kth.diva-portal.org1282548/fulltext01.pdf · 1 abstract(inthisthesis,...

91
Designing Thermal Management Systems For Lithium-Ion Battery Modules Using COMSOL Emma Bergman

Upload: others

Post on 02-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

Designing Thermal Management Systems For Lithium-Ion Battery Modules Using COMSOL

Emma Bergman

Page 2: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

1

Abstract  

In  this  thesis,  a  section  of  a  lithium  ion  battery  module,  including  five  cells  and  an  indirect  

liquid  cooling  system,  was  modelled  in  COMSOL  Multiphysics  5.3a.  The  purpose  of  this  study  

was  to  investigate  the  thermal  properties  of  such  a  model,  including  heat  generation  per  cell  

and  temperature  distribution.  Additionally,  the  irreversible  and  reversible  heat  generation,  

the  cell  voltage  and  the  internal  resistance  were  investigated.  The  study  also  includes  the  

relation  between  heat  generation  and  C-­‐rates,  and  an  evaluation  of  COMSOL  Multiphysics  

5.3a  as  a  software.  

It  was  found  that  having  liquid  cooling  is  beneficial  for  the  thermal  management,  as  the  

coolant  flow  helps  to  transfer  away  the  heat  generated  within  the  battery.  The  results  also  

show  that  it  is  important  to  not  go  below  a  set  cell  voltage  at  which  the  cell  is  considered  

fully  discharged.  If  a  control  mechanism  to  stop  the  battery  is  not  implemented,  the  

generated  heat,  and  consequently  the  temperature,  increase  drastically.  COMSOL  

Multiphysics  5.3a  was  considered  a  suitable  software  for  the  modelling.  For  future  research  

it  is  of  interest  to  expand  the  model  to  a  full  scale  module  to  fully  investigate  the  

temperature  distribution  where  more  cells  are  being  cooled  by  the  same  coolant  loop.    

Page 3: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

2

Acknowledgements  

First  I  would  like  to  thank  my  supervisor  at  Northvolt  Ehsan  Haghighi  for  all  the  help  and  

guidance  during  the  project.  I  want  to  thank  my  supervisor  at  KTH  Göran  Lindbergh  for  

valuable  help  during  the  project.  I  would  also  like  to  thank  Henrik  Ekström  at  KTH  and  

COMSOL  for  all  the  help  and  explanations  regarding  the  construction  of  the  battery  model  in  

COMSOL.  I  would  also  like  to  thank  Per  Backlund  and  Daniel  Ericsson  at  COMSOL  for  

additional  help  with  the  model.  Finally  I  would  like  to  thank  everyone  at  Northvolt  who  

helped  me  out  in  various  ways  during  the  project.    

Page 4: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

3

Table  of  Contents  

Abstract   1  

Acknowledgements   2

Table  of  Contents   3

Introduction  and  Project  Description   4

Background   5Li(Ni1/3Mn1/3Co1/3)O2  (NMC)  Li-­‐Ion  Batteries   5Generated  Heat   6Cooling  systems   11

Methodology   15Model   15Study   16

Results  and  Discussion   20Inlet  Flow  Rate   20Driving  Cycle   23Current   41

Conclusions  and  future  work   42

Nomenclature  and  Abbreviations   44Abbreviations   44Nomenclature   44

References   46

Appendix   48Appendix  0:  Calculations  complement   48Appendix  1:  Scale  adjusted  plots  and  3D  temperature  model  for  Driving  2  cycle  1   51Appendix  2:  Plots  for  the  C-­‐Rate  Measurements   54Appendix  3:  Parameter  values  used  in  COMSOL  model   57Appendix  4:  Lithium  ion  cell  variables  used  in  COMSOL  model   59Appendix  5:  Coolant  heat  capacity  interpolation  used  in  COMSOL  model   60Appendix  6:  Coolant  density  interpolation  used  in  COMSOL  model   61Appendix  7:  Coolant  dynamic  viscosity  interpolation  used  in  COMSOL  model   62Appendix  8:  Coolant  thermal  conductivity  interpolation  used  in  COMSOL  model   63Appendix  9:  Modelling  Instructions   64

Page 5: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

4

Introduction  and  Project  Description  

Lithium  ion  batteries  are  lightweight  energy-­‐dense  batteries  ideal  for  both  portable  and  

stationary  uses.  The  interest  in  lithium  ion  batteries  is  high  both  from  the  appliance  and  the  

vehicle  industries.  However,  one  issue  with  lithium  ion  batteries  is  that  they  are  badly  

affected  by  high  temperatures.  A  prolonged  exposure  to  high  temperatures  can  decrease  

the  life  time  of  the  battery.  If  the  battery  is  exposed  to  high  enough  temperatures,  a  thermal  

runaway  might  occur,  which  can  cause  the  battery  to  explode.  Consequently,  the  area  of  

thermal  control  is  of  high  interest  for  battery  system  producers.    

The  goal  of  this  project  is  to  determine  the  effectiveness  of  liquid  cooling  system  for  a  set  of  

five  21700  lithium  ion  batteries,  which  are  a  part  of  a  bigger  module.  This  will  be  

investigated  through  simulations  in  COMSOL  Multiphysics  5.3a.  A  model  is  constructed,  

which  will  calculate  the  heat  generation  from  the  electrochemistry  given  certain  input  

parameters.  To  analyse  the  system,  some  parameters  such  as  fluid  velocity,  current,  and  

driving  cycle  are  varied  to  investigate  the  effect  of  temperature  distribution  and  heat  

generation.    

Page 6: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

5

Background  

Li(Ni1/3Mn1/3Co1/3)O2  (NMC)  Li-­‐Ion  Batteries  

Lithium  ion  batteries  are  relatively  new  on  the  market,  and  the  demand  for  them  have  

grown  rapidly.  They  have  high  energy  density,  which  make  them  ideal  for  portable  devices  

requiring  small  and  lightweight  batteries.  The  interest  in  Li-­‐ion  batteries  is  also  large  from  

the  automobile  industry.  The  properties  of  the  energy  dense  Li-­‐ion  batteries  are  desired  for  

electric  and  hybrid  vehicles.  

Most  lithium  ion  batteries  typically  utilize  a  graphite  material  for  the  negative  electrode.  The  

positive  electrode  consists  of  the  lithium  in  a  metal  oxide  form,  usually  mixed  with  other  

metals.  One  such  positive  electrode  material  is  NMC,  or  Li(Ni1/3Mn1/3Co1/3)O2.  It  is  showing  

promising  properties  in  regards  to  being  used  for  electric  vehicle,  as  it  has  a  high  energy  

density  and  a  large  rechargeable  capability.  The  combinations  of  metals  in  the  positive  

electrode  adds  stability  to  the  cell,  in  addition  to  making  the  electrode  high  performing  and  

cost-­‐effective  [1].  The  recommended  electrolyte  for  Li-­‐ion  cells  is  1M  LiPF6  3:7  EC-­‐EMC  [2].    

Cylindrical  lithium-­‐ion  batteries  consist  of  a  can  containing  a  jellyroll  of  the  cathode,  anode,  

and  separator,  in  addition  to  terminals,  current  collectors,  insulation  plates,  and  safety  

features.  This  is  illustrated  in  Fig.1  [3].  The  jellyroll  is  constructed  by  alternating  cathode  and  

anode  sheets,  with  separator  sheets  between  them.  It  has  been  given  its  nickname  by  how  it  

is  rolled  up  to  fit  the  cylindrical  cell,  similar  to  the  jelly  roll  pastry.  The  current  generated  by  

the  batteries  is  collected  through  the  current  collectors,  the  positive  and  negative  ends  [4].    

 

 Fig  1:  Configuration  of  a  cylindrical  lithium  ion  battery  cell  [4].  

Page 7: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

6

Generated  Heat  

Being  able  to  measure  the  generated  heat  is  an  important  step  of  battery  system  modelling.  

If  the  generated  heat  is  too  high,  it  may  cause  damage  to  the  system,  and  possibly  even  

cause  the  system  to  explode  in  the  event  of  a  rapid  thermal  runaway.  A  thermal  runaway  is  

caused  by  high  temperatures  in  the  battery  allowing  for  undesired  exothermic  reactions  to  

occur.  This  in  turn  causes  even  higher  temperatures,  which  allow  for  even  more  undesired  

reactions.  At  high  enough  temperatures,  this  phenomenon  is  irreparable  and  might  even  

cause  an  explosion  due  to  heat  and  phase  shift  to  combustable  gas.  It  is  initiated  by  the  

melting  of  the  protective  solid  electrolyte  interface  layer  at  90  °C.  Once  the  layer  is  gone,  the  

electrolyte  and  the  negative  electrode  are  able  to  react  with  each  other,  causing  the  first  

exothermic  reaction  at  a  temperature  of  100  °C  [4].    However,  already  before  that  level,  the  

battery  calendar  life  is  estimated  to  decrease  significantly  for  temperatures  at  40  °C  and  

higher  [5].    

Consequently,  battery  developers  are  looking  into  methods  of  measuring  the  general  heat,  

in  order  to  produce  sufficient  cooling  systems.    

 

Measuring  the  heat  directly  

The  first  method  uses  an  equation  developed  by  Bernardi  et.  al.  [6],  which  separates  the  

generated  heat  into  reversible  and  irreversible  heating.  In  its  simplified  form  the  equation  is:  

𝑄 = 𝐼 𝑈%& − 𝑉 − 𝐼𝑇 *+*,=   𝐼.𝑅 − 𝑇 ∙ ∆𝑆 ∙ 3

4         (Eq.1)  

Where  𝑄  is  the  heat  generation,  I  is  the  current,  UOC  is  the  open-­‐circuit  potential,  V  is  the  cell  

potential,  T  is  the  temperature,  R  is  the  overpotential  resistance,  dU/dT  is  the  entropic  heat  

coefficient,  ∆S  is  the  entropy  change,  I  is  the  current,  and  F  is  the  Faraday  constant.  The  first  

half  of  the  equation  represents  the  irreversible  heating,  or  Joule  heating.  The  second  part  of  

the  equation  represents  the  reversible  heating,  which  is  due  to  entropy  changes.  To  use  this  

equation,  it  is  necessary  to  assume  no  heat  generation  from  mixing  or  phase  changes,  no  

spatial  variations  in  temperature  or  SOC,  only  one  electrochemical  reaction  occurring  at  

each  electrode,  and  that  the  Joule  heating  in  the  current  collectors  is  negligible  [7].  

The  method  is  quite  accurate,  but  difficult  and  time  consuming  to  measure  in  practice.  Onda  

et.  al.  [8]  gives  four  methods  of  how  to  perform  experimental  measurements  of  the  

overpotential  resistance,  R.  These  are  to  measure  the  resistance  by  V-­‐I  characteristics,  by  

Page 8: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

7

difference  between  OCV  and  cell  voltage,  by  intermittent  discharge,  and  by  an  ac  meter.  

Measuring  the  difference  between  OCV  and  cell  voltage  is  the  most  common  method,  

however,  it  can  take  a  long  time  to  conduct  the  experiment,  since  the  OCV  needs  to  stabilize  

after  the  change  in  SOC.  Onda  et.  al.  also  report  inconsistencies  for  the  last  two  measuring  

methods.  To  measure  the  entropy  Onda  et.  al.  list  two  suggested  methods.  The  first  method  

measures  the  entropy  change  by  temperature  gradient  of  OCV,  and  the  second  method  

measures  entropy  change  by  heat  production.  This  measurement  is  another  time  consuming  

operation,  as  the  OCP  must  stabilize  again.  Karimi  and  Li  [9]  performs  a  computational  study  

using  Eq.1  as  an  alternative.  

 

Cooling  medium  heat  removal  

Another  method  looks  instead  to  the  heat  removed  by  the  cooling  system.  Calculating  the  

heat  transported  away  by  the  system  requires  a  simpler  measurement,  but  neglect  heat  

remaining  in  the  battery,  and  it  is  needed  to  be  calculated  separately  [10].  An  equation  for  

the  cooling  medium  heat  removal  is:  

𝑄 = 𝑚𝐶7(𝑇9 − 𝑇:)           (Eq.2)  

Where  𝑄  is  rate  of  heat  generation,  𝑚  is  the  mass  flow  rate  of  coolant,  Cp  is  the  specific  heat  

capacity  of  coolant,  To  is  the  outlet  temperature,  and  Ti  is  the  Inlet  temperature.  The  

advantage  of  this  method  is  the  simple  measurement.  All  that  is  needed  is  to  measure  the  

inlet  and  outlet  temperatures  of  the  cooling  medium.  However,  the  system  disregards  losses  

and  heat  remaining  in  the  battery.  

 

Computational  Modelling  

The  methods  mentioned  are  the  main  experimental  methods  to  calculate  the  battery  heat  

generation.  However,  since  the  experimental  methods  are  complex  and  can  be  inefficient  

battery  developers  often  look  into  computational  models.    

COMSOL  Multiphysics  is  an  engineering  simulations  software.  It  allows  the  user  to  define  a  

geometry  and  set  material  properties  and  physics  to  describe  a  process.  COMSOL  then  

solves  the  system  through  built  in  or  defined  equations  [11].  In  addition  to  the  base  package,  

the  add-­‐on  modules  Heat  Transfer  in  Solids  and  Fluids  and  Batteries  &  Fuel  Cells  are  useful  

when  modelling  battery  heat  management.    

Page 9: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

8

 

The  Pseudo-­‐Two-­‐Dimensional  model  (P2D)  

COMSOL  [12]  looks  at  the  electrochemical  reactions  directly,  based  on  the  model  developed  

by  Newman’s  team  [13,  14].  The  model  is  the  most  widely  used  for  the  purpose  and  

approaches  the  cell  from  a  homogeneous  and  isothermal  point  of  view  [15].  It  considers  the  

one-­‐dimensional  transport  from  the  negative  electrode  to  the  positive  electrode,  through  

the  separator,  according  to  Ohm’s  law.  The  model  is  based  on  concentrated  solution  theory  

and  porous  electrode  theory.  The  concentrated  solution  theory  works  in  the  way  that  it  

treats  the  electrolyte  as  a  binary  salt  with  polymer  solvent.  This  theory  describes  the  mass-­‐  

and  charge  transport  in  the  electrolyte  phase.  The  porous  cathode  theory  works  in  that  the  

composite  negative  electrode  can  be  modelled  looking  at  both  resistance  to  the  solid  state  

transport  considering  both  kinetic  and  diffusional  effects.  It  adds  an  extra  dimension  to  the  

model  to  describe  the  lithium  transport  according  to  Fick’s  law.  Furthermore,  the  use  of  

Butler-­‐Volmer  kinetics  to  describe  the  reversible  process  allows  for  an  effective  method  of  

describing  both  the  discharge  and  the  charge  processes.  Following  these  theories,  the  model  

can  look  at  the  major  features  of  the  system,  without  making  it  too  complex  [12,  13].  

Although  it  is  not  stated  by  Newman’s  team  in  their  reports,  this  model  is  generally  referred  

to  as  the  P2D,  or  Pseudo-­‐Two-­‐Dimensional,  model  in  literature  [4,  16].  The  pseudo-­‐

dimension  part  of  the  name  refers  to  how  the  equation  for  lithium  conservation  is  solved  in  

the  particle  r-­‐dimension.    

 

Diffusion  in  Porous  Media    

Fick’s  second  law  is  one  of  the  governing  equations  for  the  P2D  model  [4].  It  describes  

diffusion  with  a  linear  equation  that  assumes  a  constant  diffusion  coefficient,  D.  In  Li-­‐ion  

batteries  this  equation  describes  the  transport  of  solid  Li  in  the  solid  electrode  phase.  Fick’s  

second  law  is  written  [1]:  

<=<>=  𝛻 ∙ (𝐷𝐿𝑖𝛻𝑐𝑒) (Eq.3)

Where  c  is  the  lithium  ion  concentration,  t  is  the  time,  DLi  is  the  lithium  diffusion  coefficient,  

and  ce  is  the  lithium  ion  concentration  in  the  electrolyte  phase.  To  accurately  describe  the  

Page 10: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

9

lithium  ion  diffusion,  Fick’s  law  also  requires  a  set  of  boundary  and  initial  conditions  for  the  

time,  and  location  relative  to  the  radius.  These  are  as  follows:  

𝑐 = 𝑐E  𝑎𝑡  𝑡 = 0  

𝐷I:<=<J= 0  𝑎𝑡  𝑟 = 0    

𝐷I:𝜕𝑐𝜕𝑟 =

𝑖M𝐹  𝑎𝑡  𝑟 = 𝑟E  

 COMSOL’s  battery  module  also  utilizes  the  Bruggeman  model,  tF  =  ep-­‐1/2,  as  a  correction  

factor  for  the  porous  media  mass  transfer  [12].    

 Lithium  material  balance  

The  lithium  material  balance  in  the  polymer  and  salt  phases  is  another  of  the  governing  

equations  [13].  It  uses  the  transport  equation  for  concentrated  solutions.  

It  is  given  by  [4]:  

𝜀P<<>𝑐P − ∇ ∙ 𝐷I:∇𝑐P − :R∇ST

4+ 𝑎V𝑗M 1 − 𝑡YE = 0       (Eq.4)  

Where  e  is  the  electrode  porosity,  ce  is  the  lithium  ion  concentration  in  the  electrolyte  

phase,  DLi  is  the  lithium  diffusion  coefficient,  ie  is  the  electrolyte  phase  current  density,  t+  is  

the  transfer  number  of  lithium  ions,  F  is  the  Faraday  constant,  as  is  the  solid  phase  specific  

interfacial  area,  and  jn  is  the  pore-­‐wall  flux  across  interface.  The  boundary  conditions  are  

dependent  on  the  location  in  the  phase,  and  are  as  follows:  

𝜕𝑐P𝜕𝑥 = 0  𝑎𝑡  𝑥 = 0  𝑎𝑛𝑑  𝑥 = 𝐿  

 Butler-­‐Volmer  kinetics  

Butler-­‐Volmer  kinetics  are  included  in  the  P2D  model.  They  describe  the  charge  transfer  

kinetics  process  at  the  interface  between  the  solid  electrode  and  the  electrolyte.  Using  

Butler-­‐Volmer’s  equation  requires  setting  up  a  set  of  boundary  conditions.  The  expression  

assumes  no  potential  gradients  at  the  interface  between  the  current  collector  and  the  

electrolyte,  for  the  electrolyte,  or  at  the  interface  between  the  separator  and  the  electrode,  

for  the  solid.  The  electrolyte  does  not  have  a  concentration  gradient  in  the  interface  either.  

