kinemat-hints and solution

Upload: vinodwarrior

Post on 07-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Kinemat-Hints and Solution

    1/15

    Solution to Subjective Assignments

    LEVEL – I

    1. Comparing the general expression 0v  = (v0 cos θ0) î  + (v0 sin θ0)  ĵ  with thegiven equation v0 = 20 î  + 10  ĵ , we obtain

    v0 cos θ0 = 20 and v0 sin θ0 = 10

    !he x"component o# velocit$ v a#ter a time interval t = 1 sec, v x = v0 cos θ0 = 20m%sec because the hori&ontal component o# velocit$ o# a pro'ectile remains

    constant and the corresponding $"component o# velocit$ v is given as v$ = (v0 sin

    θ0) gt putting v0 sin θ0 = 10 m%sec, g = 10 m%sec2 and t = 1 sec, we obtainv$ = 10 10 * 1 = 0

      ⇒ !he required velocit$ = v = vx  î  + v$   ĵ  = 20 î  

    2. !he velocit$ o# the bod$ at an$ time t #rom the instant o# pro'ection is given as

    = 0  gt

    e#erring to the derived #ormulae, time average velocit$ is given as

    ∫ = 0t

    0dt+

    t

    1+ -utting = (0  gt) we obtain

    ∫   

    −=−⊥= 0

    0

    t

    0

    000

    t 2

    tg+dt)gt+(+

    .here t0 = total time o# ascent /ince = 0 at t = t0 ⇒ t0 =g

    +0

    -uttingg

    +t 00  = , we obtain

    2

    ++ 0=

    3. !he velocit$ o# the bomb 'ust a#ter its release is equal to the velocit$ o# the

    aeroplane !he displacement r can be directl$ written b$ re#erring the derived

    ormula as r = $ 1g$

    v2 20 +

    $ putting

    v0 = 100 m%sec, g = 10, $ = 1000 m, we obtain

    r = 132 m (approximatel$)

     4nd   φ = tan"1 

    0v2

    g$ = tan"1   

      

      

        ×100

    2

    100010

    ⇒ φ = tan"1 00

    Bhatnagar IIT-JEE/PMT Academy. C-5, ama Par!,"ttamnagar, #e$ %e&hi

  • 8/18/2019 Kinemat-Hints and Solution

    2/15

    4.  5et the initial velocit$ has the

    magnitude v0, inclined at an angle

    θ0  with hori&ontal !he time ta6enb$ the #ootball to cover 70 m is

    equal to 7 seconds

      ⇒  t =00 cosv

    70

    θ

    ⇒  v0 cos θ0  = 70%t  = 70%7 = 10 m%s

    !he 6inematical equation #or

    vertical motion is

      $ = (v0 sin θ0)t"2gt

    2

    1

    50 mt ' 5 (

    )50, - *.5+

    θ0

    v0

    y

    t ' 0

    y ' *.5 m)0,0+

    ⇒ (v0sin θ0) (t) =2gt

    2

    1" $

    ⇒ (v0sin θ0) (7) =2)7)(10(

    2

    1 " 17

    ⇒ v0sin θ0  = 287

    7123= m%s

     '9)sinv(i9)cosv(v 00000   θ+θ=

    ) '928i910(v0   +=  m%s

    ⇒ v0 = 2::8 m%s ; θ0 = tan−1 10

    28= 67.960.

    5. !he distance travelled b$ the roc6et in the #irst 1 minute in which resultant

    acceleration is verticall$ upwards and 10 m%s2 will be

    h1 = 0 × :0 +2

    1 ×  10 × :02  = 1

  • 8/18/2019 Kinemat-Hints and Solution

    3/15

    6. 5et the$ meet a#ter time t #rom the instant o# release at point - as shown in the

    #igure /ince /1 is downwards,

    /1 = /g + /i = @gt2 + 1t (a)

    ; /2 is upwards ⇒ /2 = /i " /g

    ⇒ /2 = 2t " @ gt2 (b)

    (a) + (b) ⇒ /1 + /2 = (1 + 2)t

    ⇒++

    h t

    +=  

    (/1 + /2 = h ; 1 = 2 = )

