(k.w.vogt) surface science article 1

11
ELSEVIER Surface Science 301 (1994) 203-213 . . . . . . . ~..:.~::::::::::j::::i::::::j:.: .‘.‘.‘.“““:‘:‘.‘.‘.‘.~:.:.:..:.:.:.:..:.:.:.: . . ~,:,),,, .-..:>: . . . . . . . . . . ..‘-.I . . . .. >)>:..>:,):.) .. . . . :i ‘:.:.,,.:.:,i_.,.,):,, ,,., . . . . . . . . Il’iil~~,~,~~~:~,~i.::::~:.~:.:.:.:. .i.s .i. . .. . . . .,., ,,,,,, ,,,, :.:.: ._‘.:.~.:,::;,:_ ~):~ )) {p+ ., ..:,: ,: ..._i surface science ::..::x..._ .,., ., ‘.‘.“~.‘...‘.‘......... . . . . . . . . . . . . ~ ,....,,,.,.,., “.’ “.“i’ ““” ‘i.‘.‘.?... .(. ::.:. ,,.,., ,,,,,, ,,,,,, .,.,.>: :::: ;;;i “‘. .,..... :.:?:::.::::::::::; :::: “.:‘“.‘-~:...-,.:.:.. . . . . . . . . . . ,,., .,.,,i,:,,,, ,,.,,, ‘.‘i.‘.‘.:.:.:.:>:.:.:::: .:\ :: ,:.:_ ~ :,., ,_ .’ ‘.‘“::.:::::i:::::::i:~:::::::::.:::j. ,.:.:. ~ ,.,., :;, ., : (,,, ,., Characterization of thin titanium oxide adhesion layers on gold: resistivity, morphology, and composition K.W. Vogt, P.A. Kohl *, W.B. Carter, R.A. Bell, L.A. Bottomley Georgia Institute of Technology, Atlanta, GA 30332-0100, USA (Received 22 March 1993; accepted for publication 10 August 1993) Abstract Group 1B metal films (copper, silver and gold) are attractive for metallizations in multichip modules (MCM) and integrated circuits because they have high electrical conductivities. Unfortunately, Group 1B metals require additional bonding layers for adhesion to insulators (i.e. silicon dioxide or polymers). In this work, thin electrically insulating films of titanium oxide on titanium have been investigated as adhesion layers between gold and a wide variety of insulators. The adhesion layer does not alter the dielectric properties of the insulator surrounding the metal because it is thin. The morphology, composition, and resistivity of the titanium oxide films were studied with angle resolved X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and electrical resistance measurements. The results show that sputter-depfsited titanium films grow by an island growth (Volmer-Weber) mechanism. The islands coalesce after lo-20 A of titanium deposition. Following deposition, the titanium films were oxidized by exposure to air at relatively low temperatures (T < 1OO’C). Very thin titanium films (3 A) oxidized completely. When thin titanium films (lo-20 A> were oxidized, a layered film formed with a sub-oxide (TiO) core and a titanium dioxide surface layer. When thicker films (> 20 A> were oxidized, a layered film was also produced with a titanium core and titanium oxide surface layer. 1. Introduction The high conductivity of Group 1B metal films (copper, gold and silver) is appealing for use in metallizations for microelectronics interconnec- tions. In addition, the inertness of gold makes it attractive for high reliability applications. Transi- tion metal films are commonly used as adhesion layers for metals which do not easily form stable oxides. The adhesion properties of transition * Corresponding author. metals, particularly Groups IVA-VIIIA, have been correlated to the heat of formation of the oxide [ll. Group 1B metals (copper, silver, and gold) do not form oxides adequate for adhesion. Recently, a thin film of titanium oxide on titanium (< 100 A> has been investigated as an adhesion layer between gold and silicon dioxide or polymers [2,3]. The titanium oxide is deposited on the metallization to provide an adhesive film for the subsequent deposition of an insulator. In addition to being electrically insulating, titanium oxide films do not alter the dielectric properties of the insulator on, or under the metal because they are thin. The titanium-gold metallurgy also 0039-6028/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved SSDI 0039-6028(93)E0490-L

Upload: gwendolyn-lim

Post on 16-Aug-2015

225 views

Category:

Documents


8 download

DESCRIPTION

Material Science Material

TRANSCRIPT