The  concentration  gradient  at  the  surface  of  the  solid  particle  is  proportional  to  the  lithium  

pore  wall  flux,  and  there  is  a  symmetry  for  the  Li-­‐ion  concentration  in  the  middle  of  the  

Page 11: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

10

particles.  The  boundary  conditions  also  assume  that  the  applied  current  discharge  is  

constant  [7].  

The  Butler-­‐Volmer  equation  is  written  [4]:  

𝑖 = 𝑖E expa𝑎𝐹h𝑠𝑅𝑇 − exp

−a𝑐𝐹h𝑠𝑅𝑇         (Eq.5)  

where  i  is  the  current  density,  i0  is  the  exchange  current  density,  aa  anode  transfer  

coefficient,  F  is  the  Faraday  constant,  hs  is  the  surface  overpotential,  R  is  the  overpotential  

resistance,  and  T  is  the  temperature.

The  exchange  current  density,  i0,  is  defined:  

𝑖E = 𝐹𝑘𝑎a𝑐𝑘𝑐

a𝑎 𝑐𝑠𝑚𝑎𝑥 − 𝑐𝑠 a𝑐𝑐𝑒a𝑎         (Eq.6)  

where  F  is  the  Faraday  constant,  ka  is  the  anodic  reaction  rate  constant,  kc  is  the  cathodic  

reaction  rate  constant,  csmax  is  the  maximal  concentration  of  lithium  ions  in  solid  phase,  cs  is  

the  concentration  of  lithium  ions  in  solid  phase,  and  ce  is  the  concentration  of  lithium  ion  in  

the  electrolyte  phase.  

The  overpotential,  hs,  is  defined:  

hV = ØV − ØP − 𝑈%&           (Eq.7)  

where  Øs  is  the  solid  phase  potential,  Øe  is  the  electrolyte  phase  potential,  and  UOC  is  the  

open-­‐circuit  potential.    

   

Concentrated  solution  theory  

Concentrated  solution  theory  describes  another  of  the  governing  equations  for  the  P2D  

model.  The  equation  predicts  the  potential  variation  in  the  separator  from  the  material  

balance  of  the  lithium  salt.  With  the  assumption  that  solvent  concentration  is  independent  

of  electrolyte  concentration,  the  equation  can  be  derived  [13].  

The  equation  read  [4]:  

𝑖P + 𝑘PccÑØP −.de,fRgg

41 + <hMc±

<hM=R1 − 𝑡YE Ñ𝑙𝑛𝑐P = 0     (Eq.8)  

where  ie  is  the  current  density  in  the  electrolyte  phase,  keff  is  the  effective  ionic  conductivity,  

Øe  is  the  electrolyte  phase  potential,  Rg  is  the  universal  gas  constant,  T  is  the  temperature,  F  

is  the  Faraday  constant,  f±  is  the  molecular  salt  activity  coefficient,  ce  is  the  concentration  of  

lithium  ion  in  the  electrolyte  phase,  and  t+  is  the  transfer  number  of  lithium  ions.  

It  is  controlled  by  the  following  location  dependent  boundary  condition  [4]:  

Page 12: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

11

𝜕ØP  𝜕𝑥 = 0  𝑎𝑡  𝑥 = 0  𝑎𝑛𝑑  𝑥 = 𝐿    

Porous  electrode  theory  

The  porous  electrode  theory  describes  the  Li-­‐ion  battery’s  internal  changes  and  status,  

depending  on  its  electrodes  and  electrolytes,  as  well  as  the  battery’s  structure  [17].  The  

theory  consists  of  Ohm’s  law,  which  administers  the  movement  of  electrons  [4,  18]:  

𝑖V = −sPccÑØV             (Eq.9)  

where  is  is  the  solid  phase  current  density,  seff  is  the  solid  phase  effective  electronic  

conductivity,  and  Øs  is  the  solid  phase  potential.  

It  is  regulated  by  a  set  of  location  dependent  boundary  conditions  [4]:  

−sPcc𝜕ØV  𝜕𝑥 =

𝐼𝐴  𝑎𝑡  𝑥 = 0  𝑎𝑛𝑑  𝑥 = 𝐿  

𝜕ØV  𝜕𝑥 = 0  𝑎𝑡  𝑥 = 𝐿M  𝑎𝑛𝑑  𝑥 = 𝐿M + 𝐿VP7  

 

Cooling  systems  

To  dissipate  the  heat  generation  out,  cooling  systems  are  widely  used.  Passive  systems  that  

let  ambient  air  reach  the  battery  are  the  simplest,  while  liquid  and  combined  phase  change  

cooling  systems  can  be  quite  complex.  The  desired  temperature  range  is  usually  between  

25°C  and  35°C,  as  too  high  or  low  temperatures  can  reduce  the  effectiveness  of  the  battery  

[15].  For  air  and  liquid  cooling,  the  thermal  management  system  could  also  heat  up  the  

battery  cells  in  events  of  low  temperatures.  

 

Air  Cooling  

Cooling  with  air  is  a  traditional  and  widely  used  thermal  regulation  approach.  Most  systems  

are  passively  air  cooled  if  they  have  at  least  one  interface  in  contact  with  surrounding  

ambient  air.  Besides  passive  air  cooling,  systems  can  also  be  cooled  actively  with  the  use  of  

fans  and  methods  to  cool  the  air  to  lower  than  ambient.  This  is  due  to  passive  air  cooling  

having  a  lower  convective  heat  transfer  coefficient  than  active  air  cooling.  Since  the  passive  

air  cooling  convective  heat  transfer  is  so  low,  it  is  only  effective  for  really  small  systems  that  

do  not  produce  large  amounts  of  heat  [4].  However,  a  huge  advantage  of  air  is  its  light  

weight,  and  ease  to  circulate  [19].  Active  air  cooling  was  adapted  early  by  the  first  electric  

Page 13: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

12

hybrid  vehicles,  2000  Honda  Insight  and  2001  Toyota  Prius.  They  take  advantage  of  the  car’s  

available  air  conditioning  system  to  take  the  cooled  air  from  the  cabin  to  cool  the  battery  

before  it  is  exhausted.  A  blower  that  can  operate  at  various  speeds  is  utilised  to  draw  air  

from  the  cabin  to  the  battery.  The  two  cars  use  slightly  different  systems  to  ensure  even  

heat  distribution  [7].  However,  for  a  fully  electric  vehicle  there  is  doubt  that  an  air  cooling  

system  would  be  sufficient  [15].  

 

Liquid  Cooling  

Cooling  the  battery  with  liquid  is  an  area  of  interest.  Liquids  have  higher  thermal  

conductivities  than  air  and  can  cool  more  effectively  and  uniformly.  It  is  also  possible  to  

decrease  the  size  of  the  battery  pack  as  the  cells  can  be  placed  closer  to  each  other.  

However,  liquids  can  be  less  flexible  than  air  and  it  is  of  high  importance  that  they  do  not  

leak  out  onto  the  battery  [19].  There  are  three  major  liquid  cooling  methods.  The  first  is  

direct  submersion  into  the  liquid.  The  second  is  indirect  cooling  through  placing  the  battery  

modules  on  a  cooling  plate  that  cools  the  batteries  from  the  bottom  up.  The  third  method  is  

also  indirect,  where  cooling  tubes  or  jackets  are  placed  around  the  batteries  [15].  All  three  of  

the  methods  have  their  own  advantages  and  disadvantages.    

 

Direct  Submersion  

Direct  submersion  of  the  battery  in  the  cooling  liquid  is  the  most  straightforward  liquid  

cooling  method.  The  battery  unit  surfaces  are  directly  in  contact  with  the  coolant,  which  

minimizes  the  thermal  resistance  between  battery  and  coolant.  However,  a  disadvantage  of  

using  direct  submersion  is  that  it  requires  the  coolants  to  be  dielectric.  Consequently,  highly  

viscous  fluids  are  common.  These  viscous  coolants  cause  a  higher  power  consumption  for  

circulating  the  fluid  [4].  The  reason  dielectric  fluids  are  needed  is  to  avoid  short  circuit.  Since  

these  fluids  often  are  oil  based,  it  is  also  important  to  consider  other  properties,  such  as  

toxicity  and  flammability,  to  not  switch  one  problem  for  another.  There  are  coolants  

available  that  can  reduce  the  maximum  temperature  if  thermal  runaway  occurs.  Although  

for  these  fluids,  economical  factors  might  also  play  in,  as  the  fluid  cost  can  greatly  increase  

the  cost  of  the  entire  system  [20].  When  considering  direct  submersion  cooling  for  batteries  

to  be  used  in  electrical  vehicles,  the  risk  of  short  circuit  is  still  significant  since  the  cells  are  in  

direct  contact  with  the  fluid.  Having  direct  submersion  also  makes  it  more  difficult  to  replace  

Page 14: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

13

faulty  cells.  With  this  in  mind,  direct  submersion  cooling,  although  effective,  is  not  ideal  for  

batteries  to  be  used  in  electrical  vehicles.    

 

Indirect  cooling  with  cooling  plates  

With  indirect  cooling,  an  extra  factor  arises  in  form  of  a  layer  between  the  coolant  and  the  

battery  cell.  It  is  important  to  consider  convection  heat  transfer  and  thermal  contact  

resistance  here,  as  those  properties  affect  the  effectiveness  of  the  cooling  system  more  than  

the  extra  thermal  resistance  itself  [20].  Cooling  plates  are  placed  under  the  battery  cells.  The  

plates  are  thin,  with  a  cooling  media  transported  between  the  plates  [15].  The  cooling  

channels  in  between  the  cooling  plates  can  be  of  various  styles,  ranging  from  straight  

channels  to  complex  structures.  The  batteries  are  cooled  from  the  bottom  up,  causing  a  

temperature  difference  between  top  and  bottom.  Adding  an  additional  heat  plate  at  the  top  

can  prevent  this.  A  further  step  to  obtain  more  uniform  cooling  is  to  add  fins,  which  are  

additional  plates  going  between  the  cells.  However,  these  measures  add  weight  to  the  

cooling  system  [20].    

 

Indirect  cooling  with  cooling  tubes  or  jackets  

Cooling  tubes  and  cooling  jackets  are  two  indirect  methods  of  cooling  the  battery.  Cooling  

tubes  usually  consists  of  a  series  of  wavy  tubes  placed  alongside  the  battery  cells,  so  that  

they  have  a  contact  area  on  one  side.  Cooling  jackets  usually  form  casings  around  the  

battery,  and  then  allows  the  coolant  to  flow  through  the  compartment  surrounding  the  

casings.  Cooling  jacket  can  thus  cover  the  entire  battery,  while  cooling  tubes  have  a  smaller  

contact  area.  However,  a  great  advantage  of  cooling  tubes  over  cooling  jackets  is  that  the  

safety  increase,  as  the  possibility  of  liquid  leaking  out  is  smaller.  With  cooling  tubes,  it  is  

possible  to  have  all  fluid  connections  to  the  tube  outside  of  the  battery  model.  Cooling  tubes  

also  have  fewer  welding  spots.  Another  advantage  of  cooling  tubes  is  that  they  have  a  

smaller  volume  and  the  total  weight  is  less,  which  is  advantageous  for  mobile  uses  [20].  

However,  it  should  be  noted  that  the  risk  of  leakage  is  still  smaller  for  a  heating  jacket  than  

many  other  solutions  [19].  Electric  vehicle  producer  Tesla  has  patented  both  cooling  tubes  

and  cooling  jackets  for  use  in  their  vehicles  [21,  22].  The  Tesla  solutions  are  shown  in  fig.  2  

and  fig.  3.  To  improve  thermal  conductivity  while  electrically  insolating  the  transfer,  a  

thermal  interface  material,  TIM,  is  added  between  the  cell  and  cooling  container  [23].    

Page 15: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

14

 Fig  2:  Tesla  cooling  case  patent  [22]     Fig  3:  Tesla  cooling  tubes  patent  [21]  

 

Phase  Change  Material  (PCM)  Cooling    

Cooling  through  phase  change  materials  utilizes  the  PCM  as  a  heat  sink  during  battery  

discharge.  The  PCM  collects  the  heat  and  goes  through  a  phase  change,  from  a  less  energy  

dense  phase  to  a  phase  with  more  free  energy,  such  as  solid  to  liquid  or  liquid  to  gas.  PCM  

cooling  is  a  passive,  rather  than  active,  cooling  method.  The  PCM  cycles  through  the  phases  

between  battery  discharge  and  standby.  A  disadvantage  of  PCM  cooling  systems  are  that  

they  do  not  function  well  in  extreme  weather.  If  it  is  too  hot,  the  PCM  might  melt  completely  

and  stop  working  as  a  heat  sink.  In  too  cold  weather  the  PCM  will  be  difficult  to  melt,  adding  

a  large  thermal  inertia  which  requires  significant  energy  to  warm  up  [20].  It  is  extremely  

important  to  consider  the  melting  point  of  the  PCM.  The  ideal  melting  point  should  be  within  

the  temperature  range  the  battery  operates.  The  ideal  PCM  has  the  perfect  balance  of  

thermal  conductivity.  Low  thermal  conductivities  cause  uneven  melting,  which  can  lower  the  

effective  PCM  cooling.  Too  high  thermal  conductivities  cause  the  entire  PCM  to  melt,  which  

renders  it  unable  to  function  properly.  Other  properties  such  as  toxicity,  stability,  and  

flammability  are  important  to  consider  for  safety  aspects  [15].    PCM  systems  are  not  used  in  

commercial  electric  vehicle  battery  systems  today,  as  research  within  the  area  still  have  

some  grounds  to  cover.    

 

 

Page 16: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

15

Methodology  

Model  

The  study  was  conducted  through  creating  a  model  of  a  five-­‐cell  battery  and  cooling  tube  

thermal  system  in  COMSOL  Multiphysics  5.3a.  The  model  includes  electrochemistry,  heat  

transfer,  and  liquid  flow  physics.  The  electrochemistry  is  based  on  the  P2D  model,  through  

COMSOL’s  Lithium-­‐Ion  Battery  interface.  The  model  uses  a  coupling  function  to  pair  the  1D  

electrochemical  model  with  a  3D  thermal  model.  Interpolations  are  set  up  to  describe  the  

temperature  affected  properties  of  the  coolant.  For  the  studied  effects,  equations  utilizing  

COMSOL’s  built  in  equations  where  formulated  where  they  could  not  be  collected  directly.  

The  equation  to  describe  the  internal  resistance  of  the  model  is  written:  

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙  𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =𝐸𝑂𝐶𝑉79V − 𝐸𝑂𝐶𝑉MPm − 𝐸=Phh

𝐼n77  

This  equation  is  derived  over  time  to  plot  the  time  dependent  internal  resistance  for  set  

parameters  and  drive  cycle.  EOCVpos  and  EOCVneg  are  variables  calculated  from  the  

equilibrium  potential  for  the  current  state  of  charge  for  that  electrode.  Ecell  is  calculated  by  

integrating  the  cell  voltage  over  the  positive  current  collector.  

The  reversible  heat  production  is  calculated  by  integrating  the  reversible  heat  source  in  

W/m3  over  the  two  electrodes,  and  then  multiplying  it  with  the  area  of  the  jellyroll.    

The  irreversible  heat  is  all  heat  that  is  not  reversible,  so  it  was  calculated  by  subtracting  the  

reversible  heat  from  the  total  heat  production.    

The  model  assumes  that  heat  transfer  only  occurs  between  contact  surfaces  in  the  model.  

No  heat  is  being  transferred  to  the  air  or  between  batteries  separated  by  air.  Heat  is  defined  

as  being  produced  uniformly  in  the  battery  cylinders.  However,  heat  is  being  transferred  

with  different  heat  transfer  coefficient  depending  on  direction  in  the  battery  cell.  The  heat  

transfer  vertically,  or  along  the  jellyroll  layers  is  higher  than  the  radial  heat  transfer  that  

crosses  the  jellyroll  layers.    

Parameter  data  used  in  the  model  were  obtained  from  fact  sheets,  through  in-­‐person  

communication,  through  calculations,  and  through  built-­‐in  COMSOL  data  when  it  was  

deemed  comparable.    

The  3D  model  for  thermal  modelling  was  created  in  the  CAD  software  SolidWorks  and  

imported  to  COMSOL.  This  model  is  shown  in  Fig.  4.  

Page 17: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

16

A  full  description  to  re-­‐create  the  model  and  a  list  of  constant  parameters  can  be  found  in  

Appendix  9.    

 

Fig.  4:  Geometrical  model  of  5-­‐cell  battery  module  section   Study  

To  conduct  the  study  of  the  cooling  tube  cooling  system’s  effectiveness,  two  areas  of  

interest  were  identified.  These  are  the  inlet  flow  rate  and  the  driving  cycle.  In  addition  to  

those,  it  was  also  investigated  what  effect  the  current  has  on  the  heat  generation.  

 

Inlet  Flow  Rate  

The  suggested  normal  flow  rate  for  the  system  is  1  liter  per  minute  of  coolant  entering  the  

inlet.  Flow  rates  of  0.5  liter  per  minute  higher  and  lower  than  the  suggested  flow  rate  were  

tested  to  determine  the  effect  of  changing  the  velocity.  A  simulation  was  also  run  with  an  

extremely  low  flowrate  to  illustrate  the  situation  at  no  flow.  All  of  these  were  run  for  the  

specific  driving  cycle  Driving  1  Cycle  1,  which  is  described  in  the  Driving  Cycle  section.    

For  each  flowrate,  the  maximum  temperature  reached  and  minimum  temperature  in  a  

battery  cell  at  the  same  time  was  obtained.    

 

Page 18: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

17

Driving  Cycle  

For  the  set  flowrate  of  1  liter  per  minute,  the  effect  of  five  different  driving  cycles  was  

simulated.  The  simulations  included  temperature,  cell  voltage,  internal  resistance,  total  heat  

production,  and  how  the  total  heat  is  split  into  reversible  and  irreversible  heat.  This  is  to  see  

how  different  uses  affect  the  battery  system.  The  five  driving  cycles  are  pictured  in  Fig.  5-­‐9  

with  the  y-­‐axis  as  C-­‐rate,  and  the  exact  data  is  given  in  Table  1.  