    ⇒2V

    ) t =

    t = t

    p

    t = 0

    v1 = v

    t = 0

    v2 = v

    1s

    2s

    7. &!'5et the total distance covered = h m, and the totaltime ta6en = ! seconds

     4ccording to the question,

    the path covered during !th second = h%2

    ⇒  Aistance covered during (!" 1) seconds = h%2⇒  (1% 2)g(!"1)2 = h%2,where h =(1%2) g!2 

    ⇒  (1%2)g (! 1)2 = (1% 8)g!2

    ⇒  (!"1)%! = ± 1%√2⇒ ± ! = √2! " √2⇒ !(√2  1) = √2

    t '0

    A

    t 'T-*

    t 'TC

    B

    ⇒ ! =12

    2

    ±s

    /ince ! B 1, we accept the other value

    ⇒ ! =12

    2

    −= √2(√2+1)= &2* 2' s.

    &b' !he height o# #all = h = (1%2) g!2 = (1% 2)(

  • 8/18/2019 Kinemat-Hints and Solution

    4/15

       

       θ=θ−=∆2

    sin22r  ) cos 1(2r  r  222

    ⇒2 sinr 2 r 

      θ=∆

    ow the magnitude o# average velocit$

    = v  =t

    ∆∆

     

    t

    2 sinr 2

     v

    θ

    =

    (i)

    we 6now that

    v ; 

    t=ωω=θ   (when w =

    constant)

    ⇒v

    r t  θ= (ii)

    r ∆

    v

    Ft=t

    t=0

    -θ v

    1r 

    2r 

    G

    -utting t #rom (ii) in (i) we obtain

    θ

    θ

    θ= 2

    sinv2

     

    v

    )2%(sin r 2v   ⇒

    -

     .2'& sin2

    v

    v   θ=

    10. .e 6now that velocit$ o# rain wrt man v rm is given as mr rm v v v   −=

    5et21 mm

    v ; v are the initial ; #inal velocities o# the man, then

    2mr 2rm1mr 1rmv"vv ;v"vv   ==

    ⇒ 2m2rm1m1rmr  vvv v v   +=+=

    e#erring the vector diagram we obtain

    21

    21 rmmr 

    vvv   +=1m

    v

    1rmv

    θ2rm

    v

    2mv

    21rm

    2r  vvv   += (a)

      -utting C = ∆v = nvwe obtain

    θ=  cot nvv1rm (b)

    Hsing (a) ; (b) we #ind22

    r  ) cot v(vv   θη+=-cot/1v v 22"    +=

    θα

    1rmv 2rm

    v

    1mv

    2mv

    A

    C 4

    v nv

     

    Bhatnagar IIT-JEE/PMT Academy. C-5, ama Par!,"ttamnagar, #e$ %e&hi

    !"t#I#$%&S' #(#4

  • 8/18/2019 Kinemat-Hints and Solution

    5/15

    LEVEL – II

    1. 5et a#ter a time t the particles attain the ground level !he particles acquire equal

    vertical velocit$ a#ter time t, that is equal to gt

    !he hori&ontal components o# the velocities remain uncharged !here#ore the

    total velocities o# the particle a#ter time t are given as

     '9 gti9vv 11   +−=′   ;  '9 gti9vv 22   +=′

    /ince the$ move perpendicularl$ 'ust be#ore touching the ground, there#ore

    0v  v 21   =

    ⇒ 0 ) '9 gt i9(v  ) '9 gti9v( 21   =++−

    ⇒ g2t2 = v1v2   ⇒ g

    vvt

    21=

    !he vertical displacement o# each particle =2

    1h =  gt2 where h = height o# the

    pole

    ;g

    vvt

    21=

    ⇒g2

    vv 21=   

      

     =

    2

    21

    g

    vv g

    2

    1 h

      +1  +2 =0 =0

    =t =t +2 +1 

    2v ′  gt

    1v′  

    gt

    2.  4t the point o# collision, x1 = x2 and $1 = $2

    ⇒ vo cosθ1t1 = vo cosθ2t2  or t2 =    

     

     

     

