS_09_Lieberman

    16/12716

    Environmental Media

  • 8/7/2019 L14_ASCOS_09_Lieberman

    17/12717

    Water

    Drinking water

    Recreational water

    Groundwater

    Open water

  • 8/7/2019 L14_ASCOS_09_Lieberman

    18/12718

    Air

    Indoor air

    Industrial emissions

    Local air contamination

    Global atmosphere

  • 8/7/2019 L14_ASCOS_09_Lieberman

    19/12719

    Earth

    Soil surface

    Other surfaces

    Subsuface

  • 8/7/2019 L14_ASCOS_09_Lieberman

    20/12720

    Fire

    Smoke detection

    Flame detection

    Combustion control/monitoring

  • 8/7/2019 L14_ASCOS_09_Lieberman

    21/12721

    Environments

  • 8/7/2019 L14_ASCOS_09_Lieberman

    22/12722

    Industrial/Commercial Environments Factories/Refineries

    Process control

    Legal compliance

    Health/safety

    Landfills Leakage

    Fire/toxin safety

    Mines Legal compliance

    Health/safety

    Other: Restaurants, hospitals, etc.

  • 8/7/2019 L14_ASCOS_09_Lieberman

    23/12723

    Consumer/Home Environments

    Indoor air quality

    Smoke detection

    Home water quality monitoring

  • 8/7/2019 L14_ASCOS_09_Lieberman

    24/127

    24

    Agriculture/Wilderness Environments

    Lake, stream, ocean monitoring

    Pollution

    Chemical balance

    Marine/atmosphere interface (CO2 balance)

    Farm runoff characterization

    Agricultural soil quality measurement

  • 8/7/2019 L14_ASCOS_09_Lieberman

    25/127

    25

    Chemical Targets

  • 8/7/2019 L14_ASCOS_09_Lieberman

    26/127

    26

    Chemical Targets Natural

    Toxic minerals in groundwater (Arsenic, lead, other minerals) Smoke and fire byproducts (PAHs, etc.)

    Biotoxins (e.g. microcystin from cyanobacteria) Manmade

    Factory effluent Stack gases (NOx, SOx, CO, CO2)

    Liquid outfall (100s of chemical bypoducts & waste products) Fugitive emissions

    Polyaromatic hydrocarbons other hydrocarbons

    Accidental releases

    Chlorine, ammonia, methyl isocyanate, other industrial products Reaction intermediaries & raw materials (oil)

    Purposeful releases Terrorist attack Industrial sabotage

  • 8/7/2019 L14_ASCOS_09_Lieberman

    27/127

    27

    OPTICAL CHEMICAL SENSORS FOR

    ENVIRONMENTAL ANALYSIS --EXAMPLES

    Biotoxin Detection in Water

    Toxic Chemical Detection on Surfaces

    Toxic Chemical Detection in Air

    Stack Gas Monitoring Factory Effluent Monitoring

    Groundwater Monitoring Carbon Monoxide Monitoring

    Fire Precursor Detection

  • 8/7/2019 L14_ASCOS_09_Lieberman

    28/127

    28

    Biotoxin Detection in Water

  • 8/7/2019 L14_ASCOS_09_Lieberman

    29/127

    29

    Biotoxin Detection in Water

  • 8/7/2019 L14_ASCOS_09_Lieberman

    30/127

    30

    Drop of water containing pathogens is applied on thetest strip.

    Sample reacts with the reagents on the test strip and istransported across the membrane.

    Quantum dot (QD) conjugated reagents bind to thespots on the microarray.

    QDs that emit at different wavelengths ensure thatcross reactivity or nonspecific binding can be identified.

    Measuring fluorescence signals from multiple quantumdots at each spot improves specificity Increases the viability of multiplexed field test strips.

    Fluorescence of the QDs is measured with a portablereader.

    Fluorescence intensity is related to the concentration oftoxin in the sample.