 

 Fig.  5:  Driving  1  Cycle  1                      Fig.  6:  Driving  1  Cycle  2  

 

 Fig.  7:  Driving  2  Cycle  1                      Fig.  8:  Driving  2  Cycle  2  

 

Page 19: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

18

 Fig.  9:  Driving  3  

 

Table  1:  Driving  cycle  data  

Current  

An  area  of  additional  interest  is  the  effect  of  current  on  heat  production.  To  analyze  this  

effect,  simulations  were  run  for  various  C-­‐rates.  A  1C  C-­‐rate  is  set  to  3.2  A.  With  this  as  a  

base,  eight  different  C-­‐rates  were  run  for  both  a  charge  and  discharge  process,  until  they  

were  either  fully  charged  of  fully  discharged.  This  was  defined  as  reached  the  cell  voltage  

limits  of  3.0  V  as  fully  discharged  and  4.2  V  for  fully  charged.  

The  C-­‐rates  included  in  the  study  are  listed  in  Table  2.  

Driving  1  Cycle  1   Driving  1  Cycle  2   Driving  2  Cycle  1   Driving  2  Cycle  2   Driving  3  Duration  (s)   C-­‐rate  

Duration  (s)   C-­‐rate  

Duration  (s)   C-­‐rate  

Duration  (s)   C-­‐rate  

Duration  (s)   C-­‐rate  

270   -­‐1.381   1300   0.581   20   -­‐0.306   2550   -­‐0.972   480   -­‐0.9  180   -­‐0.025   180   -­‐0.025   25   -­‐0.4   2550   0.638   10   -­‐1.028  350   1.078   2600   -­‐1.472   20   -­‐0.419         900   0.791  20   -­‐0.134   20   -­‐0.134   10   -­‐0.122         120   0.119  

              20   -­‐0.306         120   0.238                 25   -­‐0.4         120   0.475                 20   -­‐0.419         120   0.791                 10   -­‐0.122         120   0.119                 20   -­‐0.306         1200   -­‐1.263                 25   -­‐0.4         10   -­‐1.028                 20   -­‐0.419                             180   -­‐0.028              Total:  820  s   Total:  4100  s   Total:  395  s   Total:  5100  s   Total:  3200  s  

Page 20: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

19

 

0.1C     Charge  Discharge  

0.3  C   Charge  Discharge  

0.5C     Charge  Discharge  

0.7C      

Charge  Discharge  

1C     Charge  Discharge  

1.2C      

Charge  Discharge  

1.4C      

Charge  Discharge  

1.5C      

Charge  Discharge  

 Table  2:  C-­‐rates  included  in  study  

 

The  discharging  models  where  given  initial  lithium  ion  concentrations  of  26814  mol/m3  in  

the  negative  electrode,  and  22995  mol/m3  in  the  positive  electrode,  values  assumed  to  

represent  the  defined  fully  charged  battery.  The  charging  models  were  given  initial  lithium  

ion  concentrations  of  7921.3  mol/m3  in  the  negative  electrode,  and  41318  mol/m3  in  the  

positive  electrode,  values  assumed  to  represent  the  defined  fully  discharged  battery.  The  

defined  battery  statuses  are  not  the  same  as  the  completely  drained  or  charged  battery,  but  

set  as  limits  for  desired  usage.    

 

 

Page 21: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

20

Results  and  Discussion  

 

Inlet  Flow  Rate  Temperature  data  and  curves  were  obtained  for  the  four  flowrates.  As  the  driving  cycle  

remained  constant  Driving  1  cycle  1,  temperature  is  the  only  changing  factor  in  this  

experiment.  Fig.  10-­‐13  show  how  the  temperature  inside  the  battery  varies  over  time  for  the  

four  different  velocities.  Table  2  summarizes  the  data  through  the  maximum  temperature  

reached  at  any  point  of  time,  the  minimum  temperature  in  a  battery  cell  at  that  time,  and  

the  coolant  outflow  temperature.  All  figures  are  modelled  on  the  same  time  and  

temperature  scale  for  simplified  comparison.    

 

 Fig.  10:  Temperature  over  time  at  flowrate  0  liter  per  minute  

Page 22: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

21

 Fig.  11:  Temperature  over  time  at  flowrate  0.5  liter  per  minute  

 

 Fig.  12:  Temperature  over  time  at  flowrate  1  liter  per  minute  

Page 23: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

22

 Fig.  13:  Temperature  over  time  at  flowrate  1.5  liter  per  minute  

 

Test   Max  temp.   Min  temp.     Coolant  Outflow  Temp.    Flow  Rate   0  L/min   25.4  °C   24.6  °C   24.6  °C  

   

0.5  L/min   22.8  °C   20.8  °C   20.03  °C  1  L/min   22.7  °C   20.8  °C   20.02  °C  1.5  L/min   22.6  °C   20.7  °C   20.01  °C  

Table  2:  Temperature  data  for  the  different  flow  rates.    

 

The  data  shows  that  having  no  coolant  flow  gives  a  noticeable  effect,  where  the  

temperature  is  significantly  higher  than  for  even  the  lowest  coolant  flowrate  at  0.5  liter  per  

minute.  Between  the  different  flow  rates,  the  difference  is  smaller.  Between  0.5  liter  per  

minute  (fig.  11)  and  1.5  liter  per  minute  (fig.  13),  the  coolant  flow  rate  has  been  tripled.  

However,  the  difference  in  maximum  temperature  in  the  cells  is  only  0.2  °C.  The  coolant  

outflow  temperature  has  decreased  by  0.02  °C  between  the  two  simulations.    

The  temperature  rises  when  the  battery  is  in  use,  as  heat  is  being  generated.  When  the  

battery  is  not  in  no  additional  heat  is  being  generated,  and  two  different  scenarios  are  visible  

from  the  figures.  In  Figure  10  with  the  0  liter  per  minute  flowrate,  the  temperature  stabilizes  

Page 24: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

23

at  this  time  stamp.  For  the  other  three  flow  rates,  the  temperature  decreases,  as  the  coolant  

can  transfer  away  more  heat  than  what  is  being  produced.    

 

Driving  Cycle  For  the  five  different  driving  cycles,  the  data  obtained  includes  cell  voltage,  heat  generation,  

heat  generation  separated  into  reversible  and  irreversible  heat,  temperature,  and  internal  

resistance.  They  were  all  given  a  coolant  flow  rate  of  1  liter  per  minute.  Thus,  the  

temperature  obtained  for  the  Driving  1  cycle  1  cycle  is  the  same  as  for  the  1  liter  per  minute  

flow  rate  given  above.  

 

Cell  Voltage  The  cell  voltage  is  shown  in  Fig.  14-­‐18.  The  plots  also  contain  the  drive  cycle,  to  illustrate  

how  they  depend  on  each  other.  A  bottom  limit  of  3.0  V  and  an  upper  limit  of  4.2  V  has  been  

defined  in  product  sheets  as  the  cell  voltages  that  equals  to  0  %  SOC  and  100  %  SOC.  In  the  

cycle  Driving  1  cycle  2,  the  drive  cycle  has  been  allowed  to  continue  past  this  limit  to  

illustrate  what  would  happen.  All  cycles  have  been  put  on  the  same  y-­‐axes  for  simplified  

comparison.  The  Driving  1  cycle  2  cycle  will  be  difficult  to  read  due  to  the  wide  range  of  the  

axis,  and  a  scale-­‐adjusted  version  is  available  in  Appendix  1.  

 

 Fig.  14:  Cell  voltage  over  time  for  Driving  1  cycle  1  

Page 25: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

24

 

 Fig.  15:  Cell  voltage  over  time  for  Driving  1  cycle  2  

 Fig.  16:  Cell  voltage  over  time  for  Driving  2  cycle  1  

Page 26: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

25

 Fig.  17:  Cell  voltage  over  time  for  Driving  2  cycle  2  

 Fig.  18:  Cell  voltage  over  time  for  Driving  3  

 

In  Fig.  14-­‐18,  it  can  be  clearly  seen  how  the  cell  voltage  is  related  to  the  C-­‐rate.  When  the  C-­‐

rate  is  negative,  implying  that  the  battery  is  being  discharged,  the  cell  voltage  drops.  When  

the  C-­‐rate  is  zero,  implying  that  the  battery  is  not  in  use,  the  cell  voltage  stabilizes.  When  the  

C-­‐rate  is  positive,  implying  that  the  battery  is  being  charged,  the  cell  voltage  increases.  For  

all  the  tested  driving  cycles,  except  for  Driving  1  cycle  2  (Fig.15),  the  cell  voltage  stays  within  

the  given  limits.  Within  the  limits,  the  cell  voltage  does  not  increase  or  decrease  as  rapidly  as  

Page 27: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

26

it  can  be  seen  dropping  once  the  cell  voltage  goes  below  3.0  V  in  Driving  1  cycle  2,  without  

changing  the  C-­‐rate.    

 

Heat  Production  per  battery  cell,  including  reversible  and  irreversible  heat  

The  heat  production,  and  the  heat  separated  reversible  and  irreversible  heat  for  an  

individual  battery  cell  in  the  model  is  shown  in  Fig.  19-­‐23,  respectively  Fig.  24-­‐28.  In  

addition,  cut  sections  of  the  cycle  Driving  3  has  been  added  to  show  how  the  heat  is  

dissipated  from  inside  the  battery.  The  total  heat  adds  the  reversible  and  irreversible  heat.  It  

is  assumed  that  the  cells  produce  equal  heat.  The  driving  cycle  is  included  to  illustrate  the  

relation.  Again,  the  cycle  Driving  1  cycle  2  is  out  of  the  ordinary  range,  and  will  thus  produce  

more  heat  than  the  other  cycles.  All  cycles  have  been  put  on  the  same  y-­‐axes  for  simplified  

comparison.  The  Driving  1  cycle  2  cycle  will  be  difficult  to  read  due  to  the  wide  range  of  the  

axis,  and  a  scale-­‐adjusted  version  is  available  in  Appendix  1.  

 

 Fig.  19:  Total  heat  production  over  time  for  a  single  cell  over  Driving  1  cycle  1  

Page 28: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

27

 Fig.  20:  Total  heat  production  over  time  for  a  single  cell  over  Driving  1  cycle  2  

 Fig.  21:  Total  heat  production  over  time  for  a  single  cell  over  Driving  2  cycle  1  

Page 29: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

28

 Fig.  22:  Total  heat  production  over  time  for  a  single  cell  over  Driving  2  cycle  2  

 Fig.  23:  Total  heat  production  over  time  for  a  single  cell  over  Driving  3  

 

Page 30: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

29

 Fig.  24:Reversible  and  irreversible  heat  production  over  time  for  a  single  cell  over  Driving  1  cycle1  

 Fig.  25:Reversible  and  irreversible  heat  production  over  time  for  a  single  cell  over  Driving  1  cycle2  

Page 31: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

30

 Fig.  26:Reversible  and  irreversible  heat  production  over  time  for  a  single  cell  over  Driving  2  cycle1  

 Fig.  27:Reversible  and  irreversible  heat  production  over  time  for  a  single  cell  over  Driving  2  cycle2  

Page 32: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

31

 Fig.  28:  Reversible  and  irreversible  heat  production  over  time  for  a  single  cell  over  Driving  3  

 

In  the  figures  it  can  be  seen  that  high  C-­‐rates,  either  positive  or  negative,  cause  higher  heat  

generation,  while  lower  C-­‐rates  causes  less  heat  production.  Looking  at  the  reversible  and  

irreversible  heat,  we  can  see  that  more  irreversible  heat  is  produced  when  the  battery  is  

discharging.  At  discharge,  the  reversible  heat  generated  is  negative,  which  means  that  it  is  

actually  cooling  the  system.  However,  as  the  irreversible  heat  also  increases  during  the  same  

time  period,  the    makes  reversible  heat  loss  is  evened  out  when  looking  at  the  total  heat  

generation.  For  the  cycle  Driving  1  cycle  2  (Fig.20,  Fig.  25),  the  heat  increases  rapidly  at  the  

timestamp  of  when  the  potential  drops  below  3.0  V.  The  battery  struggles  with  the  situation,  

and  more  heat  is  produced.  

 

Temperature  The  modelled  temperatures  for  the  driving  cycles  are  given  in  Table  3  and  Fig.  29-­‐33.  Driving  

1  cycle  1,  Driving  2  cycle  1,  Driving  2  cycle  2,  and  Driving  3  are  also  given  as  heat  colored  3D  

figures  in  Fig.  34-­‐37.  The  3D  figures  are  given  at  the  point  of  time  where  the  highest  

temperature  is  measured  and  placed  on  the  same  temperature  scale.  Driving  1  cycle  2  is  

excluded  to  better  illustrate  the  temperature  distribution  in  the  other  3D  models.  The  

obtained  temperatures  are  strongly  related  to  the  heat  productions  for  the  driving  cycles.  

The  more  demanding  drive  cycle,  the  more  heat  is  being  produced.  The  additional  heat  

results  in  higher  temperatures.  This  is  extra  notable  for  Driving  1  Cycle  2,  where  heat  

Page 33: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

32

production  is  allowed  to  run  higher  for  the  sake  of  the  study.  All  cycles  have  been  put  on  the  

same  y-­‐axes  for  simplified  comparison.  The  Driving  1  cycle  2  cycle  will  be  difficult  to  read  due  

to  the  wide  range  of  the  axis,  and  a  scale-­‐adjusted  versions  are  available  in  Appendix  1.  

 

Test   Max  temp.   Min  temp.     Coolant  Outflow  Temp.    Driving  cycles   Driving  1  cycle  1   22.7  °C   20.8  °C   20.02  °C  

     

Driving  1  cycle  2   27.7  °C   22.1  °C   20.05  °C  Driving  2  cycle  1   20.1  °C   20.04  °C   20.001  °C  Driving  2  cycle  2     23.6  °C   21.0  °C   20.02  °C  Driving  3   23.8  °C   21.1  °C   20.02  °C  

Table  3:  Temperature  data  for  the  different  driving  cycles  

 

 Fig.  29:  Temperature  over  time  for  Driving  1  cycle  1  

 

Page 34: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

33

 Fig.  30:  Temperature  over  time  for  Driving  1  cycle  2  

 Fig.  31:  Temperature  over  time  for  Driving  2  cycle  1  

Page 35: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

34

 Fig.  32:  Temperature  over  time  for  Driving  2  cycle  2  

 Fig.  33:  Temperature  over  time  for  Driving  3  

 

Page 36: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

35

 Fig.  34:  Temperature  distribution  for  Driving  1  cycle  1  

 Fig.  35:  Temperature  distribution  for  Driving  2  cycle  1  

Page 37: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

36

 Fig.  36:  Temperature  distribution  for  Driving  2  cycle  2  

 

 Fig.  37:  Temperature  distribution  for  Driving  3  

 

Page 38: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

37

 Fig.  38:  Temperature  distribution  in  a  cut  section  in  the  xy  plane  for  Driving  3  

 Fig.  39:  Temperature  distribution  in  a  cut  section  in  the  yz  plane  for  Driving  3  

 

 Fig.  40:  Temperature  distribution  in  a  cut  section  in  the  xz  plane    for  Driving  3  

Page 39: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

38

 

Here  Driving  2  cycle  1  (Fig.  31)  has  the  lowest  temperature.  It  is  also  the  shortest  cycle.  The  

longest  regular  cycle  is  Driving  3  (Fig.33),  which  also  reaches  the  highest  temperatures.  High  

heat  production  over  longer  time  gives  higher  temperatures.  Consequently,  the  shorter  

cycles,  Driving  1  cycle  1  (Fig.  29)  and  Driving  2  cycle  1,  also  results  in  lower  temperatures  

than  the  other  cycles.  The  temperature  rises  with  the  heat  production  when  the  battery  is  in  

use.  When  the  battery  is  not  in  use  the  temperature  is  decreasing,  as  more  heat  is  

transferred  away  by  the  coolant  than  what  is  being  produced  by  the  cells.  In  fig.38-­‐40  the  

dissipation  of  heat  is  clearly  shown.  The  heat  spreads  faster  along  the  jellyroll,  which  causes  

the  temperature  to  be  higher  in  the  middle  of  the  cylindrical  cell,  and  cooler  towards  the  

surface.  The  jellyroll  also  causes  the  heat  to  dissipate  uniformly  along  the  vertical  axis.    

 

Internal  Resistance  The  internal  resistance  for  the  different  cycles  are  shown  in  Fig.  41-­‐45.  All  cycles  have  been  

put  on  the  same  y-­‐axes  for  simplified  comparison.      

 

 Fig.  41:  Internal  resistance  over  time  for  Driving  1  cycle  1  

 

Page 40: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

39

 Fig.  42:  Internal  resistance  over  time  for  Driving  1  cycle  2  

 Fig.  43:  Internal  resistance  over  time  for  Driving  2  cycle  1  

 

Page 41: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

40

 Fig.  44:  Internal  resistance  over  time  for  Driving  2  cycle  2  

 Fig.  45:  Internal  resistance  over  time  for  Driving  3  

 

The  internal  resistance  is  generally  quite  low  for  the  different  driving  cycles.  The  exception  is  

timestamps  where  the  internal  resistance  appears  to  run  sky  high.  These  are  likely  due  to  an  

error  for  low  currents  in  the  equation.  The  equation  only  works  well  for  reasonable  high  

currents,  and  when  the  current  gets  too  low  the  internal  resistance  does  not  appear  

correctly.  A  case  where  the  internal  resistance  is  increasing  which  is  not  explained  by  this  

error  is  Driving  1  cycle  2  (Fig.  39).  In  the  figure  the  internal  resistance  increases  rapidly  while  

Page 42: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

41

the  discharge  current  is  high.  This  is  related  to  that  the  battery  is  effectively  fully  discharged  

at  this  point  and  the  internal  resistance  is  increasing  due  to  the  cell  voltage  drop.    

 

Current  The  model  was  run  for  several  different  C-­‐Rates,  where  1  C  is  3.2  A,  0.5  C  is  1.6  A,  etc.  The  

discharging  models  are  set  to  start  at  a  different  state  of  charge  than  the  charging  models.  

For  these  models,  the  factors  investigated  were  the  time  until  fully  charge/discharged,  the  

maximum  heat  production  during  the  cycle,  and  the  heat  production  at  half  the  total  cycle  

time.  This  result  is  given  in  Table  4.  Plotted  individual  cycles  for  the  different  C-­‐rates  can  be  

found  in  Appendix  2.  

