kinematics in two dimensions - mit opencourseware · kinematics in two dimensions 8.01t sept 15,...

17
Kinematics in Two Dimensions 8.01t Sept 15, 2004

Upload: others

Post on 09-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Kinematics in Two Dimensions

8.01tSept 15, 2004

Page 2: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Vector Description of Motion

• Position

• Velocity

• Acceleration

ˆ ˆ( ) ( ) ( )t x t y t= +r i j

( ) ( )ˆ ˆ ˆ ˆ( ) ( ) ( )x ydx t dy tt v t v tdt dt

= + ≡ +v i j i j

( )( ) ˆ ˆ ˆ ˆ( ) ( ) ( )yxx y

dv tdv tt a t a tdt dt

= + ≡ +a i j i j

Page 3: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Projectile Motion• Ignore air resistance

• Gravitational Force Law

• Newton’s Second Lawtotaly in yF m a=

totalx in xF m a=

ˆgrav gravm g= −F j

Page 4: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Equations of Motion

• y-component:• x-component:

• Principle of Equivalence:

• Components of Acceleration:

grav in ym g m a− =

0 in xm a=

grav inm m=

ya g= − 0xa =

29.8g m s−= −

Page 5: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Kinematic Equations:

• Acceleration y-component:

• Velocity y-component:

• Position y-component:

ya g= −

20 ,0

1( )2yy t y v t gt= + −

,0( )y yv t v gt= −

Page 6: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Kinematic Equations:

• Acceleration x-component:

• Velocity x-component:

• Position x-component:

0xa =

0 ,0( ) xx t x v t= +

,0( )x xv t v=

Page 7: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Initial Conditions• Initial position

• depends on choice of origin

0 0 0ˆ ˆr x i y j= +

Page 8: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Initial Conditions• Initial velocity

• with components:

• initial speed is the magnitude of the initial velocity

• with direction

0 , ,ˆ ˆ( ) x o y ot v v= +v i j

,0 0 0cosxv v θ=

,0 0 0sinyv v θ=

2 2 1/ 20 ,0 ,0( )x yv v v= +

,010

,0

tan ( )y

x

vv

θ −=

Page 9: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Orbit equation,02

2,0 ,0

1( ) ( ) ( )2

y

x x

vgy t x t x tv v

= − +

0 0x = 0 0y =

1tan ( )dydx

θ −=

with

slope of the curve

vs.

at any point determines the direction of the velocity

( )y t ( )x t

Page 10: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Derivation

• equation for a parabola

,0( ) xx t v t=

,0

( )

x

x ttv

=

2,0

1( )2yy t v t gt= −

,0 22

,0 ,0

1( ) ( ) ( )2

y

x x

v gy t x t x tv v

= −

Page 11: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Experiment 2: Projectile Motion

• Initial Velocity

• Gravitational Constant

( )2

0 20 0

( )2cos tan ( ) ( )

gx tvx t y tθ θ

=−

( )( )2

200 02 2cos tan ( ) ( )

( )vg x t y tx t

θ θ= −

Page 12: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Experiment 2: Projectile MotionExperiment 2: Projectile Motion

Page 13: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Reminder on projectile motionHorizontal motion (x) has no acceleration.

Vertical motion (y) has acceleration –g.

Horizontal and vertical motion may be treated separately and the results combined to find, for example, the trajectory or path.

Use the kinematic equations for x and y motion:

Page 14: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Experimental setupCoordinate system

Impact point:Height: hHorizontal displacement: r

With chosen coordinate system:

Height: y=-hHorizontal displacement: x=r

Solve above equation for g:

Theta θ>0: upward

Theta θ<0: downward

Page 15: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Experimental setup

Set up for upward launch The output end with photogate

Connect voltage probe from 750 interface to red & black terminals.

Connect 12VAC supply to the apparatus; the LED should light up.

Page 16: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Velocity measurementThe photogate produces a pulse when the ball interrupts a beam of light to a phototransistor; the more light is blocked, the greater the pulse amplitude. If you look carefully at the output pulse, it looks approximately like this:

Rise & fall time: δtFlat top lasting: ∆t

To analyze the experiment we need to understand why the pulse has this shape!

δt is time the ball partly blocks the beam ∆t is time it completely blocks the beam

∆T

tA t1 tB tC t2 tD

Page 17: Kinematics in Two Dimensions - MIT OpenCourseWare · Kinematics in Two Dimensions 8.01t Sept 15, 2004. Vector Description of Motion ... dv t dv t tatat dt dt ai=+ ≡+j i j G. Projectile

Velocity measurement

Rise & fall time: δt=d/vFlat top lasting: ∆t=(D-d/v)

Therefore: v=D/(δt+∆t)

Determine (δt+∆t) from Full Width at Half Maximum (FWHM)! ∆T=D/v

tA t1 tB tC t2 tD