    Biotoxin Detection in Water

  • 8/7/2019 L14_ASCOS_09_Lieberman

    31/127

    31

    Lateral Flow Strip for Single Pathogen

  • 8/7/2019 L14_ASCOS_09_Lieberman

    32/127

    32

    Lateral Flow Assay Process

    Sample Application

    Sample Migration

    Pathogen Detection

  • 8/7/2019 L14_ASCOS_09_Lieberman

    33/127

    33

    Multi-Pathogen Lateral Flow Strip

    Multiple QD-labeledantibodies on reagent pad

    Multiple antibody spots

    replace capture line

    Multiple antibody spotsalso replace control line

  • 8/7/2019 L14_ASCOS_09_Lieberman

    34/127

    34

    Quantum Dot Fluorescent Labels

    Make Multianalyte Biosensors PracticalUnlimited choice of emission wavelenghsExtremely broad excitation band

    Single wavelength can excite all fluorophoresLarge Stokes shiftNo photobleachingSame matgerial used in all fluorophores

    Same synthesis process for all fluorophores

  • 8/7/2019 L14_ASCOS_09_Lieberman

    35/127

    35

    IOS Quantum Dot Fluorescence Spectra

  • 8/7/2019 L14_ASCOS_09_Lieberman

    36/127

    36

    E. Coli Assay Response

    y = 6E-05x + 3.2842

    R2

    = 0.9769

    0

    2

    4

    6

    8

    10

    0 20000 40000 60000 80000 100000 120000

    E. coli, CFU

    Intensity,

    AU

  • 8/7/2019 L14_ASCOS_09_Lieberman

    37/127

    37

    Pseudomonas Aeruginosa Assay Response

    0.00

    1.00

    2.00

    3.00

    4.00

    5.00

    6.00

    0 1 2 3 4 5 6 7 8

    PA cells (x104)

    Intensity(au)

  • 8/7/2019 L14_ASCOS_09_Lieberman

    38/127

    38

    Toxic Chemical Detection

    on Surfaces

  • 8/7/2019 L14_ASCOS_09_Lieberman

    39/127

    39

    Toxic Chemical Detection on Surfaces

    OpticalFibers

    Optical

    FiberProbe

    BioProbe

    Bacteria

    on Surface

    Laptop PC

    LightSignals

  • 8/7/2019 L14_ASCOS_09_Lieberman

    40/127

    40

    BioProbe Operation

    Compound excitation /detection probe

    5mm diameter fiber bundle

    Customized probe head

    Can use single fiber

    LED source excites bacterial fluorescence

    Simplified detection unit selects for wavelengths

    characteristic of living cells Can tune for selected biotoxins

  • 8/7/2019 L14_ASCOS_09_Lieberman

    41/127

    41

    Life Detection Through Autofluorescence

  • 8/7/2019 L14_ASCOS_09_Lieberman

    42/127

    42

    BioProbe System Components

    Reader & Optical Cable

    Probe Head (close-up)

  • 8/7/2019 L14_ASCOS_09_Lieberman

    43/127

    43

    Analysis Software

    Windows-driven GUI

    Computer-optimizedsignal levels

    User-settable alarm

    threshold

  • 8/7/2019 L14_ASCOS_09_Lieberman

    44/127

    44

    System Performance

    Linear Detection of Biomarker by BioProbe

    0.4

    0.6

    0.81.0

    1.2

    1.4

    1.6

    0.0 0.2 0.4 0.6 0.8 1.0Biomarker Concentration Factor

    (Fraction of Toxic Level)

    S

    igna

    lLevel

  • 8/7/2019 L14_ASCOS_09_Lieberman

    45/127

    45

    Monitoring Bacterial Biofilm Degradation

    P. fluorescens Biofilm on Clear Polycarbonate

    Treated with 37% Formalin

    3700

    3900

    4100

    4300

    4500

    4700

    4900

    0 5 10 15 20 25

    time (min)

    PMToutpu

    t(mV)

    Live biofilm covered w ith 200 L

    deionized w ater (4707 mV)

    Addition of 1 drop

    formalin (4609 mV)

    Addition of another 5 drops

    formalin (4485 mV)

    Addition of 1 mL

    formalin (3970 mV)

    Addition of 5-10 drops

    formalin (3870 mV)

  • 8/7/2019 L14_ASCOS_09_Lieberman

    46/127

    46

    BioProbe System Bacterial Response

    BB aa cc tt ee rrii aa ll

    SSpp ee cc ii ee ss

    AA vv ee rraa gg ee

    BB aa cc tt ee rrii aa ll

    DDee nn ss ii tt yy ((cc ffuu //cc mm 22 ))

    MM ee aa nn VV oo ll tt aa gg ee

    DDii ffffee rree nn cc ee

    bb ee tt ww ee ee nn BB aa cc tt ee rrii aa aa nn dd

    WWaa tt ee rr ((mm VV ))