 

Test  Time  until  3V/4.2V  

Max  heat  production  

Heat  production  at  time  halfway  point  

0.1C    Charge   29100s   0.1W   0.02W  Discharge   30400s   0.03W   0.00W  

0.3  C  Charge   9590s   0.28W   0.10W  Discharge   10000s   0.14W   0.03W  

0.5C    Charge   5690s   0.56W   0.26W  Discharge   5530s   0.29W   0.14W  

0.7C    Charge   3970s   0.85W   0.47W  Discharge   3830s   0.51W   0.29W  

1C    Charge   2600s   1.3W   0.91W  Discharge   2800s   1.2W   0.61W  

1.2C    Charge   1980s   1.7W   1.2W  Discharge   2540s   1.6W   0.86W  

1.4C    Charge   1530s   2.1W   1.6W  Discharge   1880s   1.9W   1.1W  

1.5C    Charge   1340s   2.3W   1.8W  Discharge   1600s   2.0W   1.3W  

Table  4:  Charge  and  discharge  data  for  different  C-­‐rates  

 

In  Table  4  it  can  be  seen  that  charging  the  battery  produces  more  heat  and  goes  generally  

faster  than  discharging  the  battery.  Higher  C-­‐Rates  requires  higher  currents  and  

consequently  drains  or  charges  the  battery  faster,  with  a  higher  heat  production.    

   

Page 43: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

42

 

Conclusions  and  future  work  

A  model  for  the  module  section  with  the  five  cells  and  liquid  cooling  system  was  successfully  

constructed  and  tested  in  COMSOL  Multiphysics  5.3a.  The  input  parameter  data  consists  of  

both  data  obtained  from  Northvolt,  as  well  as  literature  data  provided  by  the  built-­‐in  

functions  of  the  COMSOL  Multiphysics  5.3a  suite.  With  this  in  mind,  it  is  possible  to  further  

improve  the  accuracy  of  the  model  by  replacing  the  literature  data  by  experimental  data  

from  the  exact  cell.  However,  for  the  analyzed  cases,  the  current  parameter  data  is  

considered  sufficiently  accurate.    

COMSOL  Multiphysics  5.3a  proved  to  be  a  suitable  software  to  construct  a  battery  model  in  

to  analyze  heat  generation  and  temperature  distribution,  with  and  without  cooling.  It  was  

also  possible  to  analyze  the  other  properties  of  interest.  The  model  constructed  is  quite  

advanced  to  include  several  input  data  and  for  requested  output  data  to  be  obtained.  

However,  it  is  also  possible  to  construct  simpler  battery  cell  models  which  will  not  require  as  

much  data  power  or  input  information  as  the  constructed  model.  COMSOL  Multiphysics  5.3a  

proved  its  versatility  in  that  it  was  possible  to  run  on  old  laptops  as  well  as  on  state-­‐of-­‐art  

stationary  computers.  However,  even  with  this  versatility  it  is  advised  to  run  the  program  on  

computers  with  better  specs,  as  the  calculation  time  was  severely  prolonged  on  the  old  

laptop.  In  one  case  tested,  the  calculation  time  increased  from  3  hours  on  a  good  stationary  

computer  to  28  hours  on  an  old  laptop.  However,  the  software  to  still  worked  well  on  the  

old  laptop  without  being  slowed  down  in  other  areas  than  calculations.    

The  model  shows  that  the  addition  of  the  cooling  system  is  beneficial,  and  also  what  

temperatures  the  system  may  reach  and  what  heat  is  being  generated.  However,  it  is  still  

important  to  stay  within  the  battery  limits  and  having  an  additional  system  that  shut  down  

the  battery  when  it  reaches  the  defined  maximum  discharge  and  that  stops  charging  it  when  

it  reaches  the  defined  fully  charged  state.    

It  should  be  noted  that  the  temperatures  here  are  quite  low.  This  is  due  to  the  small  scale  of  

the  model.  The  section  of  five  cells  is  only  a  small  part  of  the  full  module  which  will  be  

cooled  by  the  same  coolant  loop.  In  a  larger  system  with  more  cells,  the  coolant  

temperature  will  pass  through  more  than  five  cells  before  it  is  looped  through  a  heat  

exchanger.  With  more  cells  to  pass  through,  the  coolant  temperature  will  increase  more  

Page 44: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

43

than  for  the  five  cell  section,  reducing  the  cooling  effect.  Consequently,  while  the  difference  

between  the  0.5  liter  per  minute  flowrate  and  the  1.5  liter  per  minute  flowrate  is  not  large  

here,  it  might  be  of  higher  importance  in  a  full  module  with  more  cells.    

It  is  of  interest  to  expand  the  system  in  future  work  to  test  the  temperature  effects  and  if  

the  coolant  still  is  sufficient.  It  is  also  of  interest  to  compare  the  calculated  data  with  

experimental  data  from  performing  tests  and  measurements  on  a  physical  battery  module  

under  the  same  conditions.  Additionally,  analyzing  temperatures  distribution  in  the  cell  over  

time  for  the  different  C-­‐rates  is  a  point  of  interest.  To  make  the  model  even  clearer,  adding  a  

SOC,  state  of  charge,  distribution  plot  would  be  of  interest  for  the  future.    

 

 

Page 45: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

44

Nomenclature  and  Abbreviations  

 Abbreviations  NMC  =  Nickel  Manganese  Cobalt,  batteries  with  a  Li(Ni1/3Mn1/3Co1/3)O2  Electrode    OCV  =  Open  Cell  Voltage  P2D  =  Pseudo-­‐Two  Dimensional  PCM  =  Phase  Change  Material  SOC  =  State  of  Charge  TIM  =  Thermal  Interface  Material    Nomenclature   Greek  letters  an  =  Anode  transfer  coefficient  [-­‐]  a=  =  Cathode  transfer  coefficient  [-­‐]  ee  =  Volume  fraction/porosity  of  electrolyte  [-­‐]  hs  =  Surface  overpotential  [V]  Øe  =  Electrolyte  phase  potential  [V]  Øs  =  Solid  phase  potential  [V]  seff  =  Effective  electronic  conductivity  of  the  solid  phase  [S/m]    Alphabetic  letters  as  =  Specific  interfacial  area  of  solid  phase  [m2/m3]  A  =  Surface  area  of  active  material  [m2]  c  =  Concentration  of  Li  ions  [mol/m3]  ce  =  Concentration  of  Li  ions  in  electrolyte  phase  [mol/m3]  cs  =  Concentration  of  Li  ions  in  solid  phase  [mol/m3]  Cp  =  Specific  heat  capacity  [J/(kg  ×  K)  DLi  =  Diffusion  coefficient  of  Li  [m2/s]  dU/dT  =  Entropic  heat  coefficient  [-­‐]  Ecell  =  Cell  voltage  [V]  EOCPneg  =  Open  cell  potential,  negative  electrode  [V]  EOCPpos  =  Open  cell  potential,  positive  electrode  [V]  f±  =  molecular  salt  activity  coefficient  [-­‐]  F  =  Faraday  constant,  96.485  [C/mol]  ie  =  Current  density  in  electrolyte  phase  [A/m2]  i0  =  Exchange  current  density  [A/m2]  in  =  Reaction  current  density  at  particle  surface  [A/m2]  is  =  Current  density  in  solid  phase  [A/m2]  I  =  Current  [A]  Iapp  =  Applied  current  [A]  jn  =  Pore-­‐wall  flux  across  interface  [mol/(m2×s)]  𝑘n  =  Anodic  reaction  rate  constant  [m3/s]  𝑘=  =  Cathodic  reaction  rate  constant  [m3/s]  𝑘Pcc  =  Effective  ionic  conductivity  [S/m]  

Page 46: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

45

𝐿  =  Total  thickness  of  cell  [m]  𝐿M  =  Thickness  of  negative  electrode  [m]  𝐿VP7  =  Thickness  of  separator  [m]  𝑚  =  Mass  flow  rate  of  coolant  [kg/s]  𝑄  =  Heat  generation  [W]  r0  =  NMC  particle  radius  [m]  R  =  Overpotential  resistance  [W]  Rg  =  Universal  gas  constant,  8.3145  [J/(mol×K)]  ∆S  =  Entropy  change  [J/(mol×K)]  t  =  Time  [s]  t+0  =  Transfer  number  of  the  lithium  ions  with  respect  to  the  velocity  of  solvent  [s]  T  =  Temperature  [K]  To  =  Outlet  temperature  [K]  Ti  =  Inlet  temperature  [K]  U  =  Open-­‐circuit  potential  [V]  V  =  Cell  voltage  [V]    

 

Page 47: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

46

References    

[1] S.-L. Wu, W. Zhang, X. Song, A. K. Shukla, G. Liu, V. Battaglia and V. Srinivasan, "High Rate Capability of Li(Ni1/3Mn1/3Co1/3)O2 Electrode for Li-Ion Batteries," Journal of The Electrochemical Society,, vol. 159, pp. A438-A444, 2012.

[2] S. S. Zhang, T. R. Jow, K. Amine and G. L. Henriksen, "LiPF6±EC±EMC electrolyte for Li-ion battery," Journal of Power Sources , vol. 107, pp. 18-23, 2003.

[3] S. Kim, Y. S. Lee, H. S. Lee and H. L. Jin, "A study on the behavior of a cylindrical type Li-Ion secondarybattery under abnormal conditions," Materials Science & Engineering Technology, vol. 41, pp. 378-385, 2010.

[4] H. Liu, Z. Wei, W. He and J. Zhao, "Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review," Energy Conversion and Management, vol. 150, pp. 304-330, 2017.

[5] C. G. Motloch, J. P. Christophersen, J. R. Belt, R. B. Wright, G. L. Hunt, R. A. Sutula, T. Duong, T. J. Tartamella, H. J. Haskins and T. J. Miller, "High-Power Battery Testing Procedures and Analytical Methodologies for HEV’s," in Proceedings of the 2002 Future Car Congress , Arlington, 2002.

[6] D. Bernardi, E. Pawlikowski and J. Newman, "A General Energy Balance for Battery Systems," Journal of the Electrochemical Society, vol. 132, pp. 5-12, 1985.

[7] T. M. Bandhauer, S. Garimella and T. F. Fuller, "A Critical Review of Thermal Issues in Lithium-Ion Batteries," Journal of The Electrochemical Society,, vol. 158, no. 3, pp. R1-R25, 2011.

[8] K. Onda, H. Kameyama, T. Hanamoto and K. Ito, "Experimental Study on Heat Generation Behavior of Small Lithium-Ion Secondary Batteries," Journal of The Electrochemical Society, vol. 150, pp. A285-A291, 2003.

[9] G. Karimi and X. Li, "Thermal management of lithium-ion batteries for electric vehicles," International Journal of Energy Research, vol. 37, pp. 13-24, 2013.

[10] S. Panchal, I. Dincer, M. Agelin-Chaab, R. Fraser and M. Fowler, "Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery," International Journal of Heat and Mass Transfer, vol. 101, pp. 1093-1102, 2016.

[11] COMSOL, "Understand, Predict, and Optimize Engineering Designs with the COMSOL Multiphysics® Software," COMSOL, [Online]. Available: https://www.comsol.com/comsol-multiphysics. [Accessed 02 01 2018].

[12] COMSOL, Batteries & Fuel Cells Module: v.5.3 User’s Guide, 2017. [13] M. Doyle, T. F. Fuller and J. Newman, "Modeling of Galvanostatic Charge and

Discharge of the Lithium/Polymer/Insertion Cell," Journal of the Electrochemical Society, vol. 140, pp. 1526-1533, 1993.

[14] T. F. Fuller, M. Doyle and J. Newman, "Simulation and Optimization of the Dual Lithium Ion Insertion Cell," Journal of the Electrochemical Society, vol. 141, pp. 1-10, 1994.

[15] Q. Wang, B. Jiang, B. Li and Y. Yan, "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, vol. 64, pp. 106-128, 2016.

Page 48: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

47

[16] V. Ramadesigan, P. W. C. Northrop, S. De, S. Santhanagopalan, R. D. Braatz and V. R. Subramanian, "Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective," vol. 159, pp. R31-R45, 2012.

[17] J. Yang, X. Wei, H. Dai, J. Zhu and X. Xu, "Lithium-ion Battery Internal Resistance Model Based on the Porous Electrode Theory," in Vehicle Power and Propulsion Conference (VPPC), Coimbra, 2014.

[18] J. Newman and W. Tiedemann, "Porous-Electrode Theory With Battery Applications," American Institute of Chemical Engineers Journal, Vols. LBL-3117, pp. 1-81, 1974.

[19] D. Chen, J. Jiang, G.-H. Kim, C. Yang and A. Pesaran, "Comparison of different cooling methods for lithium ion battery cells," Applied Thermal Engineering, vol. 94, pp. 846-854, 2016.

[20] G. Xia, C. Lei and G. Bi, "A review on battery thermal management in electric vehicle application," Journal of Power Sources, vol. 367, pp. 90-105, 2017.

[21] A. Faass and E. Clough, "Battery module with integrated thermal management system". USA Patent US 20130196184 A1, 01 08 2013.

[22] P. T. Tennessen, J. C. Weintraub and W. A. Hermann, "Battery Coolant Jacket". USA Patent US 20130004820 A1, 03 01 2013.

[23] A. J. McNamara, Y. Joshi and Z. M. Zhang, "Characterization of nanostructured thermal interface materials e A review," International Journal of Thermal Sciences, vol. 62, pp. 2-11, 2012.

[24] M. Singh, J. Kaiser and H. Hahn, "Thick Electrodes for High Energy Lithium Ion Batteries," Journal of The Electrochemical Society, vol. 162, pp. A1196-A1201, 2015.

[25] H. Kang, C. Lim, T. Li, Y. Fu, B. Yan, N. Houston, V. De Andrade, F. De Carlo and L. Zhu, "Geometric and Electrochemical Characteristics of LiNi1/3Mn1/3Co1/3O2 Electrode with Different Calendering Conditions," Electrochimica Acta, vol. 232, pp. 431-438, 2017.

[26] J. Liu and C. W. Monroe, "Solute-volume effects in electrolyte transport," Electrochimica Acta, vol. 135, pp. 447-460, 2014.

 

 

Page 49: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

48

Appendix  

Appendix  0:  Calculations  complement   Appendix  0.1:  Calculations  to  support  the  probability  of  the  coolant  temperature  increase  for  

three  different  non-­‐zero  flow  rates.  

Properties  of  interest:    Property   Value   Unit  Inlet  temperature   20   °C  Coolant  heat  capacity   3400   J/(kg*K)  Coolant  density   1,4   kg/L    Approximated  heat  energy  production  in  joule  for  Driving1cycle1:    Time  Extent   Energy  produced  (J)  270  s   202,5  180  s   9  350  s   245  20  s   0,4  Total  energy:     456,9    The  temperature  increase  is  calculated:  

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 =𝐻𝑒𝑎𝑡  𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑  (𝐽)

𝑀𝑎𝑠𝑠  𝑜𝑓  𝑐𝑜𝑜𝑙𝑎𝑛𝑡   𝑘𝑔 ∙ 𝐻𝑒𝑎𝑡  𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦  𝑜𝑓  𝑐𝑜𝑜𝑙𝑎𝑛𝑡( 𝐽𝑘𝑔 ∗ 𝐾)  

 The  mass  of  coolant  is  dependent  on  flowrate,  and  is  calculated:  

𝑀𝑎𝑠𝑠  𝑜𝑓  𝐶𝑜𝑜𝑙𝑎𝑛𝑡 = 𝑀𝑎𝑠𝑠  𝑜𝑓  𝑐𝑜𝑜𝑙𝑎𝑛𝑡  𝑖𝑛  𝑠𝑦𝑠𝑡𝑒𝑚 + 𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒 ∙ 𝑡𝑖𝑚𝑒   Flow  Rate  (L/min)   Mass  of  coolant  (kg)  0,5     8,3  1   16,1  1,5   23,9  

This  results  in  the  following  temperatures:   Flow  Rate  (L/min)   Outflow  temperature  (°C)  0,5     20,08  1   20,04  1,5   20,03  

This  heat  increase  is  similar  to  that  which  was  calculated  by  COMSOL.      

Page 50: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

49

Appendix  0.2:  Comparing  the  thermic  and  electric  effects  

 Graphs  showing  the  required  electrical  power  from  each  battery  cell  has  been  constructed  based  on  given  data.  These  can  be  compared  to  the  heat  power  generated  by  the  cells.    The  electric  power  and  the  heat  power  for  Driving  1  cycle  1  is  compared  in  Fig.  46  and  47.    

 Fig.  46:  Electric  power  required  by  Driving  1  cycle  1  

 Fig.  47:  Heat  power  generated  by  Driving  1  cycle  1    The  electric  power  for  the  remaining  drive  cycles  are  shown  in  Fig.  48-­‐51.  These  can  be  compared  with  Fig.  20-­‐23.    

-­‐15

-­‐10

-­‐5

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900

Power  re

quire

d  (W

)

Time  (s)

Electric  Power  Required,  Driving  1  Cycle  1

Page 51: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

50

 Fig.  48:  Electric  power  required  by  Driving  1  cycle  2    

 Fig.  49:  Electric  power  required  by  Driving  2  cycle  1    

 Fig.  50:  Electric  power  required  by  Driving  2  cycle  2    

-­‐10

-­‐5

0

5

10

15

20

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Power  re

quire

d  (W

)

Time  (s)

Electric  Power  Required,  Driving  1  Cycle  2

0,0

1,0

2,0

3,0

4,0

5,0

6,0

0 50 100 150 200 250 300 350 400 450

Power  re

quire

d  (W

)

Time  (s)

Electric  Power  Required,  Driving  2  Cycle  1

-­‐10

-­‐5

0

5

10

15

0 1000 2000 3000 4000 5000 6000

Power  re

quire

d  (W

)

Time  (s)

Electric  Power  Required,  Driving  2  Cycle  2

Page 52: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

51

 Fig.  51:  Electric  power  required  by  Driving  3    When  comparing  the  generated  heat  with  the  electric  power  required,  it  can  be  seen  that  the  generated  heat  is  about  a  tenth  the  size  of  the  required  power.     Appendix  1:  Scale  adjusted  plots  and  3D  temperature  model  for  Driving  2  cycle  1    Driving  2  cycle  1  is  a  short  cycle  with  relatively  low  C-­‐rates.  This  causes  the  values  to  not  be  as  high  as  for  the  other  cycles  and  therefore  difficult  to  read  on  the  scale  all  of  them  are  placed  on.  In  this  appendix,  all  figures  are  given  on  scales  adjusted  for  the  values  of  Driving  2  cycle  1.        