ELSEVIERSurfaceScience301 (1994) 203-213 .......~..:.~::::::::::j::::i::::::j:.: ....::....~:.:.:..:.:.:.:..:.:.:.:.. ~,:,),,, .-..:>:............-.I. . . . . >)>:..>:,):.). . . . . :i :.:.,,.:.:,i_.,.,):,, ,,., ........ Iliil~~,~,~~~:~,~i.::::~:.~:.:.:.:..i.s.i.. . . . . ..,.,,,,,,,,,,, :.:.:._.:.~.:,::;,:_~):~)) {p+ .,..:,:,: ..._i sur f ac esc i enc e ::..::x ..._.,.,., ..~..........................~,....,,,.,.,., ..ii...?....(.::.:.,,.,.,,,,,,,,,,,,, .,.,.>:::::;;;i . .,.....:.:?:::.::::::::::;:::: .:.-~:...-,.:.:............ ,,.,.,.,,i,:,,,,,,.,,, .i...:.:.:.:>:.:.::::.:\::,:.:_~:,.,,_ ..::.:::::i:::::::i:~:::::::::.:::j.,.:.:.~,.,.,:;, .,: (,,,,., Characterizationofthintitaniumoxideadhesionlayersongold: resistivity,morphology,andcomposition K.W.Vogt,P.A.Kohl*,W.B.Carter,R.A.Bell,L.A.Bottomley GeorgiaInstituteofTechnology,Atlanta,GA30332-0100,USA (Received22March1993;acceptedforpublication10August1993) Abstract Group1Bmetalfilms(copper,silverandgold)areattractiveformetallizationsinmultichipmodules(MCM)and integratedcircuitsbecausetheyhavehighelectricalconductivities.Unfortunately,Group1Bmetalsrequire additionalbondinglayersforadhesiontoinsulators(i.e.silicondioxideorpolymers).Inthiswork,thinelectrically insulatingfilmsoftitaniumoxideontitaniumhavebeeninvestigatedasadhesionlayersbetweengoldandawide varietyofinsulators.Theadhesionlayerdoesnotalterthedielectricpropertiesoftheinsulatorsurroundingthe metalbecauseitisthin.Themorphology,composition,andresistivityofthetitaniumoxidefilmswerestudiedwith angleresolvedX-rayphotoelectronspectroscopy(XPS),scanningtunnelingmicroscopy(STM),andelectrical resistancemeasurements.Theresultsshowthatsputter-depfsitedtitaniumfilmsgrowbyanislandgrowth (Volmer-Weber)mechanism.Theislandscoalesceafterlo-20Aoftitaniumdeposition.Followingdeposition,the titaniumfilmswereoxidizedbyexposuretoairatrelativelylowtemperatures(T wereoxidized,alayeredfilmformedwithasub-oxide (TiO)coreandatitaniumdioxidesurfacelayer.Whenthickerfilms(>20A>wereoxidized,alayeredfilmwasalso producedwithatitaniumcoreandtitaniumoxidesurfacelayer. 1.Introduction ThehighconductivityofGroup1Bmetalfilms (copper,goldandsilver)isappealingforusein metallizationsformicroelectronicsinterconnec- tions.Inaddition,theinertnessofgoldmakesit attractiveforhighreliabilityapplications.Transi- tionmetalfilmsarecommonlyusedasadhesion layersformetalswhichdonoteasilyformstable oxides.Theadhesionpropertiesoftransition *Correspondingauthor. metals,particularlyGroupsIVA-VIIIA,have beencorrelatedtotheheatofformationofthe oxide[ll.Group1Bmetals(copper,silver,and gold)donotformoxidesadequateforadhesion. Recently,athinfilmoftitaniumoxideon titanium(hasbeeninvestigatedasan adhesionlayerbetweengoldandsilicondioxide orpolymers[2,3].Thetitaniumoxideisdeposited onthemetallizationtoprovideanadhesivefilm forthesubsequentdepositionofaninsulator.In additiontobeingelectricallyinsulating,titanium oxidefilmsdonotalterthedielectricproperties oftheinsulatoron,orunderthemetalbecause theyarethin.Thetitanium-goldmetallurgyalso 0039-6028/94/$07.0001994ElsevierScienceB.V.Allrightsreserved SSDI0039-6028(93)E0490-L 204K. WVogt r l al . /SwfacrSciencr301 f l YY4) 203- 213 makestitaniumadesirableadhesivematerial. Althoughtitanium-goldinterdiffusionisfast,ti- taniumout-diffusesalonggrainboundariesand quicklyoxidizesatthesurfaceofthegold.The surfaceoxidationcausescontinuedoutdiffusion andachemicalpotentialsink[4].Thus,stable titaniumoxidescanbeformedonthesurfaceof gold.Thisbehaviorisunlikesometransitionmet- alsongoldwhichdiffuseintothegoldandsignifi- cantlyreduceitselectricalconductivity111. Inthis study,thintitaniumadhesionlayerswerecharac- terizedtounderstandthenatureofgrowthand adhesionmechanismofthefilmstogold. Titaniumfilmshavebeendepositedbyseveral techniquesincludingchemicalvapordeposition [5],evaporation[6],andsputtering[7].Inthis study,thepropertiesofthintitaniumfilmsde- positedwithDCmagnetronsputteringhavebeen analyzedbyelectricalresistancemeasurements, XPS,andSTM.Thesetechniqueswillhelpchar- acterizetheresistivity,composition,andmor- phologyofthethintitaniumfilms. 