k12 for timber designers' manuel by me.xls

Upload: sajeerala

Post on 04-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    1/68

    It follows : 17.2 TIMBER STRESS GRADES FOR GLULAM COLUMNS

    E = EMEAN X K20

    = 10800 X 1.07 = 11556

    c,par = grade x K3 X K17

    = 7.9 X 1 X 1.04 = 8.216

    = 7.9 X 1.25 X 1.04 = 10.27

    = 7.9 X 1.5 X 1.04 = 12.324

    = 7.9 X 1.75 X 1.04 = 14.378

    E/c,par = 11556 / 8.22 = 1407

    = 11556 / 10.3 = 1125

    = 11556 / 12.3 = 937.7

    = 11556 / 14.4 = 803.7

    FOR SERVICE CLASS 3

    E = EMEAN X K2 X K20

    = 10800 X 0.8 X 1.07 = 9244.8

    c,par = grade x K2 X K3 X K17

    = 7.9 X 0.6 X 1 X 1.04 = 4.9296

    = 7.9 X 0.6 X 1.25 X 1.04 = 6.162

    = 7.9 X 0.6 X 1.5 X 1.04 = 7.3944

    = 7.9 X 0.6 X 1.75 X 1.04 = 8.6268

    E/c,par = 9244.8 / 4.93 = 1875

    = 9244.8 / 6.16 = 1500

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    2/68

    = 9244.8 / 7.39 = 1250

    = 9244.8 / 8.63 = 1072

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    3/68

    TABLE 15.1 DETAMINATION OF E/ FOR SERVICES CLASSES 1 AND 2 AND 3

    E c//g E/c//g c//g E/c//g c//g E/c//g c//g

    C14 4600 5.2 885 6.5 708 7.8 590 9.1

    C16 5800 6.8 853 8.5 682 10.2 569 11.9

    C18 6000 7.1 845 8.875 676 10.65 563 12.425

    C22 6500 7.5 867 9.375 693 11.25 578 13.125

    C24 7200 7.9 911 9.875 729 11.85 608 13.825

    TR26 7400 8.2 902 10.25 722 12.3 602 14.35

    C27 8200 8.2 1000 10.25 800 12.3 667 14.35

    Kempas 16000 19.4 825 24.25 660 29.1 550 33.95

    Teak 7400 13.4 552 16.75 442 20.1 368 23.45

    E c//g E/c//g c//g E/c//g c//g E/c//g c//g

    C14 3680 3.12 1179 3.9 944 4.68 786 5.46

    C16 4640 4.08 1137 5.1 910 6.12 758 7.14

    C18 4800 4.26 1127 5.325 901 6.39 751 7.455

    C22 5200 4.5 1156 5.625 924 6.75 770 7.875

    C24 5760 4.74 1215 5.925 972 7.11 810 8.295

    TR26 5920 4.92 1203 6.15 963 7.38 802 8.61

    C27 6560 4.92 1333 6.15 1067 7.38 889 8.61

    Kempas 12800 11.64 1100 14.55 880 17.46 733 20.37

    Teak 5920 8.04 736 10.05 589 12.06 491 14.07

    SERVICE CLASSES 1 AND 2

    SERVICE CLASSES 1 AND 3

    Long Medium Short Very

    Long Medium Short Very

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    4/68

    E/c//g

    505

    487

    483

    495

    521

    516

    571

    471

    316

    E/c//g

    674

    650

    644

    660

    694

    688

    762

    628

    421

    Short

    Short

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    5/68

    Long Medium Short Very Short Long Medium

    (N/mm2)

    5 0.976 0.976 0.976 0.975 4566 0.976 0.976

    10 0.952 0.952 0.952 0.952 1141 0.952 0.952

    15 0.929 0.928 0.928 0.928 507 0.929 0.929

    20 0.906 0.905 0.904 0.903 285 0.907 0.906

    25 0.883 0.881 0.879 0.878 183 0.884 0.883

    30 0.859 0.857 0.854 0.851 127 0.862 0.860

    35 0.836 0.831 0.827 0.822 93 0.840 0.837

    40 0.811 0.805 0.799 0.792 71 0.817 0.813

    45 0.786 0.778 0.769 0.759 56 0.794 0.788

    50 0.761 0.749 0.737 0.725 46 0.771 0.763

    55 0.734 0.720 0.704 0.688 38 0.748 0.738

    60 0.707 0.689 0.670 0.650 32 0.724 0.71265 0.680 0.658 0.635 0.612 27 0.701 0.685