 Fig.  52:  Adjusted  scare  cell  voltage  over  time  for  Driving  2  cycle  1  

 

-­‐15

-­‐10

-­‐5

0

5

10

15

20

0 500 1000 1500 2000 2500 3000 3500

Power  re

quire

d  (W

)

Time  (s)

Electric  Power  Required,  Driving  3

Page 53: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

52

 Fig.  53:  Adjusted  scale  heat  production  over  time  for  Driving  2  cycle  1  

   

 Fig.  54:  Adjusted  scale  reversible  and  irreversible  heat  production  over  time  for  Driving  2  cycle  1  

 

Page 54: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

53

 Fig.  55:  Adjusted  scale  temperature  over  time  for  Driving  2  cycle  1  

 

 Fig.  56:  Temperature  distribution  for  Driving  2  cycle  1  

   

Page 55: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

54

Appendix  2:  Plots  for  the  C-­‐Rate  Measurements    This  appendix  gives  the  plots  of  heat  production  over  time  for  the  different  charge  and  discharge  C-­‐rates.    

 Fig.  57:  Charge  heat  production  for  0.1C                                                Fig.  58:  Discharge  heat  production  for  0.1C    

 Fig.  59:  Charge  heat  production  for  0.3C                                                Fig.  60:  Discharge  heat  production  for  0.3C    

 Fig.  61:  Charge  heat  production  for  0.5C                                                Fig.  62:  Discharge  heat  production  for  0.5C    

Page 56: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

55

 Fig.  63:  Charge  heat  production  for  0.7C                                                Fig.  64:  Discharge  heat  production  for  0.7C    

 Fig.  65:  Charge  heat  production  for  1C     Fig.  66:  Discharge  heat  production  for  1C    

 Fig.  67:  Charge  heat  production  for  1.2C                                                Fig.  68:  Discharge  heat  production  for  1.2C    

 Fig.  69:  Charge  heat  production  for  1.4C                                                Fig.  70:  Discharge  heat  production  for  1.4C  

Page 57: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

56

 

 Fig.  71:  Charge  heat  production  for  1.5C                                                Fig.  72:  Discharge  heat  production  for  1.5C        

Page 58: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

57

Appendix  3:  Parameter  values  used  in  COMSOL  model    This  list  includes  all  parameter  data  used  in  the  COMSOL  model.  Please  see  notes  for  the  origin  of  each  parameter.  This  is  the  file  “5_Cell_NMC_Battery_Parameter.txt”  mentioned  in  the  modelling  instructions  in  Appendix  9.    

1 Value given by Northvolt 2 Calculated from given data 3 Value obtained from COMSOL model and deemed comparable

Parameter  name   Value   Description  rp_neg     18.5e-­‐6[m]1     Particle  radius  negative  electrode  rp_pos     12e-­‐6[m]1     Particle  radius  positive  electrode  epss_pos     (1-­‐epsl_pos-­‐0.170)*3.2/3.65232     Solid  phase  volume  fraction  positive  electrode  

epsl_pos     0.251    Electrolyte  phase  volume  fraction  positive  electrode  

epss_neg     (1-­‐epsl_neg-­‐0.172)*3.2/3.65232     Solid  phase  volume  fraction  negative  electrode  

epsl_neg     0.421    Electrolyte  phase  volume  fraction  negative  electrode  

epsl_sep     0.3501     Electrolyte  phase  volume  fraction  separator  k_neg     2e-­‐11[m/s]3     Reaction  rate  coefficient  negative  electrode  k_pos     5e-­‐10[m/s]3     Reaction  rate  coefficient  positive  electrode  cl_0     1200[mol/m^3]3     Initial  electrolyte  salt  concentration  i_1C_c     3.2[A]1     1C  current  L_neg     218.8e-­‐6[m]1     Length  of  negative  electrode  L_sep     16e-­‐6[m]1     Length  of  separator  L_pos     158.7e-­‐6[m]1     Length  of  positive  electrode  d_can     0.25[mm]3     Thickness  of  battery  canister  r_batt     10.5  [mm]1     Battery  radius  h_batt     70  [mm]1     Battery  height  L_neg_cc     10[um]1     Negative  current  collector  thickness  L_pos_cc     10[um]1     Positive  current  collector  thickness  L_batt     L_neg+L_neg_cc+L_sep+L_pos+L_pos_cc2     Cell  thickness  kT_batt_ang     25  [W/(m*K)]1     Battery  thermal  conductivity,  angular  and  axial  kT_batt_r     1  [W/(m*K)]1     Battery  thermal  conductivity,  radial  rho_batt     68[g]/(r_batt^2*pi*h_batt)1     Battery  density  Cp_batt     1000  [J/(kg*K)]1     Battery  heat  capacity  T_inlet     293.15[K]1     Inlet  temperature  T_init     T_inlet2     Initial  temperature  h_tube1     5.95[mm]1     Height  tube  type  1,  geometry  

Page 59: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

58

Table  5:  Parameter  data  used  in  model  

 

 

 

4 Varied parameter. This value represents the flow 1 L/min and has been calculated. 5 Value obtained from other program, can be assumed to be given

h_tube2     5.60[mm]1     Height  tube  type  2,  geometry  V_in     0.12214     Inlet  Velocity  t     0   Initial  time  A_cell     808[mm]*65[mm]2     Area  of  active  battery  material  sheet  csmax_neg     31507[mol/m^3]5     Maximal  state-­‐of-­‐charge  negative  electrode  csmax_pos     49000[mol/m^3]5     Maximal  state-­‐of-­‐charge  positive  electrode  cs0_pos     25814[mol/m^3]5     Initial  state-­‐of-­‐charge  positive  electrode  cs0_neg     23907[mol/m^3]5     Initial  state-­‐of-­‐charge  negative  electrode  cptim     2.1[MJ/(m^3*K)]/2300[kg/m^3]1     Heat  capacity  of  TIM  material  

Page 60: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

59

Appendix  4:  Lithium  ion  cell  variables  used  in  COMSOL  model   These  variables  are  set  up  in  the  lithium  ion  battery  part  of  the  COMSOL  model.  This  is  the  file  “Variables1liion.txt”  mentioned  in  the  modelling  instructions  in  Appendix  9.  

i_app     i_1C_c*driving(t)     Applied  Current  Density  T_init     293.15[K]     Initial  Temperature  T     nojac(comp2.aveop1(comp2.T))     Battery  Cell  Temperature  Ecell     pos_cc(phis)     Cell  Voltage  

EOCPpos     mat3.elpot.Eeq_int1(liion.soc_average_pce2)    Open  cell  potential,  positive  electrode  

EOCPneg     mat1.elpot.Eeq_int1(liion.soc_average_pce1)      Open  cell  potential,  negative  electrode  

Total_polarization     (EOCPpos-­‐EOCPneg)-­‐Ecell      Total  Polarization  Table  6:  Lithium  ion  cell  variables  used  in  model  

 

 

Page 61: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

60

Appendix  5:  Coolant  heat  capacity  interpolation  used  in  COMSOL  model    

This  is  the  coolant  heat  capacity  data  for  the  model.  The  data  was  given  by  Northvolt.  This  is  

the  file  “Coolant_Heat_Capacity.txt”  mentioned  in  the  modelling  instructions  in  Appendix  9.  

Temperature  [K]   Heat  Capacity  [J/(kg*K)]  255.4     3.27  277.6     3.33  299.9     3.41  322.1     3.48  344.3     3.56  Table  7:  Coolant  heat  capacity  interpolation  used  in  model  

 

 

Page 62: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

61

Appendix  6:  Coolant  density  interpolation  used  in  COMSOL  model    

This  is  the  coolant  heat  capacity  data  for  the  model.  The  data  was  given  by  Northvolt.  This  is  

the  file  “Coolant_Density.txt”  mentioned  in  the  modelling  instructions  in  Appendix  9.  

Temperature  [K]   Density  [kg/m3]  255.4     1160.6  277.6     1150.2  299.9     1138.3  322.1     1126.3  344.3     1114.6  Table  8:  Coolant  density  interpolation  used  in  model  

 

 

Page 63: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

62

Appendix  7:  Coolant  dynamic  viscosity  interpolation  used  in  COMSOL  model    

This  is  the  coolant  heat  capacity  data  for  the  model.  The  data  was  given  by  Northvolt.  This  is  

the  file  “Coolant_Dynamic_Viscosity.txt”  mentioned  in  the  modelling  instructions  in  

Appendix  9.  

 

Temperature  [K]   Dynamic  Viscosity  [Pa*s]  255.4     0.075906  277.6     0.017407  299.9     0.0064288  322.1     0.0031513  344.3     0.0018442  Table  9:  Coolant  dynamic  viscosity  interpolation  used  in  model  

 

 

Page 64: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

63

Appendix  8:  Coolant  thermal  conductivity  interpolation  used  in  COMSOL  model    

This  is  the  coolant  heat  capacity  data  for  the  model.  The  data  was  given  by  Northvolt.  This  is  

the  file  “Coolant_Thermal_Condictivity.txt”  mentioned  in  the  modelling  instructions  in  

Appendix  9.  

 

Temperature  [K]   Thermal  Conductivity  [W/(m*K)]  255.4     0.339  277.6     0.356  299.9     0.373  322.1     0.39  344.3     0.407  Table  10:  Coolant  thermal  conductivity  interpolation  used  in  model  

 

 

Page 65: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

64

Appendix  9:  Modelling  Instructions   These  instructions  are  heavily  based  on  1D  Lithium-­‐Ion  Battery  for  Thermal  Models  and  Thermal  Modeling  of  a  Cylindrical  Lithium-­‐ion  Battery  in  3D,  and  will  therefore  bear  several  similarities  to  them.  This  is  due  to  the  model  also  being  based  on  these  two  examples.  For  the  sake  of  clarity,  steps  that  were  conducted  identical  to  those  described  by  the  guides  were  also  described  identical  to  the  guides.        From  the  File  menu,  choose  New.    NEW  In  the  New  window,  click  Model  Wizard.    MODEL  WIZARD  

1.   In  the  Model  Wizard  window,  click  1D  2.   In  the  Select  Physics  tree,  select  Electrochemistry>Battery  Interface>Lithium-­‐Ion  

Battery  (liion).  3.   Click  Add.  4.   Click  Done.  

 GLOBAL  DEFINITIONS    Parameters  

1.   On  the  Home  toolbar,  click  Parameters  2.   In  the  Settings  window  for  Parameters,  locate  the  Parameters  section.    3.   Click  Load  from  File.    4.   Find  the  file  named  “5_Cell_NMC_Battery_Parameters.txt”  and  double-­‐click  it.  

 Interpolation  1  

1.   On  the  Home  toolbar,  click  to  create  Interpolation  1  2.   In  the  Settings  window  for  Interpolation  1,  click  to  change  Function  Name  to  

“driving”.  3.   Locate  the  Data  Source  selection.    4.   Select  File.    5.   Click  Browse  and  find  the  file  named  “Drive_cycle_1.txt”  and  double-­‐click  it.  

 Interpolation  2  

1.   On  the  Home  toolbar,  click  to  create  Interpolation  2  2.   In  the  Settings  window  for  Interpolation  2,  click  to  change  Function  Name  to  

“cpcoolant”.  3.   Locate  the  Data  Source  selection.    4.   Select  File.    5.   Click  Browse  and  find  the  file  named  “Coolant_Heat_Capacity.txt”  and  double-­‐

click  it.    

Page 66: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

65

Interpolation  3  1.   On  the  Home  toolbar,  click  to  create  Interpolation  3  2.   In  the  Settings  window  for  Interpolation  3,  click  to  change  Function  Name  to  

“rhocoolant”.  3.   Locate  the  Data  Source  selection.    4.   Select  File.    5.   Click  Browse  and  find  the  file  named  “Coolant_Density.txt”  and  double-­‐click  it.  

 Interpolation  4  

1.   On  the  Home  toolbar,  click  to  create  Interpolation  4  2.   In  the  Settings  window  for  Interpolation  4,  click  to  change  Function  Name  to  

“mucoolant”.  3.   Locate  the  Data  Source  selection.    4.   Select  File.    5.   Click  Browse  and  find  the  file  named  “Coolant_Dynamic_Viscosity.txt”  and  

double-­‐click  it.    Interpolation  5  

1.   On  the  Home  toolbar,  click  to  create  Interpolation  5  2.   In  the  Settings  window  for  Interpolation  5,  click  to  change  Function  Name  to  

“kcoolant”.  3.   Locate  the  Data  Source  selection.    4.   Select  File.    5.   Click  Browse  and  find  the  file  named  “Coolant_Thermal_Conductivity.txt”  and  

double-­‐click  it.    GEOMETRY  1    Interval  1  (i1))  

1.   On  the  Geometry  toolbar,  click  Interval.  2.   In  the  Settings  window  for  Interval,  locate  the  Interval  section.  3.   From  the  Number  of  intervals  list,  choose  Many.  4.   In  the  Points  text  field,  type  0,L_neg,L_neg+L_sep,L_neg+L_sep+L_pos.    5.   Click  Build  All  Objects.  6.   Click  the  Zoom  Extents  button  on  the  Graphics  toolbar.      

DEFINITIONS      Explicit  1    

1.   On  the  Definitions  toolbar,  click  Explicit.  2.   Select  Domain  1  only.  3.   Right-­‐click  Explicit  1  and  choose  Rename.  4.   In  the  Rename  Explicit  dialog  box,  type  Negative  Electrode  in  the  New  label  text  

field.    

Page 67: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

66

5.   Click  OK.      

Explicit  2    1.   On  the  Definitions  toolbar,  click  Explicit.  2.   Select  Domain  2  only.  3.   Right-­‐click  Explicit  2  and  choose  Rename.  4.   In  the  Rename  Explicit  dialog  box,  type  Separator  in  the  New  label  text  field.    5.   Click  OK.    

Explicit  3    1.   On  the  Definitions  toolbar,  click  Explicit.  2.   Select  Domain  3  only.  3.   Right-­‐click  Explicit  3  and  choose  Rename.  4.   In  the  Rename  Explicit  dialog  box,  type  Positive  Electrode  in  the  New  label  text  

field.    5.   Click  OK.      

ADD  MATERIAL  1.   On  the  Home  toolbar,  click  Add  Material  to  open  the  Add  Material  window.    2.   Go  to  the  Add  Material  window.  3.   In  the  tree,  select  Batteries  and  Fuel  Cells>Electrodes>Graphite  Electrode,  LixC6  

MCMB  (Negative,  Li-­‐ion  Battery).  4.   Click  Add  to  Component  in  the  window  toolbar.    5.   In  the  tree,  select  Batteries  and  Fuel  Cells>Electrolytes>  LiPF6  in  3:7  EC:EMC  

(Liquid  electrolyte,  Li-­‐ion  Battery).    6.   Click  Add  to  Component  in  the  window  toolbar.    7.   In  the  tree,  select  Batteries  and  Fuel  Cells>Electrodes>NMC  Electrode,  

LiNi1/3Mn1/3Co1/3O2  (Positive,  Li-­‐ion  Battery).  8.   Click  Add  to  Component  in  the  window  toolbar.    9.   On  the  Home  toolbar,  click  Add  Material  to  close  the  Add  Material  window.    

MATERIALS      Graphite  Electrode,  LixC6  MCMB  (Negative,  Li-­‐ion  Battery)  (mat1)    

1.   In  the  Model  Builder  window,  under  Component  1  (comp1)>Materials  click  Graphite  Electrode,  LixC6  MCMB  (Negative,  Li-­‐ion  Battery)  (mat1).    

2.   In  the  Settings  window  for  Material,  locate  the  Geometric  Entity  Selection  section.    

3.   From  the  Selection  list,  choose  Negative  Electrode.      LiPF6  in  3:7  EC:EMC  (Liquid  electrolyte,  Li-­‐ion  Battery)  (mat2)    

1.   In  the  Model  Builder  window,  under  Component  1  (comp1)>Materials  click  LiPF6  in  3:7  EC:EMC  (Liquid  electrolyte,  Li-­‐ion  Battery)  (mat2).    

2.   In  the  Settings  window  for  Material,  locate  the  Geometric  Entity  Selection  

Page 68: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

67

section.    3.   From  the  Selection  list,  choose  Separator.    NMC  Electrode,  LiNi1/3Mn1/3Co1/3O2  (Positive,  Li-­‐ion  Battery)  (mat3)    1.   In  the  Model  Builder  window,  under  Component1(comp1)>Materials  click  NMC  

Electrode,  LiNi1/3Mn1/3Co1/3O2  (Positive,  Li-­‐ion  Battery)  (mat3).    2.   In  the  Settings  window  for  Material,  locate  the  Geometric  Entity  Selection  

section.    3.   From  the  Selection  list,  choose  Positive  Electrode.  

 LITHIUM-­‐ION  BATTERY  (LIION)      Porous  Electrode  1    

1.   In  the  Model  Builder  window,  under  Component  1  (comp1)  right-­‐click  Lithium-­‐  Ion  Battery  (liion)  and  choose  Porous  Electrode.    

2.   In  the  Settings  window  for  Porous  Electrode,  locate  the  Domain  Selection  section.    

3.   From  the  Selection  list,  choose  Negative  Electrode.    4.   Locate  the  Model  Inputs  section.  In  the  T  text  field,  type  T.    5.   From  the  c  list,  choose  Electrolyte  salt  concentration  (liion).    6.   Locate  the  Electrolyte  Properties  section.  From  the  Electrolyte  material  list,  

choose  LiPF6  in  3:7  EC:EMC  (Liquid  electrolyte,  Li-­‐ion  Battery)  (mat2).    7.   Locate  the  Volume  Fractions  section.  In  the  εs  text  field,  type  epss_neg.    8.   In  the  εl  text  field,  type  epsl_neg.    

 Particle  Intercalation  1    1.   In  the  Model  Builder  window,  expand  the  Porous  Electrode  1  node,  then  click  

Particle  Intercalation  1.    2.    In  the  Settings  window  for  Particle  Intercalation,  locate  the  Species  Settings  

section.  3.   In  the  cs,  init  text  field,  type  cs0_neg.    4.   Locate  the  Particle  Transport  Properties  section.  In  the  rp  text  field,  type  rp_neg.    5.   Locate  the  Model  Input  section.  In  the  T  text  field,  type  T.    