    Pseudomonas

    f luorescens 3.10 x 10 5 850

    Pseudomonas

    aeruginosa 5.09 x 10 6 800

    Staphy lococcusaureus 1.25 x 10 7 580

    Staphy lococcus

    ep idermid is 1.84 x 10 7 750

  • 8/7/2019 L14_ASCOS_09_Lieberman

    47/127

    47

    Life DetectionDifferentiation between Live and Killed Bacteria by

    BioProbe

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    Sample 1 Sample 2 Sample 3

    Bacterial Films on Polymer Surface

    SignalLevel(mV)

    live samples

    killed samples

  • 8/7/2019 L14_ASCOS_09_Lieberman

    48/127

    48

    Toxic Chemical Detection in Air

  • 8/7/2019 L14_ASCOS_09_Lieberman

    49/127

    49

    Distributed Intrinsic Chemical Agent Sensing

    and Transmission (DICAST) System LINEAR sensor, not a point sensor

    Sensor cables respond to target chemical anywhere over

    sensor length Optical fibers in the cables are intrinsically sensitive to

    individual chemicals

    Two optoelectronic detection systems: Alarm-style

    Alerts user if even a single meter of cable is exposed

    Self-referenced phase-locked-loop gives high-sensitivity and lowfalse alarm rate

    Position-resolved:

    Locates precise position of chemical agent

    Self-referenced optical time domain reflectometry differentiatesbetween chemical and physical changes in fiber cable

  • 8/7/2019 L14_ASCOS_09_Lieberman

    50/127

    50

    DICASTSensor Principle:Chemically-Induced Cladding Loss

    Light Input

    Output

    n1

    n2Glass fiber core

    Polymer fiber cladding

    Chemical agent

    Interaction of chemical agent with indicator in cladding changes

    optical properties Light propagating through sensor fiber core interacts with cladding

    through evanescent field

    Well-known cause of transmission loss in communications fiber

    Indicator moleculesembedded in cladding

  • 8/7/2019 L14_ASCOS_09_Lieberman

    51/127

    51

    From Light Launch to Equilibrium

    the Spatial Transient

    Source: Snyder, A.W. & Love, J.D., Optical Waveguide Theory

  • 8/7/2019 L14_ASCOS_09_Lieberman

    52/127

    52

    DICASTSensor Fibers

    Conventional fiberfabrication

    Patented optical design

    Proprietary sensorycladding

    Cl2 HCN

    H2S Sarin/Soman

  • 8/7/2019 L14_ASCOS_09_Lieberman

    53/127

    53

    Hydrogen Cyanide Cladding Material

    HCN 50PPM 50% RH 15 min

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.60.7

    0.8

    350 450 550 650 750 850

    Wavelength (nm)

    Absorb

    ance

    50 ppm-1min

    Op. 532

  • 8/7/2019 L14_ASCOS_09_Lieberman

    54/127

    54

    Hydrogen Cyanide Sensor Fiber Performance

    TEST031805-1

    -5

    -4

    -3

    -2

    -1

    0

    1

    0 60 120 180 240 300 360 420 480 540 600

    Exposure Time (sec.)

    Sensor

    Signal(dB/m)

    50ppm

    50ppm

    5ppm

    5ppm

    5ppm

    Chemical Exposure Begins

    Note: Integrative (dosimetric) response

    fibers respond faster to higher concentrations

  • 8/7/2019 L14_ASCOS_09_Lieberman

    55/127

    55

    Note: Response remains strong after 425 days @ 23C

    Chlorine-Sensitive Cladding Material

    Cl2 10 ppm 50% RH 2min

    -0.01

    0.09

    0.19

    0.29

    0.39

    0.49

    300 350 400 450 500 550 600 650 700 750 800 850

    Wavelength (nm)

    absor

    bance

    10 ppm 2min

    Op. 650

  • 8/7/2019 L14_ASCOS_09_Lieberman

    56/127

    56

    Chlorine Sensor Fiber Performance

    SY63 Response 10 ppm Cl2/Air 10%RH

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    4 4.5 5 5.5 6 6.5 7

    Time (min)

    dB

    650 nm

    1310 nm

    gas on

    Absorbance

  • 8/7/2019 L14_ASCOS_09_Lieberman

    57/127

    57

    Nerve Agent Sensor Cladding Material

    Soman ResponseSarin Response

  • 8/7/2019 L14_ASCOS_09_Lieberman

    58/127

    58

    DICASTSensor Cables

    Air-permeable sheath Lets air in to react with fibers

    Provides rugged protection againstshear stress

  • 8/7/2019 L14_ASCOS_09_Lieberman

    59/127

    59

    Full Cable DICAST System Response(Four Fibers, Two Wavelengths)