2.Experimental Titaniumandgoldfilmsweredepositedse- quentiallybyDCmagnetronsputtering.The sputteringtargetswere99.99%titaniumand 99.99%gold,andthebasepressurewas2X10ph Torr.Thetemperatureduringthedepositionwas below50Candthed?positionrateforbothgold andtitaniumwas60A/min. Threesetsofsampleswereprepared.Electri- calconductivitymeasurementsweremadeby sputteringtitaniumbetweentwocloselyspaced goldstripsonasilicondioxidesubstrate.The electrodeswere3.5cmlong,3mmthick,andhad 40mmlinesandspaces.Theresistanceofthe titaniumfilmbetweentheelectrodeswasmea- suredasafunctionofpost-processingconditions. Forcompositionandmorphologystudies,3,10, and75Atitaniumfilmswereinvestigated.Identi- caltitaniumfilmswerepreparedonbothevapo- ratedgoldandsputteredgoldosubstrates.The evaporatedgoldfilmwas2500Athickandde- positedonmica,andthesputteredgoldfilmwas 1500Athickanddepositedonsilicon.After oxidationinairatroomtemperaturefortwo weeks,thecompositionofthefilmswasmeasured withsputter-profileXPS,andthemorphology wasevaluatedwithangleresolvedXPSandSTM. ASurfaceScienceLaboratories,Inc.SSX-100 X-rayphotoelectronspectrometerwithanAlKa X-raysource(1486.6eV>wasusedforangle resolvedandsputter-profileXPSstudies.The basepressurewaslowerthan1 xlo-Torr.Ar- gonionsputteringwasusedtoetchawaythe surfaceduringprofiling.TheKratosMini-Beam IIiongunwasoperatedat4keVinanargon pressureof3.7xlo-Torr. STMimageswereobtainedwithaDigitalIn- struments,Inc.NanoscopeIIscanningtunneling microscope.TheSTMtipswerepreparedbyme- chanicallyshearingplatinum/iridiumwire.Im- ageswereobtainedintheconstantcurrentmode atatunnelingcurrentof0.5-1.0nA,andthe tunneljunctionbiaswasbetweenf50andk250 mV.Mostimageswereacquiredatscanningrates between2and3Hz.Theimageswereflattened priortoanalysis. 3.Angle-resolvedXPSmorphologymodel Duringthedepositionoftitanium,filmgrowth canoccurbyseveralmechanisms[8].During Frank-VanderMerwe(layer-by-layer)growth, onemonolayerofcoverageiscompletedbeforea secondbegins.Thesecondpossiblegrowthmech- anismisStranski-Krastanov(layer-plus-island- ing)growth.Afterthesubstratesurfaceiscom- pletelycoveredbythefirstmonolayer,subse- quentdepositionofmaterialformsislands.The thirdmethodisVolmer-Weber(island)growth, whereislandsnucleate,grow,andcoalesceas depositioncontinues. Inthiswork,angleresolvedXPSandSTM havebeenusedtocharacterizeanddistinguish betweenthefilmgrowthmechanisms.Alayer- by-layermodelforangleresolvedXPSwasfirst discussedbyHenke[9]andfurtherdevelopedby Fadley[lo].TheXPSintensityfromasemi-in- finitesubstratecoveredwithanoverlayermate- rialwasmeasuredasafunctionofphotoelectron take-offangle,0.TheintensityoftheXPSsignal K. W.Vogt et al. /SurfaceScience301(1994)203-213205 fromthesubstrate(Isubstrate),wasattenuatedex- ponentiallybytheoverlayer. I substrate= l;bstrateeXP(-t/hsubstratesine>.(1) Theintensityfromasemi-infinite,atomically cleansurfaceofthesubstratematerialwas h:bstrate~thethicknessoftheoverlayerfilmwast, theattenuationlengthforthephotoelectrons fromthesubstratematerialastheytravelthrough theoverlayerwasAsubstrate,andthephotoelectron take-offanglemeasuredfromtheplaneofthe samplewas0. TheXPSintensityoftheoverlayermaterial (loverlayer)wassimultaneouslymeasured.Thepho- toelectronsoriginatingfromtheoverlayerfilm arealsoattenuatedexponentiallywithdepth. I OVerlayer=Z:.erlayer[I-exp(-t/*oerlayersine)]. (2) Theintensityfromasemi-infinite,atomically cleansurfaceoftheoverlayermaterialwas I,,er,ayer,andtheattenuationlengthofthephoto- electronfromtheoverlayerasittravelsthrough theoverlayerfilmwasAoverlayrr. Asingleparameter,R(O),isobtainedforthe layer-by-layermodelafterdividingeq.(2)byeq. (1). I R(O)= oerlayer/Z&_rlayer Z substrdzs%strate 1 -ew( -t/Aoverlayersin0) = exp(-t/hsubstratesine, (3) AmodelfortheVolmer-Weber(island) growthmechanismhasalsobeendeveloped[ll]. Thefilmhasbeenapproximatedasapatched overlayeroftheovercoatmaterial.Inthismodel, theobservedintensityfromthesubstrate (Isubstrate) hascontributionsfromtheovercoated andbareportionsofthesubstrate.TheXPS intensityfromtheovercoatedsubstrate,eq.(4), wasattenuatedbyislandswithuniformheight,h, whereas,thesignalfromthebaresurfacewasnot attenuatedbytheovercoatlayer. I substrate=ZsmubstrateI(1- Y1 +Yexr4-h/bubstratesinQl .(4) Thefractionofthesurfacecoveredbythefilm wasy,andtheuncoveredfractionwas(1 -Y>. Likewise,theXPSintensityfromtheoverlayer (Zoverlayer 1hasanexponentialattenuationwith thicknessbecausethephotoelectronsoriginate fromdifferentdepthsintheoverlayerfilm,as shownbyeq.