 Porous  Electrode  Reaction  1    1.   In  the  Model  Builder  window,  under  Component  1  (comp1)>Lithium-­‐Ion  Battery  

(liion)>  Porous  Electrode  1  click  Porous  Electrode  Reaction  1.    2.   In  the  Settings  window  for  Porous  Electrode  Reaction,  locate  the  Equilibrium  

Potential  section.    3.   From  the  Eeq  list,  choose  From  material.    4.   From  the  dEeq/dT  list,  choose  From  material.    5.   Locate  the  Electrode  Kinetics  section.  In  the  ka  text  field,  type  k_neg.    6.   In  the  kc  text  field,  type  k_neg.    

Page 69: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

68

7.   Locate  the  Model  Input  section.  In  the  T  text  field,  type  T.    8.   From  the  c  list,  choose  Insertion  particle  concentration,  surface  (liion).    

 Porous  Electrode  2    1.   In  the  Model  Builder  window,  under  Component  1  (comp1)>Lithium-­‐Ion  Battery  

(liion)  right-­‐click  Porous  Electrode  1  and  choose  Porous  Matrix  Double  Layer  Capacitance.    

2.   Right-­‐click  Lithium-­‐Ion  Battery  (liion)  and  choose  Porous  Electrode.    3.   In  the  Settings  window  for  Porous  Electrode,  locate  the  Domain  Selection  section.  4.   From  the  Selection  list,  choose  Positive  Electrode.    5.   Locate  the  Model  Inputs  section.  In  the  T  text  field,  type  T.    6.   From  the  c  list,  choose  Electrolyte  salt  concentration  (liion).    7.   Locate  the  Electrolyte  Properties  section.  From  the  Electrolyte  material  list,  

choose  LiPF6  in  3:7  EC:EMC  (Liquid  electrolyte,  Li-­‐ion  Battery)  (mat2).    8.   Locate  the  Volume  Fractions  section.  In  the  εs  text  field,  type  epss_pos.    9.   In  the  εl  text  field,  type  epsl_pos.    

 Particle  Intercalation  1    

1.   In  the  Model  Builder  window,  expand  the  Porous  Electrode  2  node,  then  click  Particle  Intercalation  1.    

2.   In  the  Settings  window  for  Particle  Intercalation,  locate  the  Species  Settings  section.    

3.   In  the  cs,  init  text  field,  type  cs0_pos.  4.   Locate  the  Particle  Transport  Properties  section.  In  the  rp  text  field,  type  rp_pos.    5.   Locate  the  Model  Input  section.  In  the  T  text  field,  type  T.    

 Porous  Electrode  Reaction  1    1.   In  the  Model  Builder  window,  under  Component  1  (comp1)>Lithium-­‐Ion  Battery  

(liion)>  Porous  Electrode  2  click  Porous  Electrode  Reaction  1.    2.   In  the  Settings  window  for  Porous  Electrode  Reaction,  locate  the  Equilibrium  

Potential  section.    3.    From  the  Eeq  list,  choose  From  material.    4.    From  the  dEeq/dT  list,  choose  From  material.    5.   Locate  the  Electrode  Kinetics  section.  In  the  ka  text  field,  type  k_pos.    6.   In  the  kc  text  field,  type  k_pos.    7.   Locate  the  Model  Input  section.  In  the  T  text  field,  type  T.    8.   From  the  c  list,  choose  Insertion  particle  concentration,  surface  (liion).    

 Separator  1    1.   In  the  Model  Builder  window,  under  Component  1  (comp1)>Lithium-­‐Ion  Battery  

(liion)  right-­‐click  Porous  Electrode  2  and  choose  Porous  Matrix  Double  Layer  Capacitance.    

Page 70: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

69

2.   Right-­‐click  Lithium-­‐Ion  Battery  (liion)  and  choose  Separator.    3.   In  the  Settings  window  for  Separator,  locate  the  Domain  Selection  section.    4.   From  the  Selection  list,  choose  Separator.    5.   Locate  the  Model  Input  section.  In  the  T  text  field,  type  T.    6.   From  the  c  list,  choose  Electrolyte  salt  concentration  (liion).    7.   Locate  the  Electrolyte  Properties  section.  From  the  Electrolyte  material  list,  

choose  LiPF6  in  3:7  EC:EMC  (Liquid  electrolyte,  Li-­‐ion  Battery)  (mat2).    8.   Locate  the  Electrolyte  Volume  Fraction  section.  In  the  εl  text  field,  type  epsl_sep.    

 Electric  Ground  1    

1.   Right-­‐click  Lithium-­‐Ion  Battery  (liion)  and  choose  Electrode>Electric  Ground.    2.   Select  Boundary  1  only.    

 Electrode  Current  1    1.   Right-­‐click  Lithium-­‐Ion  Battery  (liion)  and  choose  Electrode>Electrode  Current.    2.   Select  Boundary  4  only.    3.   In  the  Settings  window  for  Electrode  Current  Density,  locate  the  Electrode  Current  

section.    4.   In  the  is,  total  text  field,  type  i_app.    

 Initial  Values  2    1.   Right-­‐click  Lithium-­‐Ion  Battery  (liion)  and  choose  Initial  Values.    2.   In  the  Settings  window  for  Initial  Values,  locate  the  Domain  Selection  section.    3.   From  the  Selection  list,  choose  Positive  Electrode.    4.   Locate  the  Initial  Values  section.  In  the  phil  text  field,  type  -­‐  

mat1.elpot.Eeq_int1(cs0_neg/mat1.elpot.cEeqref).    5.   In  the  cl  text  field,  type  cl_0.    6.   In  the  phis  text  field,  type  mat3.elpot.Eeq_int1(cs0_pos/mat3.elpot.cEeqref)-­‐

mat1.elpot.Eeq_int1(cs0_neg/mat1.elpot.cEeqref).      

Initial  Values  1    1.   In  the  Model  Builder  window,  under  Component  1  (comp1)>Lithium-­‐Ion  Battery  

(liion)  click  Initial  Values  1.    2.   In  the  Settings  window  for  Initial  Values,  locate  the  Initial  Values  section.    3.   In  the  phil  text  field,  type  -­‐mat1.elpot.Eeq_int1(cs0_neg/mat3.elpot.cEeqref).    4.   In  the  cl  text  field,  type  cl_0.    

 DEFINITIONS      Variables  1    

1.   On  the  Home  toolbar,  click  Variables  and  choose  Local  Variables.    2.   In  the  Settings  window  for  Variables,  locate  the  Load  From  File.    3.   Click  it  and  and  find  the  file  named  “Variables1liion.txt”  and  double-­‐click  it.  

 

Page 71: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

70

Domain  Point  Probe  1    1.   On  the  Definitions  toolbar,  click  Probes  and  choose  Domain  Point  Probe.    2.   In  the  Settings  window  for  Domain  Point  Probe,  locate  the  Point  Selection  section.  3.   In  row  Coordinate,  set  x  to  L_neg+L_sep+L_neg.    4.   Select  the  Snap  to  closest  point  check  box.    5.   In  the  Model  Builder  window,  expand  the  Domain  Point  Probe  1  node,  then  click  

Point  Probe  Expression  1  (ppb1).    6.   In  the  Settings  window  for  Point  Probe  Expression,  type  CellVoltageProbe  in  the  

Variable  name  text  field.    7.   Click  Replace  Expression  in  the  upper-­‐right  corner  of  the  Expression  section.  From  

the  menu,  choose  Component  1  (comp1)>Lithium-­‐Ion  Battery>phis  -­‐  Electric  potential.    

8.   Click  to  expand  the  Table  and  window  settings  section.  Locate  the  Table  and  Window  Settings  section.  Click  Plot  window.    

 Global  Variable  Probe  1    1.   On  the  Definitions  toolbar,  click  Probes  and  choose  Global  Variable  Probe.  2.   In  the  Settings  window  for  Global  Variable  Probe,  type  CRate  in  the  Variable  name  

text  field.    3.   Locate  the  Expression  section.  In  the  Expression  text  field,  type  i_app/i_1C.    4.   Click  to  expand  the  Table  and  window  settings  section.  Locate  the  Table  and  

Window  Settings  section.  From  the  Plot  window  list,  choose  Probe  Plot  1.      Global  Variable  Probe  2    1.   On  the  Definitions  toolbar,  click  Probes  and  choose  Global  Variable  Probe.  2.   In  the  Settings  window  for  Global  Variable  Probe,  type  InternalResistance  in  the  

Variable  name  text  field.    3.   Locate  the  Expression  section.  In  the  Expression  text  field,  type  -­‐

(Total_polarization/i_app*(i_app>i_1C_c)+Total_polarization/i_app*(-­‐i_1C_c>i_app)).    4.   In  the  Table  and  plot  unit  text  field,  type  Ω.  5.   In  the  Description  text  field,  type  Internal  Resistance.  6.   Click  to  expand  the  Table  and  window  settings  section.  Locate  the  Table  and  

Window  Settings  section.  From  the  Plot  window  list,  click  plus  to  add  Probe  Plot  2.    

Global  Variable  Probe  3    1.   On  the  Definitions  toolbar,  click  Probes  and  choose  Global  Variable  Probe.  2.   In  the  Settings  window  for  Global  Variable  Probe,  type  irrevv  in  the  Variable  name  

text  field.    3.   Locate  the  Expression  section.  In  the  Expression  text  field,  type  

intop2(liion.Qirrevv_per1)*A_cell.  4.   In  the  Table  and  plot  unit  text  field,  type  W.  5.   In  the  Description  text  field,  type  Irreversible  Heat.  6.   Click  to  expand  the  Table  and  window  settings  section.  Locate  the  Table  and  

Window  Settings  section.  From  the  Plot  window  list,  click  plus  to  add  Probe  Plot  3.  

Page 72: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

71

 Global  Variable  Probe  4    1.   On  the  Definitions  toolbar,  click  Probes  and  choose  Global  Variable  Probe.  2.   In  the  Settings  window  for  Global  Variable  Probe,  type  revv  in  the  Variable  name  

text  field.    3.   Locate  the  Expression  section.  In  the  Expression  text  field,  type  

intop2(liion.Qirrevv_per1)*A_cell.  4.   In  the  Table  and  plot  unit  text  field,  type  W.  5.   In  the  Description  text  field,  type  Reversible  Heat.  6.   Click  to  expand  the  Table  and  window  settings  section.  Locate  the  Table  and  

Window  Settings  section.  From  the  Plot  window  list,  choose  Probe  Plot  3.    Average  1  (aveop1)  1.   On  the  Definitions  toolbar,  click  Component  Couplings  and  choose  Average.  2.   In  the  Settings  window  for  Average,  locate  Source  Selection  text  field.    3.   Select  All  domains.  

 Integration  1    1.   On  the  Definitions  toolbar,  click  Component  Couplings  and  choose  Integration.  2.   In  the  Settings  window  for  Integration,  type  pos_cc  in  the  Operator  name  text  

field.  3.   Locate  Source  Selection  text  field.    4.   Change  Geometric  entity  level  to  Boundary.  5.   Select  Boundary  4  only.  

 Integration  2    1.   On  the  Definitions  toolbar,  click  Component  Couplings  and  choose  Integration.  2.   Locate  Source  Selection  text  field.    3.   Select  Domain  1  and  3  only.  

 Integration  3    1.   On  the  Definitions  toolbar,  click  Component  Couplings  and  choose  Integration.  2.   Locate  Source  Selection  text  field.    3.   Select  All  domains.  

 ROOT  On  the  Home  toolbar,  click  Component  and  choose  Add  Component>3D.      COMPONENT  2  (COMP2)  In  the  Model  Builder  window,  click  Component  2  (comp2).      ADD  PHYSICS  

1.   On  the  Home  toolbar,  click  Add  Physics  to  open  the  Add  Physics  window.    2.   Go  to  the  Add  Physics  window.  

Page 73: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

72

3.   In  the  tree,  select  Heat  Transfer>Conjugate  Heat  Transfer>Laminar  Flow.    4.   Click  Add  to  Component  in  the  window  toolbar.  5.   On  the  Home  toolbar,  click  Add  Physics  to  close  the  Add  Physics  window.    

 GEOMETRY  2    Import  1  

1.   On  the  Geometry  toolbar,  click  Import.  2.   In  the  Settings  window  for  Import,  locate  Import  section.  3.   From  the  Source  list,  select  3D  CAD  file.  4.   Click  Browse  and  select  the  file  FiveCellsCooling.STEP  5.   Click  Import.  

 Rotate  1  

1.   On  the  Geometry  toolbar,  click  Transforms  and  choose  Rotate.  2.   In  the  Settings  window  for  Rotate,  locate  the  Input  objects  section.  3.   Press  ctrl+A  to  select  all  objects.  4.   Locate  the  Rotation  Angle  section,  in  the  Rotation  text  field,  type  90.  5.   Locate  the  Axis  of  Rotation  section,  select  x-­‐axis  from  the  Axis  type  list.  

 Move  1  

1.   On  the  Geometry  toolbar,  click  Transforms  and  choose  Move.  2.   In  the  Settings  window  for  Move,  locate  the  Input  objects  section.  3.   Press  ctrl+A  to  select  all  objects.  4.   Locate  the  Displacement  section,  in  the  x  text  field,  type  54  5.   In  the  y  text  field  type  31  6.   In  the  z  text  field  type  -­‐12  

 Work  Plane  1  

1.   On  the  Geometry  toolbar,  click  Work  Plane.  2.   In  the  Settings  window  for  Work  Plane,  locate  the  Plane  definition  section.  3.   In  the  Plane  type  list,  select  Edge  parallel.  4.   In  Planar  curved  edge,  find  and  select  mov1(23)  339,  on  the  top  right  side  curve  

of  the  cooling  case  in  the  model.      

Partition  Domains  1  1.   On  the  Geometry  toolbar,  click  Booleans  and  Partitions  and  choose  Partition  

Domains.  2.   In  the  Settings  window  for  Partition  Domains,  locate  the  Partition  Domains  

section.  3.   In  the  Work  plane  list,  select  Work  Plane  1  (wp1).  4.   In  Domains  to  Partition,  select  all  cylinders,  so  that  they  appear  as  mov1(1)-­‐

mov1(5)  in  the  field.      

Page 74: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

73

Work  Plane  2  1.   On  the  Geometry  toolbar,  click  Work  Plane.  2.   In  the  Settings  window  for  Work  Plane,  locate  the  Plane  definition  section.  3.   In  the  Plane  type  list,  select  Edge  parallel.  4.   In  Planar  curved  edge,  find  and  select  mov1(23)  337,  on  the  bottom  right  side  

curve  of  the  cooling  case  in  the  model.      

Partition  Domains  2  1.   On  the  Geometry  toolbar,  click  Booleans  and  Partitions  and  choose  Partition  

Domains.  2.   In  the  Settings  window  for  Partition  Domains,  locate  the  Partition  Domains  

section.  3.   In  the  Work  plane  list,  select  Work  Plane  2  (wp2).  4.   In  Domains  to  Partition,  select  all  cylinders,  so  that  they  appear  as  pard1(1)-­‐

pard1(5)  1  in  the  field.      

Partition  Domains  3  1.   On  the  Geometry  toolbar,  click  Booleans  and  Partitions  and  choose  Partition  

Domains.  2.   In  the  Settings  window  for  Partition  Domains,  locate  the  Partition  Domains  

section.  3.   In  the  Partition  with  list,  select  Extended  faces.  4.   In  Domains  to  Partition,  select  the  bottom  part  of  all  cylinders,  so  that  they  

appear  as  pard2(1)-­‐pard2(5)  1  in  the  field.    5.   In  Planar,  cylindrical,  or  spherical  faces,  select  the  top  surface  of  the  bottom  

right  clamshell  circles,  so  that  they  appear  as  mov1(24)  21  in  the  field.      

Partition  Domains  4  1.   On  the  Geometry  toolbar,  click  Booleans  and  Partitions  and  choose  Partition  

Domains.  2.   In  the  Settings  window  for  Partition  Domains,  locate  the  Partition  Domains  

section.  3.   In  the  Partition  with  list,  select  Extended  faces.  4.   In  Domains  to  Partition,  select  the  top  part  of  all  cylinders,  so  that  they  appear  

as  pard3(1)-­‐pard3(5)  4  in  the  field.    5.   In  Planar,  cylindrical,  or  spherical  faces,  select  the  top  surface  of  the  top  right  

clamshell  circles,  so  that  they  appear  as  mov1(25)  21  in  the  field.      

Partition  Domains  5  1.   On  the  Geometry  toolbar,  click  Booleans  and  Partitions  and  choose  Partition  

Domains.  2.   In  the  Settings  window  for  Partition  Domains,  locate  the  Partition  Domains  

section.  3.   In  the  Partition  with  list,  select  Extended  faces.  

Page 75: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

74

4.   In  Domains  to  Partition,  select  the  top  clamshell,  so  that  it  appears  as  mov1(25)  1  in  the  field.    

5.   In  Planar,  cylindrical,  or  spherical  faces,  select  the  inside  surface  of  the  top  clamshell,  so  that  it  appears  as  mov1(25)  3  in  the  field.      

Partition  Domains  6  1.   On  the  Geometry  toolbar,  click  Booleans  and  Partitions  and  choose  Partition  

Domains.  2.   In  the  Settings  window  for  Partition  Domains,  locate  the  Partition  Domains  

section.  3.   In  the  Partition  with  list,  select  Extended  faces.  4.   In  Domains  to  Partition,  select  the  bottom  clamshell,  so  that  it  appears  as  

mov1(24)  1  in  the  field.    5.   In  Planar,  cylindrical,  or  spherical  faces,  select  the  inside  surface  of  the  bottom  

clamshell,  so  that  it  appears  as  mov1(24)  4  in  the  field.      Ignore  Faces  1  

1.   On  the  Geometry  toolbar,  click  Virtual  Operations  and  choose  Remove  Details.  2.   On  the  Geometry  toolbar,  click  Virtual  Operations  and  choose  Ignore  Faces.  3.   In  the  Settings  window  for  Ignore  Faces,  locate  the  Input  section.  4.   Click  Paste  Selection  and  add  the  following  faces:  200,  204,  208,  212,  216,  220,  

224,  228,  700,  704,  708,  712,  716,  720,  724,  728.      DEFINITIONS      Explicit  4    

1.   On  the  Definitions  toolbar,  click  Explicit.  2.   In  the  Model  Builder  window,  right-­‐click  Explicit  4  and  choose  Rename.  3.   In  the  Rename  Explicit  dialog  box,  type  Flow  Compartment  in  the  New  label  text  

field.    4.   Click  OK.  5.   Select  Domains  17-­‐24.    