    θ

    θ

    2

    1

    cos

    cos

    t1

    .here θ1 and θ2 are the angles o# pro'ection and t1, t2 are the time o# #light

    /imilarl$ #or equal vertical displacement ($1 = $2)

    vosinθ1t1 − 2

    1g 21t  = vosinθ1t1 − 

    2

    1g 212t

    vosinθ1t1 − vosinθ2

    ( )222112

    1 tt2

    gt

    cos

    cos−=

    θθ

    vot1( )

    θ

    θ−θ=

    θθ−θ

    2

    2

    12

    22

    21

    2

    21

    cos

    coscost

    2

    g

    cos

    sin

    ⇒ t1 =( )

    12

    22

    221o

    coscos

    cossinv2

    θ−θ

    θθ−θ

    t2 = t1 =2

    1

    cos

    cos

    θθ

    ∴ !ime interval ∆t = t1 − t2 =( )

    21

    21o

    coscosg

    sinv2

    θ+θθ−θ

    /ubstituting the given values,

    Bhatnagar IIT-JEE/PMT Academy. C-5, ama Par!,"ttamnagar, #e$ %e&hi

    !"t#I#$%&S' #(#+

  • 8/18/2019 Kinemat-Hints and Solution

    6/15

    ∆t = 10 s

    3. orward Iourne$

    ector C  represents wind velocit$

     4  represents velocit$ plane relative to

    ground 4C  represents velocit$ o# plane in still air

    800cos i9  + (800 sinθ + 70)   '9  =  4

    tan87° = θ+θ

    cos800

    70sin800

     

    4+ 

    0

    1 E

    S

    2

    3

    A

    ⇒ tan θ +<

    secθ = 1

    ⇒ tan2θ − 2tanθ + 1 =:8

    1tan2 +θ

    ⇒ :3 tan2θ − 12< tanθ + :3 = 0

    ⇒ tanθ =12:

    7180

    12:

    70

  • 8/18/2019 Kinemat-Hints and Solution

    7/15

    ∴ s = s1 + s2 = u1t + u2t = (u1 + u2)g

    uu 21

    /ubstituting the values, the distance between the particles =

  • 8/18/2019 Kinemat-Hints and Solution

    8/15

    ⇒ i9)20v(v x  −=ωµ  + v$   '9

    /ince the wind appears to blow #rom north east, the x ; $ components o# mv ω  

    must be equal

    ⇒ (vωm)$ = (vωm)x and both are negativehence vx  " 20 = 10 " 20 = "10 m%s

    ⇒  wind speed = 10√2 m%s and the wind is blowing #rom north west

    9 xdx

    +d+a   ==

    ⇒ dxx+d+  =   ⇒   ∫    = dxx+d+

    ⇒ 2%320

    2

    x3

    2

    2

    ++=

    − ⇒3%2

    20

    2

    8

    )++(3x

      −=

    -utting = 2 0 we obtain , x =

    3%8

    0

    3%2

    2

    02

    +3+

    8

    C   

      

     = 

     

      

     

    10. 5et us consider that velocit$ o# train with respect to ground

    =v! and velocit$ o# car in the #irst part o# 'ourne$

    = ve and velocit$ o# car in the last part o# 'ourne$

    =v′e

     4lso distance o# the point where the ob'ect #ell and where the car turns bac6

    =x6m

    ?enceM ve − v! =:

    16m%min (1)

    v′e + v! = :

    1

     6m%min (2)

    1v

    x

    e

    = (3)

    ev

    N

    ′  = 2 (8)

    /olving these (1), (2), (3) and (8)

    ve = 1338 6m%hr, v′e = :: 6m%hr v! = 338 6m%hr x = 1338 6m

    Bhatnagar IIT-JEE/PMT Academy. C-5, ama Par!,"ttamnagar, #e$ %e&hi

    !"t#I#$%&S' #(#,

  • 8/18/2019 Kinemat-Hints and Solution

    9/15

    Solutions to 5bjective Assignments

    LEVEL – I

    1. !he stone is sub'ected to earthPs gravitational #ield a#ter losing contact with theelevator !here#ore its acceleration will be equal to g = < m%s 2 pointed verticall$

