l01 01/15/021 ee 4345 - semiconductor electronics design project spring 2002 - lecture 01 professor...

9
L01 01/15/02 1 EE 4345 - Semiconductor Electronics Design Project Spring 2002 - Lecture 01 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

Upload: polly-hudson

Post on 03-Jan-2016

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: L01 01/15/021 EE 4345 - Semiconductor Electronics Design Project Spring 2002 - Lecture 01 Professor Ronald L. Carter ronc@uta.edu

L01 01/15/02 1

EE 4345 - Semiconductor Electronics Design Project Spring 2002 - Lecture 01

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

Page 2: L01 01/15/021 EE 4345 - Semiconductor Electronics Design Project Spring 2002 - Lecture 01 Professor Ronald L. Carter ronc@uta.edu

L01 01/15/02 2

Silicon Covalent Bond (2D Repr)

• Each Si atom has 4 nearest neighbors

• Si atom: 4 valence elec and 4+ ion core

• 8 bond sites / atom• All bond sites filled• Bonding electrons

shared 50/50_ = Bonding electron

Page 3: L01 01/15/021 EE 4345 - Semiconductor Electronics Design Project Spring 2002 - Lecture 01 Professor Ronald L. Carter ronc@uta.edu

L01 01/15/02 3

Si Energy BandStructure at 0 K

• Every valence site is occupied by an electron

• No electrons allowed in band gap

• No electrons with enough energy to populate the conduction band

Page 4: L01 01/15/021 EE 4345 - Semiconductor Electronics Design Project Spring 2002 - Lecture 01 Professor Ronald L. Carter ronc@uta.edu

L01 01/15/02 4

Si Bond ModelAbove Zero Kelvin

• Enough therm energy ~kT(k=8.62E-5eV/K) to break some bonds

• Free electron and broken bond separate

• One electron for every “hole” (absent electron of broken bond)

Page 5: L01 01/15/021 EE 4345 - Semiconductor Electronics Design Project Spring 2002 - Lecture 01 Professor Ronald L. Carter ronc@uta.edu

L01 01/15/02 5

Band Model forthermal carriers• Thermal energy ~kT

generates electron-hole pairs

• At 300K Eg(Si) = 1.124 eV

>> kT = 25.86 meV,Nc = 2.8E19/cm3

> Nv = 1.04E19/cm3>> ni = 1E10/cm3

Page 6: L01 01/15/021 EE 4345 - Semiconductor Electronics Design Project Spring 2002 - Lecture 01 Professor Ronald L. Carter ronc@uta.edu

L01 01/15/02 6

Donor: cond. electr.due to phosphorous

• P atom: 5 valence elec and 5+ ion core

• 5th valence electr has no avail bond

• Each extra free el, -q, has one +q ion

• # P atoms = # free elect, so neutral

• H atom-like orbits

Page 7: L01 01/15/021 EE 4345 - Semiconductor Electronics Design Project Spring 2002 - Lecture 01 Professor Ronald L. Carter ronc@uta.edu

L01 01/15/02 7

Band Model fordonor electrons• Ionization energy

of donor Ei = Ec-Ed ~ 40 meV

• Since Ec-Ed ~ kT, all donors are ionized, so ND ~ n

• Electron “freeze-out” when kT is too small

Page 8: L01 01/15/021 EE 4345 - Semiconductor Electronics Design Project Spring 2002 - Lecture 01 Professor Ronald L. Carter ronc@uta.edu

L01 01/15/02 8

Acceptor: Holedue to boron

• B atom: 3 valence elec and 3+ ion core

• 4th bond site has no avail el (=> hole)

• Each hole adds -(-q) and has one -q ion

• #B atoms = #holes, so neutral

• H atom-like orbits

Page 9: L01 01/15/021 EE 4345 - Semiconductor Electronics Design Project Spring 2002 - Lecture 01 Professor Ronald L. Carter ronc@uta.edu

L01 01/15/02 9

Classes ofsemiconductors• Intrinsic: no = po = ni, since Na&Nd << ni

=[NcNvexp(Eg/kT)]1/2,(not easy to get)

• n-type: no > po, since Nd > Na

• p-type: no < po, since Nd < Na

• Compensated: no=po=ni, w/ Na- = Nd

+ > 0

• Note: n-type and p-type are usually partially compensated since there are usually some opposite- type dopants