(5). Z OVerlayer =Y Z:erlayer[ 1 -exp(-VLerlayersine)]. (5) Theanalogousquantitytoeq.(3)(R(B),layer- by-layermodel)fortheislandgrowthmodelis givenbyeq.(6)whichwasobtainedbydividing eq.(4)byeq.(5). Zoverlayer/Zoave*layer R(B)=Z_ substrate/zs:bstrate Y[1-ew(-Woverlayer sine)] [@ -Y)+ Yexp(-h/Asubstratesine>I (6) Thefourquantities,zsubstrate,z;bstrate~ zoverlayer~andGerlayer7 havebeenmeasuredasafunction ofthephotoelectrontake-offangle(substrate= Table1 Measuredresistance(R)andcalculatedresistivitv(4)asafunctionoftitaniumthicknessandamountofoxidation Oxidizedat95C 0min5min10min R(n)p(fi.crn)R(a)p(R.cm)R(0)p(n.crn) lO.&Ti1.70x1014900>9.99x10s>87400>9.99xlox>87400 20.& Ti160000281.30x10829600>9.99x10>175000 30ATi100.002651.60.01441000.0260 206K. W.Vogtetal. /SurfaceScience301(1994)203-213 gold,overlayer=titanium)andfittedtothetwo modelsdiscussedabove.Non-linearregression analysiswasusedtoanalyzethefitofeq.(3)and Ti *Ps/2 A(a) rii(t4) . v Tit?$0) 30seconds 4694th463460457454451 BiidiigEnergykv) rM Ti(+4)Tit+2Ti(O) ++$ cIIIII 4694664634604574544 BiidiigFnergykV) 51. Fig.1.Titanium2pXPSspectrafor(A)the3i\titaniumfilm(B)the75I% film,and(C)the10Afilmasafunctionofargon etching. eq.(6)totheR(0)versus0data.Theoverlayer thickness(t)orislandheight(h)andfractional coverage(y)wereestimatedfromthedeposition processandwereconfirmedfromtheregression analysis.Furtherdiscussionconcerningtheas- sumptionsintheangleresolvedXPSmodelsis includedintheAppendix. 4.Resultsanddiscussion 4.1.Resistance/resistivity measurements Theelectricalresistancebetweentwo3.5cm longelectrodeswith40mmspacingandtitanium overcoatthicknessesof10,20,and30wwere measuredafterheattreatmentinairat95C (4.5%relativehumiditymeasuredat20C)for0, 5,and10min.ThemaximumDCresistanceof themeterwas1GR.Theresistivityofthetita- niumfilmswascalculated,R=pL/A,whereRis themeasuredresistance(a),pistheresistivity K.W. Vogtetal./SurfaceScience301(1994)203-213207 (0.cm),Listhedistancebetweentheanodes (cm),andAis thecross-sectionalarea(thickness timeselectrodelength)ofthefilm(cm2).Asthe filmthicknessincreasedfrom10to30A,the resistivitysignificantlydecreased,asshownin Table1.Second,theresistivityofeachfilmin- creasedwithairexposuretimeat95C.Witha10 minexposuietoairat95Ctheresistanceofthe 10and20Athickfilmswasgreaterthan1GR, themeterslimit.Forthe10Afilm,a5min exposurewassufficienttoproducegreaterthana gigaohmresistance. Theseresultsshowthatoxidationof10 and20 Afilmsfor10minwassufficienttoconvertthe titaniumconductivepathtoa non-conductivepath (i.e.titaniumoxide).Ifthefilmsweregrownwith anislandgrowthmechanism,oxidationofthe outershellofthetitaniumislandswouldhave adequatelyeliminatedanyconductivepaths, whereaswithalayer-by-layergrowthmechanism, thebulkofthefilmwouldhaveoxidized.Thicker films(30A> areeithernotcompletelyoxidized,or thevoidsbetweentheislandsarefilledwithmetal causinganincreaseintheconductivity. 4.2.Sputter-profileX-rayphotoelectron spectroscopy TheTi2pXPSspectrafor3,10,and75A titaniumovercoatsongoldwereobtainedasa functionofargonionsputter@gtime,asshownin Fig.1forthe3and75Atitaniumongold samples.Thepeakpositionshavebeenrefer- encedtotheadventitiousC 1s peakat284.6eV. Inadditiontothecarbonreference,thebinding energyforgoldwasmeasured,anditsposition wasunchanged.Thespectracanbeinterpretedin termsofthreedoubletsassociatedwithTi(zero valencestate),TiO(+2oxidationstate),and TiO,(+4oxidationstate)[12]. Thepeaksineach doubletcorrespondtophotoemissionfromthe titanium2p,,,andtitanium2~i,~energylevels. Thethree2p1,*p eaksarelocatedbetween461 and467eV,andthethree2p3,2peaksarelo- catedbetween453and461eV.Thetitanium 2P 3,2 peaksarecommonlyusedfortheidentifi- cationofthetitaniumoxidationstatesbecauseof theirhighphotoemissionintensity[13]. Thebind- ingenergyofthetitanium2p,,,peakforthe3 A titaniumovercoatsampleoccurredat458eV after0,10,20,and30sofsputteretching,as showninFig.la.Thisbindingenergycorre- spondstoTi4+(i.e.TiO,).Thisindicatesthat withinthesensitivityofXPS,the3Afilmwas TiO,. Fig.lbshowstheXPSspectraforthe75ATi filmat0,200,and1100sofsputteretching.The oxidationstateoftitaniumonthesurfacewas primarilyTi4+,justlikethe3Afilm.After200s ofsputteretching,theTi2p,,,peakshiftedto 