    downwards

    2. 5et this pro'ectiles be pro'ected with velocities

     '9)sinv(i9)cosv( '9$i9vv1111$x1 11

    θ+θ=+=

    and  '9)sinv(i9)cosv( '9$i9vv 2222$x2 22 θ+θ=+=

    !he velocities o# the pro'ectiles a#ter a time t are given as

     '9)gtsinv(i9)cosv(v11111

      −θ+θ=′

     '9)gtsinv(i9)cosv(v22222

      −θ+θ=′

     '9)sinvsinv(i9)cosvcosv(vv2211221121   θ−θ+θ−θ=′−′

    /ince the relative velocit$ 21 vv   ′−′ is a constant and so does not var$ with time,the locus o# one wrt the other is a straight line

    3. v = a1t1 = a2t2 

    ∴ t1 = (a2%a1) t2 = (8%2)t2 = 2t2t1  + t2 = 3 or 2t2 + t2 = 3t2 

    t2 = 1 sec and t1∴  v = 2 × 2 = 8 m%s

    4. N =ct2  ; $ = bt2

    ⇒  ct2dt

    dx= ; bt2

    dt

    d$=

    /ince v =22

    dt

    d$

    dt

    dx

    dt

    ds  

      

     +  

      

     =

    ⇒ v = 22 )bt2()ct2(   +

    ⇒ v = 2t 22 cb   +

    +. 5et G- = r 4ngular speed about the origin = ω =tp0

    t0p v where,r 

    v    = !he

    component o# velocit$ o# - wrt G perpendicular to G-

    ⇒r 

    sinv 

    θ=ω  where r = b cosec θ

    ⇒b

    sinv 

    2θ=ω

    ⇒ (C) is correct

    Bhatnagar IIT-JEE/PMT Academy. C-5, ama Par!,"ttamnagar, #e$ %e&hi

    !"t#I#$%&S' #(#9

  • 8/18/2019 Kinemat-Hints and Solution

    10/15

    !he angular speed o# an$ point - wrt another point F = ωpq = E(!he componento# relative velocit$ between them is perpendicular to pq) % (!he distance o# 

    separation pq)D

    !here#ore $ou can neither writeb

    sinop

    v nor 

    cosecb

    op

    v=

    θθ=

    !he last choice (A) is dimensionall$ wrong

    6. 5et the particle be pro'ected verticall$ up"ward with velocit$ u #urther, let t bethe time when pro'ectile be at height h !hen

    h = ut "2

    1gt2  or

    2

    1gt2  ut + h = 0

      ∴  t2  " 0g

    h2t

    g

    u2=+ (1)

    #rom equation (1)

    sum o# roots, t1 + t2 = " g

    u2

    a

    b= (2)

    product o# roots, t1t2 = gh2

    a

    c = (3)

    Qiven that3

    1

    t

    t

    2

    1 =  or t2 = 3t1  (8)

    #rom equation (2) and (8), we get

    8t1 = g2

    uort

    g

    u21  = (7)

    #rom equation (3) and (8) we get

    32

    1t  =

    g

    h2

    g2

    u3or 

    g

    h22

    =   

      

     

    or3h8

    g2u2 = (:)

     4lso, maximum height, ? =g2

    u2

    ()

    #rom eq (:) and () we obtain,

    ? =8

    ?3orh

    3

    h8=

    7. $ geometr$ o# the #igure the length o# the string is = 8x 4 + x

    ⇒dt

    dx 

    dt

    dx8

    dt

    d  4 +=

    /ince the length o# the string is constant,dt

    d = 0

    -utting

     4

     4 vdt

    dx ;v

    dt

    dx==

    8

    v v  4  =  numericall$

     4 = 4v"v  = v 4 + v =

    8

    v  + v = 127v = 127v

    Bhatnagar IIT-JEE/PMT Academy. C-5, ama Par!,"ttamnagar, #e$ %e&hi

    !"t#I#$%&S' #(#10

  • 8/18/2019 Kinemat-Hints and Solution

    11/15

    /ince the displacement o# is #our times that o# 4, their speeds can not be equal

    ,. !ime ta6en =mv

    d

     = 2w

    2mw vv

    d

    − = 22

  • 8/18/2019 Kinemat-Hints and Solution

    12/15

    1+. !he height at which stone was released = 80melocit$ o# balloon in the upward direction at the time o# release o# stone