    50ppm HCN 23C/50%RH

    KEYHYDROGEN CYANIDE FIBERHYDROGEN SULFIDE FIBER

    CHLORINE FIBERNERVE AGENT FIBER

    Solid: VisibleDotted: Infrared

    HCN on

  • 8/7/2019 L14_ASCOS_09_Lieberman

    60/127

    60

    DICASTOptoelectronics

    Zone-Alarm System

    Position Resolved System

  • 8/7/2019 L14_ASCOS_09_Lieberman

    61/127

    61

    DICAST Zone-Alarm Optoelectronics

    End-to-end fiber transmission measured

    Sensor cables linked to system through

    commercial multimode cables

    Dual-wavelength illumination

    Visible: Responds to chemical agent Infrared: Reference wavelength

    Sources modulatedfrequencies

    Lock-in detection Eliminates stray light effects

    Increases signal-to-noise ratio

  • 8/7/2019 L14_ASCOS_09_Lieberman

    62/127

    62

    SENSOR 1 (BROADBAND H2S)

    SENSOR 1 (BROADBAND H2S SPARE)

    SENSOR 2 (CHLORINE)

    SENSOR 3 (NERVE AGENT)

    CABLE INVENTORY:

    4 ea 50 ft 4-SENSOR DICAST CABLES

    3 ea 50 ft 3-FIBER DISTRIBUTION CABLES

    6 ea 80 ft 3-FIBER DISTRIBUTION CABLES

    2 ea 480 ft 4-FIBER DISTRIBUTION CABLE

    4 ea 260 ft 3-FIBER DISTRIBUTION CABLE

    Zone-Alarm DICAST SystemMetro Platform Test Site: 4 Fibers, 4 Zones

    OUT1B

    OUT1C

    OUT1A

    OUT1D

    23July07 v5

    Passenger Platform Edge

    IN1A

    IN1B

    IN1C

    IN1D

    1A1B1C1D

    1AS1BS1CS1DS

    2A2B2C2D

    3D 3C 3B 3A

    IN2

    IN3OPEN

    OPEN

    50 ft 50 ft 50 ft0 ft0 ft 80 ft0 ft

    480 ft

    260 ft

    spare spare spare spare

    2 Std Cables2 Std Cables2 Std Cables

    2 Std Cables

    1 Std Cable

    1 Sensor Cable

    1 Std Cable

    1 Sensor Cable

    1 Std Cable

    1 Sensor Cable

    1 Std Cable

    1 Sensor Cable

    4 Std Cables

    From TC&C Room

  • 8/7/2019 L14_ASCOS_09_Lieberman

    63/127

    63

    Zone-Alarm DICAST

    Software Local interface provides

    immediate Safe/Alarm

    status

    Neural net combinesdata from four fibers to

    eliminate false alarms Internet uplink provides

    remote monitoring

    capability

  • 8/7/2019 L14_ASCOS_09_Lieberman

    64/127

    64

    Position-Resolved DICAST

    Visible Wavelength Optical Time Domain Reflectometry (OTDR)

    Short pulse launched into fiber

    Rayleigh scattering returns fraction of light toward source Time-of-flight determines location sensed

    Optical loss between launch and location determines intensity

    In DICAST: Plot indicates chemical dose versus location

    (10 cm)

    t= 0.5 nsec

    t= 10 nsec

    t= 20.5 nsec

    2 meters

  • 8/7/2019 L14_ASCOS_09_Lieberman

    65/127

    65

    14 Meter Fiber Exposed to 100 ppm Chlorine

    2.6dB/m

    0.25 dB/m

    1.9dB/m

    Exposure20 sec20 sec30 sec

  • 8/7/2019 L14_ASCOS_09_Lieberman

    66/127

    66

    Parameter RequirementSensitivity Alarm when one meter or more is exposed

    to 10% of toxic dosage dosage

    Specificity Will not alarm with defined interferants

    Resolution Within 1 meter along fiber (OTDR)

    Response time Less than 10 sec for toxic dose IDLH/LCT50

    Less than 1 minute for 10% of toxic dose

    Cable length 60 meters chemically sensitive;