    70 0.652 0.626 0.600 0.573 23 0.676 0.658

    75 0.624 0.594 0.564 0.535 20 0.652 0.631

    80 0.595 0.562 0.530 0.498 18 0.628 0.604

    85 0.567 0.531 0.496 0.464 16 0.604 0.576

    90 0.540 0.501 0.465 0.431 14 0.579 0.550

    95 0.513 0.472 0.434 0.400 13 0.556 0.523

    100 0.487 0.445 0.406 0.372 11 0.532 0.498

    105 0.462 0.418 0.380 0.346 10 0.509 0.473

    110 0.438 0.394 0.355 0.323 9 0.487 0.450

    115 0.415 0.371 0.333 0.301 9 0.466 0.427

    120 0.393 0.349 0.312 0.281 8 0.445 0.405

    125 0.373 0.329 0.293 0.263 7 0.425 0.385

    130 0.353 0.310 0.275 0.247 7 0.406 0.366

    135 0.335 0.293 0.259 0.231 6 0.388 0.347

    140 0.318 0.277 0.244 0.217 6 0.370 0.330

    145 0.302 0.262 0.230 0.205 5 0.354 0.314

    150 0.287 0.248 0.217 0.193 5 0.338 0.299

    155 0.273 0.235 0.205 0.182 5 0.324 0.284

    160 0.260 0.223 0.195 0.172 4 0.309 0.271

    165 0.248 0.212 0.184 0.163 4 0.296 0.259170 0.236 0.201 0.175 0.155 4 0.284 0.247

    175 0.225 0.192 0.166 0.147 4 0.272 0.236

    180 0.215 0.183 0.158 0.140 4 0.260 0.225

    185 0.206 0.174 0.151 0.133 3 0.250 0.215

    190 0.197 0.166 0.144 0.126 3 0.240 0.206

    195 0.188 0.159 0.137 0.121 3 0.230 0.197

    200 0.181 0.152 0.131 0.115 3 0.221 0.189

    205 0.173 0.146 0.125 0.110 3 0.213 0.182

    Service Classes 1 and 2 ServiceEuler

    Stress

    K12 and Euler Stress Value FOR C24 glulam

    E/c,par1,407 1,125 938 804 1,875 1,500

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    6/68

    210 0.166 0.139 0.120 0.105 3 0.204 0.174

    215 0.159 0.134 0.115 0.101 2 0.197 0.167

    220 0.153 0.128 0.110 0.097 2 0.190 0.161

    225 0.147 0.123 0.106 0.093 2 0.183 0.155

    230 0.142 0.118 0.102 0.089 2 0.176 0.149

    235 0.137 0.114 0.098 0.085 2 0.170 0.144

    240 0.132 0.110 0.094 0.082 2 0.164 0.138245 0.127 0.106 0.090 0.079 2 0.158 0.134

    250 0.122 0.102 0.087 0.076 2 0.153 0.129

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    7/68

    Short Very Short

    (N/mm2)

    0.976 0.976 3653

    0.952 0.952 913

    0.929 0.928 406

    0.905 0.905 228

    0.882 0.881 146

    0.858 0.856 101

    0.833 0.830 75

    0.808 0.804 57

    0.782 0.776 45

    0.755 0.746 37

    0.727 0.716 30

    0.698 0.684 250.669 0.652 22

    0.639 0.619 19

    0.609 0.587 16

    0.579 0.554 14

    0.549 0.522 13

    0.520 0.492 11

    0.492 0.462 10

    0.465 0.435 9

    0.439 0.408 8

    0.415 0.384 8

    0.392 0.361 7

    0.370 0.339 6

    0.350 0.319 6

    0.331 0.301 5

    0.313 0.284 5

    0.296 0.268 5

    0.281 0.253 4

    0.266 0.240 4

    0.253 0.227 4

    0.240 0.215 4

    0.229 0.204 30.218 0.194 3

    0.207 0.185 3

    0.198 0.176 3

    0.189 0.168 3

    0.180 0.160 3

    0.173 0.153 2

    0.165 0.146 2

    0.158 0.140 2

    1,072

    Classes 3Euler

    Stress

    1,250

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    8/68

    0.152 0.134 2

    0.146 0.128 2

    0.140 0.123 2

    0.134 0.118 2

    0.129 0.114 2

    0.124 0.109 2

    0.120 0.105 20.115 0.101 2

    0.111 0.098 1

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    9/68

    Long Medium Short Very Short Long Medium

    (N/mm2)