    = 127 × 

  • 8/18/2019 Kinemat-Hints and Solution

    13/15

    1.   = 2dx

    tdt

    S(i)

    31 t$

    2 3=

    2d$ t

    dt 2= S(ii)

    t = 1, vx = 1, v$ =*

    19 9v i '2

    = +r

    2

    2

    d x2t

    dt= S(iii)

    2

    2

    d $t

    dt= S(iv)

    at t = 1 s ax = 2 and a$ = 1

    ˆ ˆa i j∴ = +r

    2. Hsing constrained equation, / *c0(v vθ =

    Gn di##erentiation / *c0(a aθ =

    3. 2 2($ h) x h− + + = l

    2 2

    d$ x dx0

    dt dtx h+ =

    +

    2 2

    d$ x dx

    dt dtx h= −

    +

    Ady vdt 5

    = −

    , ' - c m

                h

           '

               1

            c

            m

    y

    4

    3J u J v

    7= S(i)

    2 2

     42 2 2

    d $ hv

    3dt (x h )2

    =+

    4 3

    1:a v

    (7)=

    4

    1:a v

    127= S(ii)

    Bhatnagar IIT-JEE/PMT Academy. C-5, ama Par!,"ttamnagar, #e$ %e&hi

    !"t#I#$%&S' #(#13

  • 8/18/2019 Kinemat-Hints and Solution

    14/15

    4. i#

    2 2 2 2u cos u sin

    g 2g

    θ θ>

    *tan /−θ <

    i# 

    2 2 2 2u cos u sin

    g 2g

    θ θ

    <1tan 2−θ >

    +. inal velocit$ o# each ball

    v )/gh+=!his is independent o# path

    urther,1 2h

    tsin g

     =   ÷θ    

    or *

    t(in

    µθ

     #or same h

    1

    2

    t sin

    t sin

    β∴ =α

    7.  4s velocit$ o# the particle increases #rom&ero and #inall$ it decreases to &ero,hence acceleration can not remainpositive #or all the time o# motion>inimum magnitude o# acceleration canbe #ound out b$ the velocit$" time curveAisplacement = 4rea bounded b$ the graph and time axis

    >agnitude o# minimum acceleration = 8 m%s2∴ (4) ; (C)

    COMPREHENSIONS

    1$

    dv2t

    dt=

    ∴ 2$d$

    v tdt

    = =

    and $ =t

    2 Ari#t = 0 × time o# crossing

    3 0x v t= S(i)3t

    $3

    = S(ii)

    #rom (i) and (ii)

    Bhatnagar IIT-JEE/PMT Academy. C-5, ama Par!,"ttamnagar, #e$ %e&hi

    !"t#I#$%&S' #(#14

  • 8/18/2019 Kinemat-Hints and Solution

    15/15

    3

    3

    0

    x$

    3v=

    8 . 0 2 - 0 2

    * 0 m / (

    5 m / (

    α

    v  ,

    v   y5 - m / (

    v

    !ime a#ter which velocit$ vector becomes perpendicular to initial velocit$ vector is

    u 10 2t

    gsin 10 sin :0 3= = =

    θ seconds

    5et v$ be the vertical component o# velocit$ at that instant thenv$ = u + at

    v$ =10 2

    7 33

    ×−

    v '

    v ' 5,

    α

    v ',

    5

    -

    * 0

    -

    $

    7v

    3= −

    2

    2 7v 73

     ∴ = +  ÷

     10

    v3

    =  m%s2v

    gcos,

    α =

    2

    vgcos

    = 203 3

    = m

    7 4cceleration o# particle is equal to acceleration due to gravit$

    : at = g sin α73

    1010

    3

    = ×  = 7 m%s2

    %A( (E 5LL5I8

    1  jo o 99u :0cos30 :0sin30→

    =   i +

    ( )$ 9a g '= −a 0=

     x

    Bhatnagar IIT-JEE/PMT Academy. C-5, ama Par!,"ttamnagar, #e$ %e&hi

    !"t#I#$%&S' #(#1+