    300 meter leads

    Cable lifetime Greater than 1 year

    Calibration Electronic (no test gas needed)

    False Alarm rate Less than 1%

    DICASTSystem Specifications

  • 8/7/2019 L14_ASCOS_09_Lieberman

    67/127

    67

    Factory Effluent Monitoring

  • 8/7/2019 L14_ASCOS_09_Lieberman

    68/127

    68

    Continuous Flow Assay for Low Vapor

    Pressure Toxic Industrial Compounds

  • 8/7/2019 L14_ASCOS_09_Lieberman

    69/127

    69

    Microsphere-Bound Displacement Assay

  • 8/7/2019 L14_ASCOS_09_Lieberman

    70/127

    70

    Labeled Microspheres (10 m)

    Labeled Beads Unlabeled Beads

  • 8/7/2019 L14_ASCOS_09_Lieberman

    71/127

    71

    Target Antigens

    Carbaryl

    [63-25-2]

    Diphacinone

    [82-66-6]Parathion

    [56-38-2]

    Surrogate Antigens

    Q D Bi L b li

  • 8/7/2019 L14_ASCOS_09_Lieberman

    72/127

    72

    Quantum Dot Bio-Labeling

    CdSe core, ZnS shell quantum dots Coated with cysteine-lysine peptide chains

    Cysteine binds to QD Lysines bind to surrogate antigen

  • 8/7/2019 L14_ASCOS_09_Lieberman

    73/127

    73

    Fluorescence Excitation & Collection

  • 8/7/2019 L14_ASCOS_09_Lieberman

    74/127

    74

    Benchtop Model of Packaged System

    Package:

    Excitation

    Collection Flow cell

    External:

    Pump

    Reagent

    Computer Signal processing

    Power supply

  • 8/7/2019 L14_ASCOS_09_Lieberman

    75/127

    75

    Vortex Air Sampler/Extractor

    40 liters/min. flow rate

    70% collection efficiency

  • 8/7/2019 L14_ASCOS_09_Lieberman

    76/127

    76

    0

    10002000

    3000

    4000

    5000

    450 500 550 600 650

    no loss of beads

    =1800 c s

    Displacement Immunoassay of Phenanthrene

    Surrogate antigen: 2-aminonaphthalene

    Sample: 150 ppm phenanthrene

  • 8/7/2019 L14_ASCOS_09_Lieberman

    77/127

    77

    Continuous Flow Water Effluent Monitoring

    Same platform as

    LVP-TIC monitor Ab/Ag system for

    new targets (e.g.,PAHs, pesticides)

    Water pump

    replaces airconcentrator

  • 8/7/2019 L14_ASCOS_09_Lieberman

    78/127

    78

    Groundwater Monitoring

  • 8/7/2019 L14_ASCOS_09_Lieberman

    79/127

    79

    Techniques for In Situ Monitoring

    Remote fiber optic spectroscopy Excitation fiber carries laser light downhole

    Collection fiber returns Raman & fluorescence to spectrometer Neural network identifies & quantifies pollutants

    Locally replenished liquid optrode Liquid-phase irreversible chemical indicator system

    Dissolving solid supplies continuous stream of reagent

    Excitation & collection through separate fibers

    Neural network identifies & quantifies pollutants

    Active chemical refractometry Long-period fiber grating diffracts light to cladding modes

    Target compound swells chemically selective coating

    Neural network identifies & quantifies pollutants

  • 8/7/2019 L14_ASCOS_09_Lieberman

    80/127

    80

    Raman Spectra of Target Compounds

  • 8/7/2019 L14_ASCOS_09_Lieberman

    81/127

    81

    Mixed Raman Spectrum 3 Targets

  • 8/7/2019 L14_ASCOS_09_Lieberman

    82/127

    82

    Mixed Raman Spectrum CHCl3 in Water

  • 8/7/2019 L14_ASCOS_09_Lieberman

    83/127

    83

    Fluorescence Spectra of Target Compounds

  • 8/7/2019 L14_ASCOS_09_Lieberman

    84/127

    84

    Mixed Spectra: Groundwater & Targets

    -10

    1

    2

    3

    45

    6

    240 340 440

    nm

    Norm.