    5 0.976 0.975 0.975 0.975 6322 0.976 0.976

    10 0.952 0.951 0.951 0.951 1580 0.952 0.952

    15 0.928 0.927 0.926 0.926 702 0.928 0.928

    20 0.903 0.902 0.900 0.898 395 0.905 0.904

    25 0.878 0.875 0.872 0.868 253 0.881 0.879

    30 0.851 0.846 0.841 0.835 176 0.856 0.853

    35 0.823 0.815 0.806 0.797 129 0.831 0.825

    40 0.793 0.781 0.768 0.754 99 0.804 0.796

    45 0.761 0.744 0.725 0.706 78 0.777 0.765

    50 0.727 0.704 0.680 0.654 63 0.748 0.732

    55 0.691 0.662 0.632 0.601 52 0.718 0.698

    60 0.654 0.619 0.583 0.548 44 0.687 0.66265 0.616 0.575 0.536 0.498 37 0.655 0.626

    70 0.578 0.533 0.490 0.451 32 0.623 0.589

    75 0.540 0.492 0.448 0.409 28 0.591 0.553

    80 0.504 0.454 0.409 0.371 25 0.559 0.517

    85 0.469 0.418 0.374 0.337 22 0.527 0.483

    90 0.437 0.385 0.342 0.307 20 0.497 0.451

    95 0.406 0.355 0.314 0.280 18 0.468 0.421

    100 0.378 0.328 0.289 0.257 16 0.440 0.392

    105 0.352 0.304 0.266 0.236 14 0.414 0.366

    110 0.328 0.282 0.246 0.217 13 0.389 0.342

    115 0.306 0.262 0.227 0.201 12 0.366 0.320

    120 0.286 0.243 0.211 0.186 11 0.344 0.299

    125 0.268 0.227 0.196 0.173 10 0.324 0.280

    130 0.251 0.212 0.183 0.161 9 0.306 0.263

    135 0.236 0.199 0.171 0.150 9 0.289 0.247

    140 0.222 0.186 0.160 0.140 8 0.273 0.233

    145 0.209 0.175 0.150 0.131 8 0.258 0.219

    150 0.197 0.165 0.141 0.123 7 0.244 0.207

    155 0.186 0.155 0.133 0.116 7 0.231 0.196

    160 0.176 0.146 0.125 0.109 6 0.219 0.185

    165 0.167 0.138 0.118 0.103 6 0.208 0.175170 0.158 0.131 0.112 0.098 5 0.198 0.166

    175 0.150 0.124 0.106 0.092 5 0.188 0.158

    180 0.143 0.118 0.101 0.088 5 0.179 0.150

    185 0.136 0.112 0.095 0.083 5 0.171 0.143

    190 0.129 0.107 0.091 0.079 4 0.163 0.136

    195 0.123 0.102 0.086 0.075 4 0.156 0.130

    200 0.118 0.097 0.082 0.072 4 0.149 0.124

    205 0.112 0.093 0.079 0.068 4 0.143 0.119

    K12 FOR KEMPUS

    E/c,par825 660 550 471 1,100 880

    Service Classes 1 and 2Euler

    Stress

    Service

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    10/68

    210 0.108 0.088 0.075 0.065 4 0.137 0.114

    215 0.103 0.085 0.072 0.062 3 0.131 0.109

    220 0.099 0.081 0.069 0.060 3 0.126 0.104

    225 0.095 0.078 0.066 0.057 3 0.121 0.100

    230 0.091 0.075 0.063 0.055 3 0.116 0.096

    235 0.087 0.072 0.061 0.053 3 0.112 0.092

    240 0.084 0.069 0.058 0.050 3 0.108 0.089245 0.081 0.066 0.056 0.048 3 0.104 0.085

    250 0.078 0.064 0.054 0.047 3 0.100 0.082

    320.1 0.049 0.040 0.033 0.029 2 0.063 0.052

    121.9 0.279 0.237 0.205 0.181 11 0.336 0.292

    130.8 0.249 0.210 0.181 0.159 9 0.303 0.261

    178.1 0.145 0.120 0.103 0.089 5 0.183 0.153

    346.5 0.042 0.034 0.029 0.025 1 0.054 0.044

    166.3 0.164 0.137 0.117 0.102 6 0.206 0.173

    436 0.027 0.022 0.018 0.016 1 0.035 0.029

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    11/68

    Short Very Short

    (N/mm2)