454eV,correspondingtoTi.Thepeakat461eV correspondstotheTiO2~,,~signal.After1100s ofsputteretching,onlyasmallquantityoftita- @urnremainedonthegoldsurface.Thus,the75 Afilmwasalayeredstructurewithanoxide surfaceandametalcore.Sinceasub-oxidewas notobservedafterasignificantamountofsputter etching,itwasconcludedthatsputteretchingdid notreducetitaniumoxideoroxidizetitaniumto formasub-oxide(Ti2+l. Fig.lcshowsthattheoxidationstateofthe surfaceofthe10 Atitaniumfilm(priortosputter etching)wasalsoprimarilyTi4+(TiO,),analo- goustothe3Afilm.However,unlikethe3A film,theobservedoxidationstateafter45,90and 135 s ofsputteretchingwasfoundtochangefrom Ti4+toTi2(thebindingenergyoftheTi2p,,, peakshiftedfromto458to456eV).Elemental titanium(bindingenergyat454eV)wasnotob- served.Thus,assumingsputteretchingdoesnot producetitaniumsub-oxide,the10Atitanium filmwasalayeredstructurewithaTiO,surface andasub-oxidecore(TiOorpossiblyTi,O,). Previousstudieshavefoundsimilarresultsfor roomtemperatureFxidation.Evans[14]hassug- gestedthat6-12Aofoxideformontitanium metalwithinthefirstfewsecondsofoxidation, followedbyaslowoxidegrowthwhichceases after70days.Othershaveshownthatoxide growthontitaniumisalogarithmicfunctionof temperaturebelow300C[15,16].Theoxidation quicklybecomesdiffusionlimitedatlowtempera- turesbecauseoftheinwardmovementofoxygen totheoxide-metalinterface[15,17,18].Kofstad [15]hasshownthattheoxidefilmwhichformed ontitaniumhasasub-oxide(TiOandTi,O,) 20XK.KVogtetal./SurfaceScimce30111994)203-213 attheinterfacebetweenthetitaniummetaland thesurfaceTiO,.Similarresultswerefoundby Aouadietal.fortheoxidationoftungstenfilms [191.Inthiscase,WO,wasfoundbetweena tungstenmetalsubstrateandaWO,surfaceox- ide. 4.3.Angleresolued X-rayphotoelectron spectroscopy Inthissection,theangle-resolvedXPSdata will bepresentedandcomparedtothetheoretical predictionsdiscussedearlier.Thetitanium2p 2.5 - I 23 - \ \ \ \ \ L (al -_+_-__- _,___ ------ 102030405060706090 photoeiectron takeoffangle tdeam) \ \ lb) 0*---_-.---t--_-pi_-_-_.__.~+---d 010203040506070Bo90 photoelectron takeoffangle (degrees) 31\ l \ . 2 11 l . *'. .. '. 1+,_. *. I ? 0l-y._____-.._-.-_.__.r ____ 01020304060607060xl photoelectron takeoffangle (degrees) Fig.2.Theintensityratio,R(B),asafunctionofthephotoelectrontake-offangleforthe(a)3iTi/Au/Sifilm,(bt10A Ti/Au/Sifilm,(c)3ATi/Au/micafilm,andCd)10I% Ti/Au/micafilm. K.W.Vogt et al./SurfaceScience301(1994)203-213 0102030405060708090 photoelectron take-off angle (degw1 Fig.2 (continued). 209 andgold4fXPSspectraweremeasuredasa functionofphotoelectrontake-offangle(thean- glebetweentheplaneofthesampleandthe entrancetotheanalyzer).Inthiscase,theover- layerfilmistitanium(oxide)andthesubstrateis gold.Th,emeasurementsweremadefor0,3,10, and75Atitaniumfilmsonevaporatedandsput- teredgoldzubstrates.Thethicksputteredgold film(1500A)wasdepositedonsiliconandthe thickevaporatedgoldfilm(2500A>wasde- positedonmica.Analysisoffilmsonsputtered gold/siliconsubstratesareusefulforstudyof microelectronicsapplications.Evaporatedgoldon micasubstratesformatomicallyflatsurfacesand aresuitedforcharacterizationofadsorbates[201. Nophotoelectronswereobservedfromeitherthe siliconormicabeneaththegold.Theintensities (Zi)ofthetitanium2pandgold4fXPSspectra weredeterminedbynumericallyintegratingthe areaofeachphotoemissionpeakusingalinear backgroundfunction.Theintensityratios,R(8), werecalculatedandplottedversu:thephotoelec- trontake-offanglefor3and10 Atitaniumfilms forbothsputteredgold(sput.Au)substrates(figs. 2aand2b)andforevaporatedgold(evap.Au) substrates(figs.2cand2d).Themeasuredvalue forthicktitanium,ZTi, wasobtainedfromthe75 AtitaniumsampleandthevalueforZiUwas obtainedfromthecleangoldfilms. Theintensityratio(R(0))forthe3ATi/sput. Ausample,Fig.2a,decreasesslightlywithin- creasingtake-offangle.Theintensityratioforthe 10 ATi/sput.Au,Fig.2b,behavessimilarly,but theintensityoftheXPSsignalfromtheovercoat layeris greater.Atsmallerangles,thepatio,Z?(8), againincreases.Similarlyforthe3ATi/evap. AudatainFig.2c,R(B)isnear3forsmall take-offanglesand1fcrlargertake-offangles. Lastly,R(8)forthe10 ATi/evap.Austartsnear 5forsmallanglesanddecreasestoabout2for largeangles. Thelayer-by-layermodel,eq.