    Lum

    inescenc

    e Gr.water

    Benzene1500ppm

    Toluene120ppm

    Xylene6ppm

  • 8/7/2019 L14_ASCOS_09_Lieberman

    85/127

    85

    Hybrid Neural Network Design

  • 8/7/2019 L14_ASCOS_09_Lieberman

    86/127

    86

    User Interface: Presenting Purity

    True Ratios

    0% 20% 40% 60% 80% 100%

    GNDA

    GNDB

    benze

    tolue

    xylen

    Zoom In on Targets

  • 8/7/2019 L14_ASCOS_09_Lieberman

    87/127

    87

    Solid-Phase Replenished Optrode

    Groundwater diffuses through porous membrane

    Reaction consumes reagent

    New reagent released by polymer

    Optical path avoids high-concentration reservoir

    Controlled-ReleasePolymer

    C ti C l F Chl i t d C d

  • 8/7/2019 L14_ASCOS_09_Lieberman

    88/127

    88

    Creating Color From Chlorinated Compounds A strong base abstracts the acidic proton to generate trihalomethyl

    anionHO-+ HCX3 H2O + :CX3-

    The unstable conjugate base loses a halide ion and generates adivalent carbon species known as carbene

    :CX3- X- + :CX2

    This electron-deficient intermediate, reacts with molecules such aspyridine, forming a highly colored product [Fujiwara, 1917] The traditional Fujiwara chemistry (pyridine/OH-) used alkalis

    (NaOH and KOH) in water -- insoluble in pyridine. Reaction productis formed only at the interface.

    Andersen and Andersen [1990] showed a single-phase Fujiwarasystem that utilized pyridine and a hindered nitrogen base,specifically a tetraalkylammonium hydroxide

    IOS has developed all-solid-phase Fujiwara chemistry, using solid

    pyridine derivatives

    Improving on Fujiwara

  • 8/7/2019 L14_ASCOS_09_Lieberman

    89/127

    89

    Improving on Fujiwara

    HO-+ HCX3 H2O + :CX3-:CX3- X- + :CX2

    Multiple Color-Producing Reactions

  • 8/7/2019 L14_ASCOS_09_Lieberman

    90/127

    90

    Multiple Color Producing Reactions(chloroform 10 ppm)

    1,2-Bis(4-Pyridyl)-Ethane

    (0.2 M in THF) and TBAH (0.2M)

    1,2-Bis(2-Pyridyl)-Ethylene

    (0.2 M in THF) and TBAH (0.2M)

    4,4'-Dimethyl 2,2'-Dipyridyl(0.2 M in THF) and TBAH (0.2M)

  • 8/7/2019 L14_ASCOS_09_Lieberman

    91/127

    91

    Calibration Curve for Chloroform

  • 8/7/2019 L14_ASCOS_09_Lieberman

    92/127

    92

    Photobleaching Resets Reaction

    Relocatable Groundwater Monitoring

  • 8/7/2019 L14_ASCOS_09_Lieberman

    93/127

    93

    Relocatable Groundwater MonitoringUsing a Cone Penetrometer

    Fiber Bragg Gratings

  • 8/7/2019 L14_ASCOS_09_Lieberman

    94/127

    94

    Fiber Bragg Gratings

    Periodic variation in waveguide core refractive index

    Short-period gratings strongly reflect wavelengths

    that are integral multiples of the grating period For extremely long periods, guided modes in fiber

    core are scattered into cladding modes

  • 8/7/2019 L14_ASCOS_09_Lieberman

    95/127

    95

    Fiber Bragg Grating Spectral Behavior

    Single Mode FBG Reflection Spectrum

  • 8/7/2019 L14_ASCOS_09_Lieberman

    96/127

    96

    Single Mode FBG Reflection Spectrum

    Measured with IOS System

    Long Period Fiber Bragg Gratings

  • 8/7/2019 L14_ASCOS_09_Lieberman

    97/127

    97

    Long-Period Fiber Bragg Gratings

    For multimode fibers, Long Period Bragg Gratings(LPGs) yield very rich transmission/reflection spectra

    Coupling to cladding surface means that spectrum ofLPG depends on refractive index outside of cladding

    Can access the environment directly from the core

    (CLADDING evanescent field coupling

    0

    20

    40

    60

    80

    100

    5 50 6 0 0 65 0 7 00 75 0

    Wa ve length (nm)