 Explicit  5    

1.   On  the  Definitions  toolbar,  click  Explicit.  2.   In  the  Model  Builder  window,  right-­‐click  Explicit  5  and  choose  Rename.  3.   In  the  Rename  Explicit  dialog  box,  type  Active  Battery  Material  in  the  New  label  

text  field.    4.   Click  OK.  5.   Select  Domains  5-­‐14,  27-­‐41.    

 Explicit  6    

1.   On  the  Definitions  toolbar,  click  Explicit.  

Page 76: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

75

2.   In  the  Model  Builder  window,  right-­‐click  Explicit  6  and  choose  Rename.  3.   In  the  Rename  Explicit  dialog  box,  type  TIM  in  the  New  label  text  field.    4.   Click  OK.  5.   Select  Domain  15  only.  

 Explicit  7    

1.   On  the  Definitions  toolbar,  click  Explicit.  2.   In  the  Model  Builder  window,  right-­‐click  Explicit  7  and  choose  Rename.  3.   In  the  Rename  Explicit  dialog  box,  type  Cooling  Tube  in  the  New  label  text  field.    4.   Click  OK.  5.   Select  Domain  16  only.    

 Explicit  8    

1.   On  the  Definitions  toolbar,  click  Explicit.  2.   In  the  Model  Builder  window,  right-­‐click  Explicit  8  and  choose  Rename.  3.   In  the  Rename  Explicit  dialog  box,  type  Inlet  in  the  New  label  text  field.    4.   Click  OK.  5.   In  the  Settings  window  for  Explicit,  locate  the  Input  Entities  section.  6.   From  the  Geometric  entity  level  list,  choose  Boundary.  7.   Select  Boundaries  223-­‐230.    

 Explicit  9    

1.   On  the  Definitions  toolbar,  click  Explicit.  2.   In  the  Model  Builder  window,  right-­‐click  Explicit  8  and  choose  Rename.  3.   In  the  Rename  Explicit  dialog  box,  type  Outlet  in  the  New  label  text  field.    4.   Click  OK.  5.   In  the  Settings  window  for  Explicit,  locate  the  Input  Entities  section.  6.   From  the  Geometric  entity  level  list,  choose  Boundary.  7.   Select  Boundaries  596,  600,  604,  608,  612,  616,  620,  624.    

 Explicit  10    

1.   On  the  Definitions  toolbar,  click  Explicit.  2.   In  the  Model  Builder  window,  right-­‐click  Explicit  10  and  choose  Rename.  3.   In  the  Rename  Explicit  dialog  box,  type  Clamshells  in  the  New  label  text  field.    4.   Click  OK.  5.   Select  Domains  1-­‐4,  25-­‐26.    

 Explicit  11  

1.   On  the  Definitions  toolbar,  click  Explicit.  2.   In  the  Model  Builder  window,  right-­‐click  Explicit  11  and  choose  Rename.  3.   In  the  Rename  Explicit  dialog  box,  type  Cell  1  in  the  New  label  text  field.    4.   Click  OK.  

Page 77: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

76

5.   Select  Domains  35-­‐38,  41.      Explicit  12  

1.   On  the  Definitions  toolbar,  click  Explicit.  2.   In  the  Model  Builder  window,  right-­‐click  Explicit  12  and  choose  Rename.  3.   In  the  Rename  Explicit  dialog  box,  type  Cell  2  in  the  New  label  text  field.    4.   Click  OK.  5.   Select  Domains  9-­‐12,  14.    

 Explicit  13  

1.   On  the  Definitions  toolbar,  click  Explicit.  2.   In  the  Model  Builder  window,  right-­‐click  Explicit  13  and  choose  Rename.  3.   In  the  Rename  Explicit  dialog  box,  type  Cell  3  in  the  New  label  text  field.    4.   Click  OK.  5.   Select  Domains  31-­‐34,  40.    

 Explicit  14  

1.   On  the  Definitions  toolbar,  click  Explicit.  2.   In  the  Model  Builder  window,  right-­‐click  Explicit  14  and  choose  Rename.  3.   In  the  Rename  Explicit  dialog  box,  type  Cell  4  in  the  New  label  text  field.    4.   Click  OK.  5.   Select  Domains  5-­‐8,  13.    

 Explicit  15  

1.   On  the  Definitions  toolbar,  click  Explicit.  2.   In  the  Model  Builder  window,  right-­‐click  Explicit  15  and  choose  Rename.  3.   In  the  Rename  Explicit  dialog  box,  type  Cell  5  in  the  New  label  text  field.    4.   Click  OK.  5.   Select  Domains  27-­‐30,  39.  

 Average  2  (aveop2)    Define  a  component  coupling  operator  for  the  average  temperature  in  the  active  battery  material  of  the  3D  thermal  model  to  use  in  the  1D  battery  model.    

1.   On  the  Definitions  toolbar,  click  Component  Couplings  and  choose  Average.    2.   In  the  Settings  window  for  Average,  locate  the  Source  Selection  section.  3.   From  the  Geometric  entity  level  list,  choose  Domain.  4.   From  the  Selection  list,  choose  Active  Battery  Material.    

 Variables  2    

1.   On  the  Definitions  toolbar,  click  Local  Variables.  2.   In  the  Settings  window  for  Variables,  locate  the  Variables  section.    3.   In  the  table,  enter  the  following  settings:    

 

Page 78: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

77

Name   Expression     Unit     Description  Qh   nojac(comp1.aveop2(comp1  

.liion.Qh))*(L_neg+  L_sep+L_pos)/L_batt*  ((r_batt-­‐d_can)^2-­‐  r_mandrel^2)*(h_batt-­‐  d_can*2)/((r_batt^2-­‐  r_mandrel^2)*h_batt)  

W/m3    

Average  heat  source  from  1d  battery  model  

r   sqrt(x^2+y^2)   m     radius    Domain  Probe  1  (dom1)    1.   On  the  Definitions  toolbar,  click  Probes  and  choose  Domain  Probe.    2.   In  the  Settings  window  for  Domain  Probe,  type  MeanT  in  the  Variable  name  text  

field.    3.   Locate  the  Source  Selection  section.  From  the  Selection  list,  choose  Active  Battery  

Material.    4.   Locate  the  Expression  section.  In  the  Expression  text  field,  type  T-­‐T_inlet.    5.   Click  to  expand  the  Table  and  window  settings  section.  Locate  the  Table  and  

Window  Settings  section.  From  the  Plot  window  list,  click  plus  to  add  Probe  Plot  4.      Domain  Probe  1  (dom1)    1.   On  the  Definitions  toolbar,  click  Probes  and  choose  Domain  Probe.    2.   In  the  Settings  window  for  Domain  Probe,  locate  the  Probe  Type  section.  3.   From  the  Type  list,  choose  Maximum  4.   In  the  Variable  name  text  field,  type  MaxT    5.   Locate  the  Source  Selection  section.  From  the  Selection  list,  choose  Active  Battery  

Material.    6.   Locate  the  Expression  section.  In  the  Expression  text  field,  type  T-­‐T_inlet.    7.   Click  to  expand  the  Table  and  window  settings  section.  Locate  the  Table  and  

Window  Settings  section.  From  the  Plot  window  list,  choose  Probe  Plot  4.      Domain  Probe  1  (dom1)    1.   On  the  Definitions  toolbar,  click  Probes  and  choose  Domain  Probe.    2.   In  the  Settings  window  for  Domain  Probe,  locate  the  Probe  Type  section.  3.   From  the  Type  list,  choose  Minimum  4.   In  the  Variable  name  text  field,  type  MinT    5.   Locate  the  Source  Selection  section.  From  the  Selection  list,  choose  Active  Battery  

Material.    6.   Locate  the  Expression  section.  In  the  Expression  text  field,  type  T-­‐T_inlet.    7.   Click  to  expand  the  Table  and  window  settings  section.  Locate  the  Table  and  

Window  Settings  section.  From  the  Plot  window  list,  choose  Probe  Plot  4.    

Page 79: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

78

 ADD  MATERIAL  

1.   On  the  Home  toolbar,  Click  Blank  Material.  Repeat  so  that  you  have  three  blank  materials.  

2.   On  the  Home  toolbar,  click  Add  Material  to  open  the  Add  Material  window.    3.   Go  to  the  Add  Material  window.  4.   In  the  tree,  select  Material  Library  >Miscellaneous  

Polymers>Polycarbomate>Polycarbonate  [solid].  5.   Click  Add  to  Component  in  the  window  toolbar.    6.   On  the  Home  toolbar,  click  Add  Material  to  close  the  Add  Material  window.  

 MATERIALS      Material  4  (mat4)    

1.   In  the  Model  Builder  window,  under  Component  2  (comp2)>Materials  click  Material  4  (mat4).    

2.   In  the  Settings  window  for  Material,  type  TIM  in  the  Label  field.  3.   Locate  the  Geometric  Entity  Selection  section.    4.   From  the  Selection  list,  choose  TIM.    5.   Locate  the  Material  Contents  section.    6.   For  Heat  capacity  at  constant  pressure,  input  cptim  as  value.  7.   For  Density,  input  2300[kg/m^3]  as  value.  8.   For  Thermal  condictivity,  input  1.2  [W/(m*K)]  as  value.    

Material  5  (mat5)    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)>Materials  click  

Material  5  (mat5).    2.   In  the  Settings  window  for  Material,  type  Cooling  Tube  Material  (A3102)  in  the  

Label  field.  3.   Locate  the  Geometric  Entity  Selection  section.    4.   From  the  Selection  list,  choose  Cooling  Tube.    5.   Locate  the  Material  Contents  section.    6.   For  Heat  capacity  at  constant  pressure,  input  900[J/(kg*K)]  as  value.  7.   For  Density,  input  2710[kg/m^3]  as  value.  8.   For  Thermal  condictivity,  input  238  [W/(m*K)]  as  value.  

 Material  6  (mat6)    

1.   In  the  Model  Builder  window,  under  Component  2  (comp2)>Materials  click  Material  6  (mat6).    

2.   In  the  Settings  window  for  Material,  type  Coolant  in  the  Label  field.  3.   Locate  the  Geometric  Entity  Selection  section.    4.   From  the  Selection  list,  choose  Flow  Compartment.    5.   Locate  the  Material  Contents  section.    6.   For  Heat  capacity  at  constant  pressure,  input  cpcoolant  as  value.  

Page 80: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

79

7.   For  Density,  input  rhocoolant  as  value.  8.   For  Thermal  condictivity,  input  kcoolant  as  value.  9.   For  Dynamic  Viscosity,  input  mucoolant  as  value.  10.  For  Ratio  of  specific  heats,  input  1  as  value.  

 Polycarbonate  [solid]  (mat7)    

1.   In  the  Model  Builder  window,  under  Component  2  (comp2)>Materials  click  Polycarbonate  [solid]  (mat7).    

2.   In  the  Settings  window  for  Material,  locate  the  Geometric  Entity  Selection  section.    

3.   From  the  Selection  list,  choose  Clamshells.      DEFINITIONS      Add  a  cylindrical  coordinate  system  to  handle  the  orthotropic  thermal  conductivity  in  the  active  battery  material.    Cylindrical  System  2  (sys2)    

1.   On  the  Definitions  toolbar,  click  Coordinate  Systems  and  choose  Cylindrical  System.    

2.   In  the  Settings  window  for  Cylindrical  System  2,  locate  the  Origin  section.  3.   For  x  input  39.373[mm]  4.   For  y  input  -­‐60.644[mm]  5.   For  z  input  35.190[mm]  

 Cylindrical  System  3  (sys3)    

1.   On  the  Definitions  toolbar,  click  Coordinate  Systems  and  choose  Cylindrical  System.    

2.   In  the  Settings  window  for  Cylindrical  System  3,  locate  the  Origin  section.  3.   For  x  input  14.859[mm]  4.   For  y  input  -­‐49.425[mm]  5.   For  z  input  35.190[mm]  

 Cylindrical  System  4  (sys4)    

1.   On  the  Definitions  toolbar,  click  Coordinate  Systems  and  choose  Cylindrical  System.    

2.   In  the  Settings  window  for  Cylindrical  System  4,  locate  the  Origin  section.  3.   For  x  input  39.344[mm]  4.   For  y  input  -­‐38.144[mm]  5.   For  z  input  35.190[mm]  

 Cylindrical  System  5  (sys5)    

1.   On  the  Definitions  toolbar,  click  Coordinate  Systems  and  choose  Cylindrical  System.    

2.   In  the  Settings  window  for  Cylindrical  System  5,  locate  the  Origin  section.  

Page 81: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

80

3.   For  x  input  14.830[mm]  4.   For  y  input  -­‐26.925[mm]  5.   For  z  input  35.190[mm]  

 Cylindrical  System  6  (sys6)    

1.   On  the  Definitions  toolbar,  click  Coordinate  Systems  and  choose  Cylindrical  System.    

2.   In  the  Settings  window  for  Cylindrical  System  6,  locate  the  Origin  section.  3.   For  x  input  39.315[mm]  4.   For  y  input  -­‐15.644[mm]  5.   For  z  input  35.190[mm]  

 HEAT  TRANSFER  (HT)      Solid  2    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Heat  

Transfer  (ht)  and  choose  Solid.    2.   In  the  Settings  window  for  Solid,  locate  the  Domain  Selection  section.    3.   From  the  Selection  list,  choose  Cell  1.  4.   Locate  the  Coordinate  System  Selection  section.  From  the  Coordinate  system  

list,  choose  Cylindrical  System  2  (sys2).    5.   Locate  the  Heat  Conduction,  Solid  section.  From  the  k  list,  choose  User  defined.  

From  the  list,  choose  Diagonal.    6.   In  the  k  table,  enter  the  following  settings:    

kT_batt_r   0     0  0   kT_batt_ang     0  0   0     kT_batt_ang  

 7.   Locate  the  Thermodynamics,  Solid  section.  From  the  ρ  list,  choose  User  

defined.  In  the  associated  text  field,  type  rho_batt.    8.   From  the  Cp  list,  choose  User  defined.  In  the  associated  text  field,  type  Cp_batt.    

 Solid  3    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Heat  

Transfer  (ht)  and  choose  Solid.    2.   In  the  Settings  window  for  Solid,  locate  the  Domain  Selection  section.    3.   From  the  Selection  list,  choose  Cell  2.  4.   Locate  the  Coordinate  System  Selection  section.  From  the  Coordinate  system  

list,  choose  Cylindrical  System  3  (sys3).    5.   Locate  the  Heat  Conduction,  Solid  section.  From  the  k  list,  choose  User  defined.  

From  the  list,  choose  Diagonal.    6.   In  the  k  table,  enter  the  following  settings:  

 

Page 82: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

81

kT_batt_r   0     0  0   kT_batt_ang     0  0   0     kT_batt_ang  

 7.   Locate  the  Thermodynamics,  Solid  section.  From  the  ρ  list,  choose  User  

defined.  In  the  associated  text  field,  type  rho_batt.    8.   From  the  Cp  list,  choose  User  defined.  In  the  associated  text  field,  type  Cp_batt.  

 Solid  4    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Heat  

Transfer  (ht)  and  choose  Solid.    2.   In  the  Settings  window  for  Solid,  locate  the  Domain  Selection  section.    3.   From  the  Selection  list,  choose  Cell  3.  4.   Locate  the  Coordinate  System  Selection  section.  From  the  Coordinate  system  

list,  choose  Cylindrical  System  4  (sys4).    5.   Locate  the  Heat  Conduction,  Solid  section.  From  the  k  list,  choose  User  defined.  

From  the  list,  choose  Diagonal.    6.   In  the  k  table,  enter  the  following  settings:    

kT_batt_r   0     0  0   kT_batt_ang     0  0   0     kT_batt_ang  

 7.   Locate  the  Thermodynamics,  Solid  section.  From  the  ρ  list,  choose  User  

defined.  In  the  associated  text  field,  type  rho_batt.    8.   From  the  Cp  list,  choose  User  defined.  In  the  associated  text  field,  type  Cp_batt.    

 Solid  5    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Heat  

Transfer  (ht)  and  choose  Solid.    2.   In  the  Settings  window  for  Solid,  locate  the  Domain  Selection  section.    3.   From  the  Selection  list,  choose  Cell  4.  4.   Locate  the  Coordinate  System  Selection  section.  From  the  Coordinate  system  

list,  choose  Cylindrical  System  5  (sys5).    5.   Locate  the  Heat  Conduction,  Solid  section.  From  the  k  list,  choose  User  defined.  

From  the  list,  choose  Diagonal.    6.   In  the  k  table,  enter  the  following  settings:    

kT_batt_r   0     0  0   kT_batt_ang     0  0   0     kT_batt_ang  

 7.   Locate  the  Thermodynamics,  Solid  section.  From  the  ρ  list,  choose  User  

defined.  In  the  associated  text  field,  type  rho_batt.    

Page 83: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

82

8.   From  the  Cp  list,  choose  User  defined.  In  the  associated  text  field,  type  Cp_batt      Solid  6    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Heat  

Transfer  (ht)  and  choose  Solid.    2.   In  the  Settings  window  for  Solid,  locate  the  Domain  Selection  section.    3.   From  the  Selection  list,  choose  Cell  5.  4.   Locate  the  Coordinate  System  Selection  section.  From  the  Coordinate  system  

list,  choose  Cylindrical  System  6  (sys6).    5.   Locate  the  Heat  Conduction,  Solid  section.  From  the  k  list,  choose  User  defined.  

From  the  list,  choose  Diagonal.    6.   In  the  k  table,  enter  the  following  settings:    

kT_batt_r   0     0  0   kT_batt_ang     0  0   0     kT_batt_ang  

 7.   Locate  the  Thermodynamics,  Solid  section.  From  the  ρ  list,  choose  User  

defined.  In  the  associated  text  field,  type  rho_batt.    8.   From  the  Cp  list,  choose  User  defined.  In  the  associated  text  field,  type  Cp_batt    

 Heat  Source  1    

1.   In  the  Model  Builder  window,  right-­‐click  Heat  Transfer  (ht)  and  choose  Heat  Source.    

2.   In  the  Settings  window  for  Heat  Source,  locate  the  Domain  Selection  section.  3.   From  the  Selection  list,  choose  Active  Battery  Material.  4.   Locate  the  Heat  Source  section.  In  the  Q0  text  field,  type  Qh.    

 LAMINAR  FLOW  (SPF)  

1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  click  Laminar  Flow  (spf).    

2.   In  the  Settings  window  for  Laminar  Flow,  locate  the  Domain  Selection  section.  3.   From  the  Selection  list,  choose  Flow  Compartment.    