    0.975 0.975 5057

    0.951 0.951 1264

    0.927 0.927 562

    0.902 0.901 316

    0.876 0.874 202

    0.849 0.845 140

    0.819 0.813 103

    0.787 0.778 79

    0.753 0.739 62

    0.716 0.698 51

    0.677 0.655 42

    0.637 0.610 350.596 0.565 30

    0.555 0.522 26

    0.516 0.480 22

    0.478 0.442 20

    0.443 0.406 17

    0.410 0.374 16

    0.380 0.344 14

    0.352 0.318 13

    0.326 0.293 11

    0.303 0.272 10

    0.282 0.252 10

    0.263 0.235 9

    0.246 0.219 8

    0.230 0.204 7

    0.216 0.191 7

    0.203 0.179 6

    0.190 0.168 6

    0.179 0.158 6

    0.169 0.149 5

    0.160 0.140 5

    0.151 0.133 50.143 0.126 4

    0.136 0.119 4

    0.129 0.113 4

    0.123 0.107 4

    0.117 0.102 4

    0.111 0.097 3

    0.106 0.093 3

    0.102 0.089 3

    Euler

    Stress

    733 628

    Classes 3

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    12/68

    0.097 0.085 3

    0.093 0.081 3

    0.089 0.078 3

    0.085 0.074 2

    0.082 0.071 2

    0.079 0.068 2

    0.076 0.066 20.073 0.063 2

    0.070 0.061 2

    0.044 0.038 1

    0.256 0.228 9

    0.228 0.202 7

    0.132 0.115 4

    0.037 0.032 1

    0.149 0.131 5

    0.024 0.021 1

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    13/68

    Long Medium Short Very Short Long Medium

    (N/mm2)

    5 0.975 0.975 0.975 0.975 4566 0.975 0.975

    10 0.951 0.951 0.951 0.950 1141 0.951 0.951

    15 0.926 0.925 0.924 0.923 507 0.927 0.927

    20 0.900 0.898 0.895 0.892 285 0.902 0.901

    25 0.872 0.867 0.862 0.856 183 0.876 0.873

    30 0.841 0.832 0.822 0.812 127 0.849 0.843

    35 0.806 0.792 0.776 0.759 93 0.819 0.810

    40 0.768 0.747 0.723 0.698 71 0.787 0.773

    45 0.726 0.696 0.664 0.631 56 0.753 0.733

    50 0.680 0.642 0.602 0.563 46 0.716 0.690

    55 0.633 0.587 0.541 0.499 38 0.677 0.644

    60 0.584 0.532 0.484 0.441 32 0.637 0.59865 0.537 0.481 0.432 0.390 27 0.596 0.551

    70 0.491 0.434 0.386 0.346 23 0.556 0.507

    75 0.449 0.392 0.346 0.308 20 0.517 0.465

    80 0.410 0.355 0.311 0.275 18 0.479 0.426

    85 0.375 0.322 0.280 0.247 16 0.444 0.391

    90 0.343 0.292 0.254 0.223 14 0.411 0.358

    95 0.315 0.267 0.230 0.202 13 0.381 0.329

    100 0.290 0.244 0.210 0.184 11 0.353 0.303

    105 0.267 0.224 0.192 0.168 10 0.327 0.280

    110 0.246 0.206 0.177 0.154 9 0.304 0.259

    115 0.228 0.190 0.163 0.142 9 0.283 0.240

    120 0.212 0.176 0.150 0.131 8 0.264 0.223

    125 0.197 0.163 0.139 0.121 7 0.247 0.208

    130 0.184 0.152 0.130 0.113 7 0.231 0.194

    135 0.172 0.142 0.121 0.105 6 0.216 0.181

    140 0.161 0.133 0.113 0.098 6 0.203 0.170

    145 0.151 0.124 0.105 0.092 5 0.191 0.159

    150 0.142 0.117 0.099 0.086 5 0.180 0.150

    155 0.133 0.110 0.093 0.081 5 0.170 0.141

    160 0.126 0.103 0.087 0.076 4 0.160 0.133

    165 0.119 0.097 0.082 0.071 4 0.152 0.126170 0.112 0.092 0.078 0.067 4 0.144 0.119