    Tran

    smittance

    E l 49 K

  • 8/7/2019 L14_ASCOS_09_Lieberman

    98/127

    98

    Example: 49 ppm Kerosene vapor

    in Contact With Surface of LPG-Fiber

    S lid Ph E i C i E h

  • 8/7/2019 L14_ASCOS_09_Lieberman

    99/127

    99

    Solid-Phase Extraction Coatings Enhance

    LPG Response to Target Compounds

    Differential permeability

    Permeable to target vapors

    Reduced permeability for other compounds

    Solvent-induced refractive index shifts Dilution average of two indices in volume

    Swelling increases volume

  • 8/7/2019 L14_ASCOS_09_Lieberman

    100/127

    100

    Kerosene-Aquasil-LPG Interaction

    0

    20

    40

    60

    80

    100

    500 550 600 650 700 750 800

    Wavelength (nm)

    Transmittance(%

    )

    R f LPG Fib t 63 D

  • 8/7/2019 L14_ASCOS_09_Lieberman

    101/127

    101

    Response of LPG Fiber to 63 ppm Decane

    Coating: LLNL UR3

    R f UR3 LPG Fib t 76 O t

  • 8/7/2019 L14_ASCOS_09_Lieberman

    102/127

    102

    Response of UR3-LPG Fiber to 76 ppm Octane

    0

    20

    40

    60

    80

    100

    560 610 660 710 760Wavelength (nm)

    Transmittanc

    e(%)

    LPG Fiber Response to Solvent Vapors

  • 8/7/2019 L14_ASCOS_09_Lieberman

    103/127

    103

    LPG Fiber Response to Solvent Vapors(Coating: Aquasil)

    0

    20

    40

    60

    80

    100

    560 610 660 710 760

    Wavelength (nm)

    Tr

    ansmittan

    ce(%

    Dichloromethane Decane Toluene BKG

  • 8/7/2019 L14_ASCOS_09_Lieberman

    104/127

    Error Histogram for 100 Measurements

  • 8/7/2019 L14_ASCOS_09_Lieberman

    105/127

    105

    Error Histogram for 100 Measurements

  • 8/7/2019 L14_ASCOS_09_Lieberman

    106/127

    106

    Environmental Air QualityMonitoring

    Environmental Gas Monitoring

  • 8/7/2019 L14_ASCOS_09_Lieberman

    107/127

    107

    Environmental Gas Monitoring

    Photodetector

    Lightsource

    NeuralNetwork

    O2

    CO2

    CO

    H2O

    Photodetector

    Multi Gas Air Quality Monitoring

  • 8/7/2019 L14_ASCOS_09_Lieberman

    108/127

    108

    Multi-Gas Air Quality Monitoring

    Chemically active sensors

    Optrodes

    Indicator-doped porous-glass PICs

    Multiple analytes

    Multiple indicators and Multiple reference channels

    Multiple wavelengths

    Neural net signal processing Removes cross-response

    Improves quantitation

    Four-Optrode Long-Term Exposure

  • 8/7/2019 L14_ASCOS_09_Lieberman

    109/127

    109

    Four Optrode Long Term Exposure

    (Nitrogen Background)

    0 50 100 150 200 250 300 350 400

    0

    500

    1000

    1500

    Time (min)

    IncidentLightPower

    Photodetector1Photodetector2Photodetector3Photodetector4

    Four-Optrode Long-Term Exposure

  • 8/7/2019 L14_ASCOS_09_Lieberman

    110/127

    110

    Four Optrode Long Term Exposure

    (Ambient Environment)

    0 50 100 150 200 250 300 350 400 4500

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    Time (min)

    IncidentLig

    htPower

    Photodetector1

    Photodetector2Photodetector3Photodetector4

  • 8/7/2019 L14_ASCOS_09_Lieberman

    111/127

    111

    Vaskas Complex as a CO Indicator

    Spectral Response to Carbon Monoxide

  • 8/7/2019 L14_ASCOS_09_Lieberman

    112/127

    112

    Spectral Response to Carbon Monoxide

    Carbon Monoxide Optrode Response

  • 8/7/2019 L14_ASCOS_09_Lieberman

    113/127

    113

    Carbon Monoxide Optrode Response

    Carbon Dioxide Optrode

  • 8/7/2019 L14_ASCOS_09_Lieberman

    114/127

    114

    Carbon Dioxide Optrode

    (Severinghaus Optrode)

    CO2 (aq) + H2O > H2CO3 (Kh = 2.6 X 10-3)

    H2CO3 + H2O HCO3- + H3O+ (K1 = 2.2 X 10-4)