 HEAT  TRANSFER  (HT)  On  the  Physics  toolbar,  click  Laminar  Flow  (spf)  and  choose  Heat  Transfer  (ht).      Fluid  1    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)>Heat  Transfer  (ht)  click  

Fluid  1.    2.    In  the  Settings  window  for  Fluid,  locate  the  Domain  Selection  section.    3.   From  the  Selection  list,  choose  Flow  Compartment.    

 

Page 84: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

83

Temperature  1    1.   In  the  Model  Builder  window,  right-­‐click  Heat  Transfer  (ht)  and  choose  

Temperature.    2.   In  the  Settings  window  for  Temperature,  locate  the  Boundary  Selection  section.  3.   From  the  Selection  list,  choose  Inlet.  4.   Locate  the  Temperature  section.  In  the  T0  text  field,  type  T_inlet.    

 Outflow  1    

1.   Right-­‐click  Heat  Transfer  (ht)  and  choose  Outflow.  2.   In  the  Settings  window  for  Outflow,  locate  the  Boundary  Selection  section.  3.   From  the  Selection  list,  choose  Outlet.    

 Initial  Values  1    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)>Heat  Transfer  (ht)  

click  Initial  Values  1.    2.   In  the  Settings  window  for  Initial  Values,  type  T_init  in  the  T  text  field.    

 LAMINAR  FLOW  (SPF)      Outlet  1    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Laminar  

Flow  (spf)  and  choose  Outlet.    2.   In  the  Settings  window  for  Outlet,  locate  the  Boundary  Selection  section.    3.   From  the  Selection  list,  choose  Outlet.    4.   Locate  the  Pressure  Conditions  section.  Select  the  Normal  flow  check  box.    

 Inlet  1    

1.   In  the  Model  Builder  window,  right-­‐click  Laminar  Flow  (spf)  and  choose  Inlet.    2.   In  the  Settings  window  for  Inlet,  locate  the  Boundary  Selection  section.  3.   From  the  Selection  list,  choose  Inlet.    4.   Locate  the  Velocity  section.  In  the  U0  text  field,  type  V_in.    

 MESH  2      Size  1    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

choose  Size.    2.   In  the  Settings  window  for  Size,  locate  the  Geometric  Entity  Selection  section.  3.   From  the  Geometric  entity  level  list,  choose  Domain.    4.   From  the  Selection  list,  choose  Flow  Compartment.    5.   Locate  the  Element  Size  section.  From  the  Calibrate  for  list,  choose  Fluid  

dynamics.    

Page 85: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

84

6.   From  the  Predefined  list,  choose  Coarse.      Size  2    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

choose  Size.    2.   In  the  Settings  window  for  Size,  locate  the  Geometric  Entity  Selection  section.  3.   From  the  Geometric  entity  level  list,  choose  Boundary.    4.   Click  Paste  Selection  and  paste  151-­‐222,  231-­‐398,  407-­‐438,  442-­‐457,  460-­‐493,  

497-­‐528,  532-­‐547,  549-­‐564,  566-­‐581,  595,  597-­‐603,  605-­‐607,  609-­‐611,  613-­‐615,  617-­‐619,  621-­‐623,  625-­‐650,  653-­‐684,  688-­‐703,  706-­‐721,  724-­‐739,  742-­‐757,  760-­‐775,  778-­‐793,  796-­‐811,  813-­‐844,  846-­‐861,  863-­‐975,  1034-­‐1049.    

5.   Locate  the  Element  Size  section.  From  the  Calibrate  for  list,  choose  Fluid  dynamics.    

6.   From  the  Predefined  list,  choose  Fine.      Corner  Refinement  1    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

choose  Corner  Refinement.    2.   In  the  Settings  window  for  Corner  Refinement,  locate  the  Geometric  Entity  

Selection  section.  3.   From  the  Geometric  entity  level  list,  choose  Domain.    4.   From  the  Selection  list,  choose  Flow  Compartment.    5.   Locate  the  Boundary  Selection  section.  6.   Click  Paste  Selection  and  paste  151-­‐222,  231-­‐398,  407-­‐438,  442-­‐457,  460-­‐493,  

497-­‐528,  532-­‐547,  549-­‐564,  566-­‐581,  595,  597-­‐603,  605-­‐607,  609-­‐611,  613-­‐615,  617-­‐619,  621-­‐623,  625-­‐650,  653-­‐684,  688-­‐703,  706-­‐721,  724-­‐739,  742-­‐757,  760-­‐775,  778-­‐793,  796-­‐811,  813-­‐844,  846-­‐861,  863-­‐975,  1034-­‐1049.    

7.   Locate  the  Element  Size  section.  From  the  Calibrate  for  list,  choose  Fluid  dynamics.    

8.   From  the  Predefined  list,  choose  Coarse.      Free  Triangular  1    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

under  More  Operations,  choose  Free  Triangular.    2.   In  the  Settings  window  for  Free  Triangular,  locate  the  Geometric  Entity  Selection  

section.  3.   From  the  Geometric  entity  level  list,  choose  Boundary.    4.   From  the  Selection  list,  choose  Inlet.    5.   In  the  Model  Builder  window,  under  Component  2  (comp2)  >  Mesh  2  right-­‐click  

Free  Triangular  and  choose  Size.  6.   In  the  Settings  window  for  Size  1,  locate  the  Geometric  Entity  Selection  section.  7.   From  the  Geometric  entity  level  list,  choose  Boundary.    8.   From  the  Selection  list,  choose  Inlet.    

Page 86: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

85

9.   Locate  the  Element  Size  section.  From  the  Calibrate  for  list,  choose  Fluid  dynamics.    

10.  From  the  Predefined  list,  choose  Finer.      

Swept  1    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

choose  Swept.    2.   In  the  Settings  window  for  Swept,  locate  the  Geometric  Entity  Selection  section.  3.   From  the  Geometric  entity  level  list,  choose  Domain.    4.   From  the  Selection  list,  choose  Flow  Compartment.    5.   In  the  Model  Builder  window,  under  Component  2  (comp2)  >  Mesh  2  right-­‐click  

Free  Triangular  and  choose  Distribution.  6.   In  the  Settings  window  for  Distribution,  locate  the  Geometric  Entity  Selection  

section.  7.   From  the  Geometric  entity  level  list,  choose  Domain.    8.   From  the  Selection  list,  choose  Flow  Compartment.    9.   Locate  the  Distribution  section.  In  the  Number  of  elements  text  field,  type  140.    

 Free  Triangular  2    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

under  More  Operations,  choose  Free  Triangular.    2.   In  the  Settings  window  for  Free  Triangular,  locate  the  Geometric  Entity  Selection  

section.  3.   From  the  Geometric  entity  level  list,  choose  Boundary.    4.   From  the  Selection  list,  click  to  paste  115.    5.   In  the  Model  Builder  window,  under  Component  2  (comp2)  >  Mesh  2  right-­‐click  

Free  Triangular  and  choose  Size.  6.   In  the  Settings  window  for  Size  1,  locate  the  Geometric  Entity  Selection  section.  7.   From  the  Geometric  entity  level  list,  choose  Boundary.    8.   In  the  Selection  section,  click  to  paste  115.    9.   Locate  the  Element  Size  section.  Select  Custom.    10.  Locate  the  Element  Size  Parameters  section.  For  Maximum  element  size  type  0.4.    

 Swept  2  1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

choose  Swept.    2.   In  the  Settings  window  for  Swept,  locate  the  Geometric  Entity  Selection  section.  3.   From  the  Geometric  entity  level  list,  choose  Domain.    4.   From  the  Selection  list,  choose  Cooling  Tube.    

 Free  Triangular  3    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

under  More  Operations,  choose  Free  Triangular.    

Page 87: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

86

2.   In  the  Settings  window  for  Free  Triangular,  locate  the  Geometric  Entity  Selection  section.  

3.   From  the  Geometric  entity  level  list,  choose  Boundary.    4.   In  the  Selection  field,  click  to  paste  90.    5.   In  the  Model  Builder  window,  under  Component  2  (comp2)  >  Mesh  2  right-­‐click  

Free  Triangular  and  choose  Size.  6.   In  the  Settings  window  for  Size  1,  locate  the  Geometric  Entity  Selection  section.  7.   From  the  Geometric  entity  level  list,  choose  Boundary.    8.   In  the  Selection  field,  click  to  paste  90.  9.   Locate  the  Element  Size  section.  Select  Custom.    10.  Locate  the  Element  Size  Parameters  section.  For  Maximum  element  size  type  0.7.    

 Swept  3    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

choose  Swept.    2.   In  the  Settings  window  for  Swept,  locate  the  Geometric  Entity  Selection  section.  3.   From  the  Geometric  entity  level  list,  choose  Domain.    4.   In  the  Selection  field,  click  to  paste  15.  

 Free  Quad  1    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

under  More  Operations,  choose  Free  Quad.    2.   In  the  Settings  window  for  Free  Quad,  locate  the  Geometric  Entity  Selection  

section.  3.   From  the  Geometric  entity  level  list,  choose  Boundary.    4.   In  the  Selection  field,  click  to  paste  47,  58,  1065,  1071,  1077.    5.   In  the  Model  Builder  window,  under  Component  2  (comp2)  >  Mesh  2  right-­‐click  

Free  Quad  and  choose  Size.  6.   In  the  Settings  window  for  Size  1,  locate  the  Geometric  Entity  Selection  section.  7.   From  the  Geometric  entity  level  list,  choose  Boundary.    8.   In  the  Selection  field,  click  to  paste  47,  58,  1065,  1071,  1077.  9.   Locate  the  Element  Size  section.  Select  Custom.    10.  Locate  the  Element  Size  Parameters  section.  For  Maximum  element  size  type  1.    

 Swept  4    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

choose  Swept.    2.   In  the  Settings  window  for  Swept,  locate  the  Geometric  Entity  Selection  section.  3.   From  the  Geometric  entity  level  list,  choose  Domain.    4.   In  the  Selection  field,  click  to  paste  13,  14,  39-­‐41.  

 Free  Triangular  4    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

Page 88: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

87

under  More  Operations,  choose  Free  Triangular.    2.   In  the  Settings  window  for  Free  Triangular,  locate  the  Geometric  Entity  Selection  

section.  3.   From  the  Geometric  entity  level  list,  choose  Boundary.    4.   In  the  Selection  field,  click  to  paste  13,  18,  27,  31,  37,  41,  586,  589,  981,  985,  

991,  995,  1001,  1005.    5.   In  the  Model  Builder  window,  under  Component  2  (comp2)  >  Mesh  2  right-­‐click  

Free  Triangular  and  choose  Size.  6.   In  the  Settings  window  for  Size  1,  locate  the  Geometric  Entity  Selection  section.  7.   From  the  Geometric  entity  level  list,  choose  Boundary.    8.   In  the  Selection  field,  click  to  paste  13,  18,  27,  31,  37,  41,  586,  589,  981,  985,  

991,  995,  1001,  1005.  9.   Locate  the  Element  Size  section.  Select  Custom.    10.  Locate  the  Element  Size  Parameters  section.  For  Maximum  element  size  type  1.5.    

 Swept  5    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

choose  Swept.    2.   In  the  Settings  window  for  Swept,  locate  the  Geometric  Entity  Selection  section.  3.   From  the  Geometric  entity  level  list,  choose  Domain.    4.   In  the  Selection  field,  click  to  paste  3-­‐5,  7,  9,  11,  25-­‐27,  29,  31,  33,  35,  37.  5.   In  the  Model  Builder  window,  under  Component  2  (comp2)  >  Mesh  2  right-­‐click  

Free  Triangular  and  choose  Distribution.  6.   In  the  Settings  window  for  Distribution,  locate  the  Geometric  Entity  Selection  

section.  7.   From  the  Geometric  entity  level  list,  choose  Domain.    8.   In  the  Selection  field,  click  to  paste  3-­‐5,  7,  9,  11,  25-­‐27,  29,  31,  33,  35,  37.    9.   Locate  the  Distribution  section.  In  the  Number  of  elements  text  field,  type  6.    

 Free  Triangular  5    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

under  More  Operations,  choose  Free  Triangular.    2.   In  the  Settings  window  for  Free  Triangular,  locate  the  Geometric  Entity  Selection  

section.  3.   From  the  Geometric  entity  level  list,  choose  Boundary.    4.   In  the  Selection  field,  click  to  paste  3,  8.    5.   In  the  Model  Builder  window,  under  Component  2  (comp2)  >  Mesh  2  right-­‐click  

Free  Triangular  and  choose  Size.  6.   In  the  Settings  window  for  Size  1,  locate  the  Geometric  Entity  Selection  section.  7.   From  the  Geometric  entity  level  list,  choose  Boundary.    8.   In  the  Selection  field,  click  to  paste  3,  8.  9.   Locate  the  Element  Size  section.  Select  Custom.    10.  Locate  the  Element  Size  Parameters  section.  For  Maximum  element  size  type  1.5.    

Page 89: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

88

 Swept  6    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

choose  Swept.    2.   In  the  Settings  window  for  Swept,  locate  the  Geometric  Entity  Selection  section.  3.   From  the  Geometric  entity  level  list,  choose  Domain.    4.   In  the  Selection  field,  click  to  paste  1-­‐2.  5.   In  the  Model  Builder  window,  under  Component  2  (comp2)  >  Mesh  2  right-­‐click  

Free  Triangular  and  choose  Distribution.  6.   In  the  Settings  window  for  Distribution,  locate  the  Geometric  Entity  Selection  

section.  7.   From  the  Geometric  entity  level  list,  choose  Domain.    8.   In  the  Selection  field,  click  to  paste  1-­‐2.    9.   Locate  the  Distribution  section.  In  the  Number  of  elements  text  field,  type  3.    

 Free  Tetrahedral  1    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

choose  Free  Tetrahedral.    2.   In  the  Settings  window  for  Free  Tetrahedral,  locate  the  Geometric  Entity  Selection  

section.  3.   From  the  Geometric  entity  level  list,  choose  Boundary.    4.   In  the  Selection  field,  click  to  paste  6,  8,  10,  12,  28,  30,  32,  34,  36,  38.    5.   In  the  Model  Builder  window,  under  Component  2  (comp2)  >  Mesh  2  right-­‐click  

Free  Tetrahedral  and  choose  Size.  6.   In  the  Settings  window  for  Size  1,  locate  the  Geometric  Entity  Selection  section.  7.   From  the  Geometric  entity  level  list,  choose  Boundary.    8.   In  the  Selection  field,  click  to  paste    6,  8,  10,  12,  28,  30,  32,  34,  36,  38.  9.   Locate  the  Element  Size  section.  Select  Custom.    10.  Locate  the  Element  Size  Parameters  section.  For  Maximum  element  size  type  1.4.  

 Boundary  Layers  1    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

choose  Boundary  Layers.    2.   In  the  Settings  window  for  Boundary  Layers,  locate  the  Geometric  Entity  Selection  

section.  3.   From  the  Geometric  entity  level  list,  choose  Domain.    4.   From  the  Selection  list,  choose  Flow  Compartment.  5.   In  the  Model  Builder  window,  under  Component  2  (comp2)  >  Mesh  2  >  Boundary  

Layers  1  click  Boundary  Layer  Properties  1.  6.   In  the  Settings  window  for  Boundary  Layer  Properties  1,  locate  the  Boundary  Layer  

Properties  section.  7.   In  the  Number  of  boundary  layers  text  field,  type  2.  8.   In  the  Thickness  adjustment  factor  text  field,  type  5.  

Page 90: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

89

 Free  Tetrahedral  2    1.   In  the  Model  Builder  window,  under  Component  2  (comp2)  right-­‐click  Mesh  2  and  

choose  Free  Tetrahedral.    2.   In  the  Settings  window  for  Free  Tetrahedral,  locate  the  Geometric  Entity  Selection  

section  and  check  that  it  is  set  to  Remaining.    ADD  STUDY    

1.   On  the  Home  toolbar,  click  Add  Study  to  open  the  Add  Study  window.  2.   Go  to  the  Add  Study  window.  3.   Find  the  Studies  subsection.  In  the  Select  Study  tree,  select  Preset  

Studies>Stationary.    4.   Click  Add  Study  in  the  window  toolbar.  5.   On  the  Home  toolbar,  click  Add  Study  to  close  the  Add  Study  window.    

 STUDY  1      Step  1:  Stationary    

1.   In  the  Model  Builder  window,  under  Study  1  click  Step  1:  Stationary.  2.   In  the  Settings  window  for  Stationary,  locate  the  Physics  and  Variables  Selection  

section.    3.   In  the  table,  clear  the  Solve  for  check  box  for  Lithium-­‐Ion  Battery.    

 Step  2:  Current  Distribution  Initialization    1.   On  the  Study  toolbar,  click  Study  Steps  and  choose  Other>  Current  Distribution  

Initialization.    2.    In  the  Settings  window  for  Current  Distribution  Initialization,  locate  the  Physics  

and  Variables  Selection  section.    3.   In  the  table,  clear  the  Solve  for  check  box  for  Heat  Transfer  and  Laminar  Flow.    

 Step  3:  Time  Dependent    

1.   On  the  Study  toolbar,  click  Study  Steps  and  choose  Time  Dependent>Time  Dependent.  

2.   In  the  Settings  window  for  Time  Dependent,  locate  the  Study  Settings  section.  3.   In  the  Times  text  field,  type  0  269.9  271.1  449.9  451.1  799.9  801.1  820.    4.   From  the  Tolerance  list,  choose  Physics  controlled.    5.   On  the  Study  toolbar,  click  Study  1  >  Solver  Configurations  >  Solution  1  (sol1)  >  

Time  Dependent  Solver  1.  6.   In  the  Settings  window  for  Time  Dependent  Solver  1,  locate  the  General  section.  7.   From  the  Defined  by  study  step  list,  choose  Step  3:  Time  Dependent.  8.   In  the  Settings  window  for  Time  Dependent  Solver  1,  locate  the  Time  Stepping  

section.  

Page 91: kth.diva-portal.org1282548/FULLTEXT01.pdf · 1 Abstract(Inthisthesis, asection!ofalithiumionbatterymodule ,!including!fivecellsandan!indirect liquid coolingsystem, !wasmodelledinCOMSOLMultiphysics5.3a

90

9.   From  the  Steps  taken  by  solver  list,  choose  Strict.  10.  On  the  Study  toolbar,  click  Show  Default  Solver.    11.  On  the  Study  toolbar,  click  Compute.