(3),andtheis- landmodel,eq.(61, wereusedtofitthedataand arealsoincludedinfigs.2a-2d.Theadjustable parametersforthemodelswerelayerthickness 0)forthelayer-by-layermodelandislandheight (h)andfractionalcoverage(y)fortheisland model.Theelectroninelasticmeanfreepaths(A) werecalculatedusingthemethodsofTokutakaet al.[21],SeahandDench[22],andPenn[23]. AveragevatuesofA,,=22A,hTi =21A,and Ario,=27Awereusedinbothmodels.These valuesaresimilartothosepreviouslyreportedfor goldandtitanium[10,12,21,24,251. Thetwomodelsareeasilydistinguishedatlow take-offangles,whentheXPSanalysisdepthis approximatelyequaltothefilmthickness.Atlow angles,theexposedsubstrateintheislandmodel allowsasignificantgoldsignaltobeobserved, whereasthelayer-by-layermodeldoesnot.The calculatedvaluesofR(8)forthetwomodelsare plottedinFig.2.Theislandingmodelveryclosely fitsthedatawhenovercoatthicknessesof10, 42, 12,and20Awereusedforfigs.2a-2d,respec- 210K. W.Vogtetal. /SurfaceScience301( 1994)203- 213 tively.Apossiblesourceofthesmalldeviations fromtheislandingmodelcanbeattributedto shading/roughnesseffectsignoredinthederiva- tionofthemodels(seeAppendix).Atsmalltake- offangles(0SO>, theroughsubstrateaccentedICwerlayer resultinginalargerR(B)thanpredicted,espe- ciallyforthesputteredAu/siliconsubstratewhich hasaroughersurfacethanevaporatedAu/mica. Theislandheight(h)andfractionalcoverage(y) yere28Aand47%forothe3ATi/sput.eu,46 Aand94%for,the10ATi/sput.AU& 18Aand 74%forth:3ATi/evap.Au,and30Aand82% forthe10ATi/evap.Au.Thevaluesofovercoat A thickness,islandheightandfractionalcoverage arehigh,butinsemi-quantitativeagreementwith thequantityoftitaniumdeposited,withinexperi- mentalerror.Theyareviewedassemi-quantita- tivebecausethemodelassumesaspecificshape whichonlyapproximatesthenaturalvariation. Whentitaniumisoxidizedtotitaniumdioxide, thevolumeofthefilmapproximatelydoublesand thedensitydecreases,assumingthattheTiOz formedissimilartobulkanatase.Thedeposition rateoftitaniumwasestimatedtobe1 A/sbased on500-5000sdepositions;however,theactual depositionrateinthefirstsecondsofsputtering couldnotbemeasured.Also,theerrorinthe depositiontimewas+1sduetothesample rotationandshuttermechanisms.However,the Fig.3.STMimagesof(A)cleangold/siliconsubstrate,(B)10Atitaniumongold/silicon,(C)cleangold/micasubstrate,and(D) 10Atitaniumongold/mica. K. W. Vogi etal. /SurfaceScience301 (I 994) 203-213211 factthatalltheapproximationsarehighsuggests thatthiserrorisnotimportant.Theinelastic meanfreepathswerealsoapproximationswhich mayhavebeenoverestimated.Thiswouldresult inelevatedpredictionsforislandheight.Inany case,thelarge;esistivitiesobservedforthick- nessesbelow30Aareduetoincompletetitanium coverage. oxidation)of10 Aoftitanium,50-100Adiame- ter,and20-30Atallislandswereeasilyidenti- fied,asshowninFig.3D.Thevalleysbetween theislandsappeartoreachto(ornearlyto)the goldsubstrate.Theheightofthetitaniumislands correspondwelltothenumericalvaluesusedin theR(B)islandgrowthmodelabove. 4.4.Scanningtunnelingmicroscopy(STM)5.Summary STMimagingoftheTi/Ausampleswasper- formedtoinvestigatethefractionalcoverageand sizeofthetitanium/titaniumoxideislands.Im- agesofthesputteredgoldonsiliconandevapo- ratedgoldonmicasamples(withandwithout titaniumovercoats)wereobtained.Fig.3A,isa 1000 x1000nmSTMimageofclean,sputtered goldonsilicon.Thesurfacewascoveredwith 50-100nmdiameterhillocks.Thethree-dimen- sionaldatawereanalyzedstatisticallyinorderto estimatethesurfaceroughness.Theheightofthe islandswasnormallydistributedwithameanof 3.4nmandavarianceof2.1nm. Theelectricalresistance,XPS,andSTMre- sultsallsupporttheislandgrowthformationof titaniumongold,asillustratedinFig.4.This modelcanbeusedtounderstandhowthethin titaniumfilmsfunctionasadhesionlayerson gold.Thetitaniumnucleatesaadgrowsinis- lands,asevidencedbythe3Atitaniumfilm, whichsparselycoversthesurfacewithTiO,is- lands.Themonolayeroftitaniumdirectlyonthe ASTMimageof10 ATi/sput.Auis shownin Fig.3B.ComparedtoFig.3A,thesurfaceno longerhasuniformmounds;instead,itisrough withislandsofmaterialonthesurface.The heightsoftheislandsarenormallydistributed withameanof4.9nmandavarianceof6.0nm. Thus,thetitaniumformedwithanisland-like