    HCO3- + H2O < > CO32- + H3O+ (K2 = 2.5 X 10-10

    )

    CO2 shifts carbonate equilibriumResulting pH triggers change in fluorescent indicator

    Fluorescence Response of CO Optrode

  • 8/7/2019 L14_ASCOS_09_Lieberman

    115/127

    115

    Fluorescence Response of CO2 Optrode

    CO2 Response Curve

  • 8/7/2019 L14_ASCOS_09_Lieberman

    116/127

    116

    CO2 Response Curve

    Neural Net Deconvolution of

  • 8/7/2019 L14_ASCOS_09_Lieberman

    117/127

    117

    Multichannel Data

  • 8/7/2019 L14_ASCOS_09_Lieberman

    118/127

    118

    Fire Precursor Detection

    3048 & 3084 & 3097

    Fire Precursor Detection in Aircraft

  • 8/7/2019 L14_ASCOS_09_Lieberman

    119/127

    119

    Fire Precursor Detection in Aircraft

    Heated materials emitvapors & gases

    Carbon monoxide Formaldehyde

    Polymer/monomer

    Gases have distinctNIR spectra

    Optical detection ofprecursors detectsfire before it occurs

    Carbon Monoxide Absorption Spectrum

  • 8/7/2019 L14_ASCOS_09_Lieberman

    120/127

    120

    p p

    Conventional Modulation Spectroscopy

  • 8/7/2019 L14_ASCOS_09_Lieberman

    121/127

    121

    p py

    Modulation

    (Pressure, Stark)

    Broadband

    Light Source

    Broadband

    Light Source

    Measurement

    Cell

    Measurement

    Cell

    Optical Fiber

    (Multimode)Reference

    Cell

    Reference

    Cell

    Bandpass Filter Detector

    Modulation

    (Frequency, Shift)

    a)

    b)

    Multi-Wavelength Modulated Fiber Laser

  • 8/7/2019 L14_ASCOS_09_Lieberman

    122/127

    122

    g

  • 8/7/2019 L14_ASCOS_09_Lieberman

    123/127

    123

    Thermo-Stabilized Multiline Laser

    7-Line Fiber Laser Tuned for CO

  • 8/7/2019 L14_ASCOS_09_Lieberman

    124/127

    124

    7 Line Fiber Laser Tuned for CO

    20 ppm CO Detected With Multi-line Laser

  • 8/7/2019 L14_ASCOS_09_Lieberman

    125/127

    125

    Optical Chemical Sensors:Good for Environmental Analysis!

  • 8/7/2019 L14_ASCOS_09_Lieberman

    126/127

    126

    TEST031805-1

    -5

    -4

    -3

    -2

    -1

    0

    1

    0 60 120 180 240 300 360 420 480 540 600

    Exposure Time (sec.)

    SensorSignal(dB/m)

    50ppm

    50ppm

    5ppm

    5ppm

    5ppm

    0

    1000

    2000

    3000

    4000

    5000

    450 500 550 600 650

    no loss of beads

    =1800 cps

    0

    20

    40

    60

    80

    100

    660 680 700 720 740 760

    Wavelength (nm)

    Transmittance(%

    Dichloromethane Decane Toluene BKG

    00 0 0

    0 50 100 150 200

    250

    500

    1000

    2500

    5000

    250

    500

    1000

    2500

    50005000 50005000

    45

    40

    35

    30

    25

    20

    15

    105

    Signal(ArbittraryUnits)

    Time (min)

    PR3

    PR3

    Cl

    Ir CO

    CO

    PR3

    PR3

    Cl Ir CO

    C

    O

    k1

    k1

    Good for Environmental Analysis!

    Thanks to

  • 8/7/2019 L14_ASCOS_09_Lieberman

    127/127

    Thanks to

    Funders National Science Foundation

    (NSF)

    National Institutes of Health(NIH)

    National Aeronautics andSpace Administration (NASA)

    Environmental ProtectionAgency (EPA)

    U.S. Department of Defense

    U.S. Department of State

    Workers Dr. Glenn Bastiaans

    Ms. Manal Beshay

    Dr. Kishology Goswami Mr. Jeffrey Iida

    Dr. Lothar Kempen

    Dr. Edgar Mendoza

    Dr. Vladimir Rubtsov

    Dr. Indu Saxena

    Dr. Roland Suri

    Dr.Igor Ternovskiy Dr. Srivatsa Venkatasubbarao

    Audience