morphology.Themeanheightanddistributionof thesurfacetopographysignificantlyincreased overthevaluesforthesubstrate.Ifthetitanium filmhadformedinauniform,conformallayer- by-layerfashion,themeanheightanddistribution wouldnothavechanged. TitaniumDeposition 3A (0.1mg/cm3 114 TitaniumDeposition IOA (0.5mg/cm? 444 Althoughthetitanium/sput.Au/siliconsam- plescomparewithadhesionlayerfilmsinmicro- electronics,atomicresolutionimagesarecompli- catedbytheroughnessofthegoldonsilicon. Imagesofatomicallyflat,evaporatedgoldon micaweretakentomorecloselyexaminethe morphologyofthetitaniumdeposition.Previ- ously,thissubstratehasbeenusedtoobtain atomicscaleimagesofthinadsorbatefilms[22,27]. Fig.3Cshowsatomicallyflatgoldplateauson micawitha3Astep.Afterdeposition(and TitaniumDeposition 20-30A (091.4mg/cm3 411 TitaniumDeposition >30A (>1.4mgkm2) Fig.4.Compositionandmorphologysummaryforthethin titaniumadhesionlayers. nnn 212K. W. Vogt et al. /SurfaceScience301(1994)203-213 goldmaybeintheTi2+oxidationstate.Asthe growthproceeds,asinthecaseofthe10A titaniumfilm,theindividualislandsgrowcloser together.When-oxidized,theislandshaveaTiO core(andgossiblyTilandarecoveredwithTiO,. After20AofTideposition,theislandscoalesce. Thecoreofthetitaniumisnotcompletelyoxi- dized,andthefilmsresistivitydoecreases.After depositionandoxidizationof30Aoftitanium,a layeredfilmformswithatitaniumbaseandoxide surfacelayer.Theoxidegrowthislimited,most likelybythediffusionofoxygenthroughothe oxidelayer.TheXPSdepthprofileofa75ATi filmdemonstratesthatthefilmislayeredwitha titaniumcoreandaoxidesurfacelayer. filmformswheretheislandshaveasuboxidecore andtitaniumdioxidesurfacelayer.Forthicker titaniumfilms(>20A),oxidationproducesa layeredfilmwithatitaniumcorelayerandtita- niumoxidesurfacelayer. Appendix:assumptionsinthelayergrowthmodel Severalassumptionsweremadeinthederiva- tionofthesemodels.Theirvalidityandeffectson resultsarediscussedbelow: Theseresultssuggesthowtheadhesionlayer functions.Themetalcorelayerbondstothegold substrate.Eventhoughonlythinlayersareused, theadhesivelayerinthemonolayerclosesttothe goldisadequateforbonding.Becausethelayers areverythin,theelectricaleffectsofTiO,are negligibleonthepropertiesofthemetalsand insulators.Althoughthinlayersofanadhesive materialareadequateforadhesion,theabilityof titaniumtodiffuseoutofgoldandformapoten- tial-sinkoxideisessential.Incontrasttothis behavior,verythinfilmsofmetalsandmetal- oxideswhichprefertoresidewithinthesubstrate (forexampleatgrainboundaries)wouldnotbe expectedtoservewellaslong-termadhesionlay- ers.Lastly,thetitaniumoxideandtitaniummetal stronglyadheretoeachotherbecausethetita- niumoxideisgrownatlowtemperature[261. Titaniumoxidegrownathightemperaturesis susceptibletocracking,flakingandoxide/metal separation. (1)Thesurfaceofthesubstratewassmooth androughnesseffectswereneglected.Bairdetal. [27]studiedtheeffectsoflargescaleroughness (ontheorderoflo4A>.Ingeneral,theyfound thatroughsubstratesurfacesaccentthesubstrate signalatlowtake-offanglesandaccenttheover- layersignalatlargetake-offangles.However,the effectsofsmallscaleroughness(ontheorderof 50A> werenotobserved,eventhoughsomeef- fectswereexpectedbasedonthetheoretical derivationsofFadley[lo]andWagnerandBrum- mer[28]. EbelandWernisch[29] alsostudiedthe effectofroughnessusinggroovedsurfacesand foundthattheroughnessdepthcanbeatleast tentimesthemeanfreepathoftheincident X-raysbeforeshadingeffectsoccur.Thirdly, Fadley[l11 andKimandHummel1301havestud- iedgoldfilmsandsuggestedthattheycanbe consideredasflatfilms. (2)X-raydiffractionoftheincidentbeamwas neglected.Thisisagoodassumptionforamor- phousandpolycrystallinematerials. (3)TheincidentX-rayfluxwasuniform.Any non-uniformX-rayfluxwasdeterminedexperi- mentallybymeasuringZ~~~_,averandZghstrate.Thus 6.Conclusiontheeffectofanynon-uniformfluxcancels. Ongoldsubstrates(sputteredandevaporated goldfilms),sputter-depositedtitaniumfilmsgrow byanislandgrowth(Volmer-Weber)meochanism. Theislandsgrowtogetherafterlo-20Aoftita- niumdeposition.Afteroxidationofthetitanium filmsinairatlowtemperatures(T, very thintitaniumfilms(3A> oxidizecompletely.For thintitaniumfilms(10A>,alayeredisland-like (4)RefractionandreflectionofX-raysatthe surfacewereneglected.Thisassumptionisvalid forincidentanglesgreaterthanthecriticalangles determinedbyFadley[ll].Typically,thisangleis 2 forgoldsurfaces. (5)Theelectronswereattenuatedexponen- tiallyalongtheirpathlength.Thisisafairas- sumptionintheXPSkineticenergyrange.Re- cently,severalresearchershavefounddeviations K. UC Vogtetal. /SurfaceScience301(1994)203-213213 wheretheattenuationlengthisnotonlyafunc- tionofthematerialbutisalsoafunctionof elasticscattering[31,32,331. (6)BecausetheX-rayattenuationlengths (1000-10000A> weremuchgreaterthanelectron attenuationlengths(10-100A>,X-rayattenua- tionwasneglected. (7)Theelectronpathlengthwasindependent ofthedepthoforiginandangleofescape.Thus, thepathlengthwasonlyafunctionofelectron energyandthematerialinwhichitwastraveling. (8)Electronrefractionandreflectionatthe surfacewerenegligible.Fadley[illhasshown thattheseeffectsoccurmostlyfortake-offangles lessthanlo.Also,theeffectwasminimizedby takingtheratio(loverlayer/l~erlayer)/(Lbstrate/ II substrate . (9)Theeffectsofelasticelectronscatteringon angulardistributionswasneglected.Nefedovet al.[34]investigatedtheeffectsofelasticscatter- ingandonlyfoundsmallchangesinthetake-off angleandmeanfreepath,hi. (10)Theeffectofdiffractionoftheemitted electronswasneglected.Theapproximationis validforamorphousandpolycrystallinesamples. (11)Theattenuationeffectofadventitious carbonwasneglected.Bairdetal.[27] foundthat thisassumptionwasavalidfirstapproximation whentheratioofthesubstrateandoverlayer intensitieswasused.YabeandYamashina[35] experimentallydeterminedtheattenuationeffect ofsurfacecarboncontaminationontheXPSsig- nalandfoundthatitwaslessthan2.5%. References [llJ.M.Poate,K.N.TuandJ.W.Mayer,ThinFilms- InterdiffusionandReactions(Wiley,NewYork,1978). [2]T.A.Cloud,M.R.Houston,P.A.KohlandS.A.Bidstrup, EvaluationoftheProcessingandPerformanceofNoble MetalMCMs,InternationalConferenceonMultichip ModulesProceedings,ISHM(1993)p.451. [3]T.A.Cloud,M.R.Houston,P.A.KohlandS.A.Bidstrup, IEEECHMT,submitted. [4]J.M.Poate,P.A.Turner,W.J.DeBonteandJ.Yahalom, J.Appl.Phys.46(1975)427. 151 161 [71 IS1 191 [lOI 1111 1121 [131 [141 [151 [I61 [171 1181 [191 [201 1211 1221 [231 [241 (251 [261 [271 I281 [291 1301 [311 [321 [331 [341 [351 N.RauschandE.P.Burte,Microelectron.Eng.19(19921 725. C.P.LoftonandW.E.Swartz,ThinSolidFilms52(1978) 271. J.A.Thorton,J.Vat.Sci.Technol.11(1974)666. L.C.FeldmanandJ.W.Mayer,FundamentalsofSurface andThinFilmAnalysis(North-Holland,NewYork.1986) p.136. B.L.Henke,Phys.Rev.A6(1972)94. C.S.Fadley,J.ElectronSpectrosc.Relat.Phenom.5 (1974)125. C.S.Fadley,Prog.Surf.Sci.16(1984)275. J.F.Moulder,W.F.Stickle,P.E.SobolandK.D.Bomben, HandbookofPhotoelectronSpectroscopy(Perkin-Elmer, EdenPrairie,MN,1992). M.J.Vasile,A.B.EmersonandF.A.Baiocchi,J.Vat. Sci.Technol.A8(1990)99. U.R.Evans,TheCorrosionandOxidationofMetals: ScientificPrinciplesandPracticalApplications(Arnold, London,1960). P.KofstadandK.Hauffe,Werkst.Korros.7(1956)642. T.Smith,Surf.Sci.38(1973)292. M.J.MindelandS.R.Pollack,ActaMetall.17(1969) 1441. W.D.Sylwestowicz,J.Electrochem.Sot.122(1975)1504. M.S.Aouadi,R.R.Parsons,P.C.WangandK.A.R. Mitchell,J.Vat.Sci.Technol.A10(1992)273. J.Inukai,W.Mizutani,K.Saito,H.ShimizuandY. Iwasawa,Jpn.J.Appl.Phys.30(1991)3476. H.Tokutaka,K.NishimoriandH.Hayashi,Surf.Sci.149 (1985)349. M.P.SeahandW.A.Dench,Surf.InterfaceAnal.1 (1979)2. D.R.Penn,J.ElectronSpectrosc.Relat.Phenom.9 (1976)29. N.Wagnerand0.Brummer,Exp.Tech.Phys.29(1981) 571. J.SzajmanandR.C.G.Leckey,J.ElectronSpectrosc. Relat.Phenom.23(1981)83. U.R.Evans,AnIntroductiontoMetallicCorrosion,3rd ed.(Arnold,London,1982). R.Baird,C.S.Fadley,S.KawamotoandM.Mehta, Chem.Phys.Lett.34(1975)49. N.Wagnerand0.Brummer,Exp.Tech.Phys.29(1981) 571. M.F.EbelandJ.Wernisch,Surf.InterfaceAnal.3(1981) 193. J.KimandR.Hummel,Phys.StatusSolidi(al122(1990) 255. W.S.M.Werner,Surf.InterfaceAnal.18(1992)217. A.JablonskiandS.Tougaard,J.Vat.Sci.Technol.A8 (1990)106. W.S.M.Werner,W.H.GriesandH.Stori,J.Vat.Sci. Technol.A9(1991)21. V.Nefedov,N.Sergushin,I.BandandM.Trzhaskowska- ya,J.ElectronSpectrosc.Relat.Phenom.2(1973)383. K.YabeandT.Yamashina,Appl.Surf.Sci.8(1981)387.