    175 0.106 0.087 0.074 0.064 4 0.136 0.113

    180 0.101 0.083 0.070 0.060 4 0.130 0.107

    185 0.096 0.078 0.066 0.057 3 0.123 0.101

    190 0.091 0.074 0.063 0.054 3 0.117 0.097

    195 0.087 0.071 0.060 0.052 3 0.112 0.092

    200 0.083 0.067 0.057 0.049 3 0.107 0.088

    205 0.079 0.064 0.054 0.047 3 0.102 0.084

    K12 FOR TEAK

    E/c,par552 442 368 316 736 589

    Service Classes 1 and 2Euler

    Stress

    Service

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    14/68

    210 0.075 0.061 0.052 0.045 3 0.097 0.080

    215 0.072 0.059 0.050 0.043 2 0.093 0.076

    220 0.069 0.056 0.047 0.041 2 0.089 0.073

    225 0.066 0.054 0.045 0.039 2 0.086 0.070

    230 0.063 0.052 0.043 0.038 2 0.082 0.067

    235 0.061 0.049 0.042 0.036 2 0.079 0.065

    240 0.058 0.047 0.040 0.035 2 0.076 0.062245 0.056 0.046 0.038 0.033 2 0.073 0.060

    250 0.054 0.044 0.037 0.032 2 0.070 0.057

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    15/68

    Short Very Short

    (N/mm2)

    0.975 0.975 3653

    0.951 0.951 913

    0.926 0.925 406

    0.899 0.897 228

    0.869 0.866 146

    0.836 0.830 101

    0.799 0.788 75

    0.758 0.741 57

    0.711 0.688 45

    0.661 0.632 37

    0.610 0.575 30

    0.558 0.520 250.508 0.468 22

    0.462 0.421 19

    0.419 0.380 16

    0.381 0.343 14

    0.347 0.310 13

    0.316 0.282 11

    0.289 0.257 10

    0.265 0.235 9

    0.244 0.215 8

    0.225 0.198 8

    0.208 0.183 7

    0.192 0.169 6

    0.179 0.157 6

    0.166 0.146 5

    0.155 0.136 5

    0.145 0.127 5

    0.136 0.119 4

    0.128 0.112 4

    0.120 0.105 4

    0.113 0.099 4

    0.107 0.093 30.101 0.088 3

    0.096 0.083 3

    0.091 0.079 3

    0.086 0.075 3

    0.082 0.071 3

    0.078 0.068 2

    0.074 0.064 2

    0.071 0.062 2

    Euler

    Stress

    491 421

    Classes 3

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    16/68

    0.068 0.059 2

    0.065 0.056 2

    0.062 0.054 2

    0.059 0.051 2

    0.057 0.049 2

    0.055 0.047 2

    0.052 0.045 20.050 0.044 2

    0.048 0.042 1

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    17/68

    UDL on Member = 0.44 kN/m

    Axial Loading on Member

    = 3453.262384

    Length of Member = 4.62 m

    Moment on Member = 1.173942 kN m

    Trail section = 50 x 125

    Z = 1.30E+05

    m,a = 9.02E+00

    c,a = 0.552521981

    x = 320.0829892

    y = 128.0331957

    = 320.0829892

    K12 = 0.03960829 For Medium

    K3 = 1.25

    c,g = 19.4

    c,adm = 0.960501021

    Check for very short term condition

    K3 = 1.75

    K12 = 0.028850779 320.083

    c,adm = 0.979483934

    c,a = 0.552521981

    K7 = 1.10109106

    For =

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    18/68

    m,g = 19.3

    m,adm = 37.18935056

    m,a = 9.02E+00

    Euler Critical Stress

    e = 2 N/mm2

    Euler Co-efficient Keu = 0.984499194

    Interaction Formula = 0.246248674 + 0.575244

    = 0.821492187

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    19/68

    UDL on Member = 0.44 kN/m

    Axial Loading on Member

    = 2065.0652

    Length of Member = 1.76 m

    Moment on Member = 0.170368 kN m

    Trail section = 50 x 125

    Z = 1.30E+05

    m,a = 1.31E+00

    c,a = 0.330410432

    x = 121.9363769

    y = 48.77455074

    = 121.9363769

    K12 = 0.236904042 For Medium

    K3 = 1.25

    c,g = 19.4

    c,adm = 5.74492303

    Check for very short term condition

    K3 = 1.75

    K12 = 0.180663873 121.9364

    c,adm = 6.133538499

    For =

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    20/68

    c,a = 0.330410432

    K7 = 1.10109106

    m,g = 19.3

    m,adm = 37.18935056

    m,a = 1.31E+00

    Euler Critical Stress

    e = 11 N/mm2

    Euler Co-efficient Keu = 0.991576092

    Interaction Formula = 0.035481715 + 0.057513

    = 0.09299518

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    21/68

    UDL on Member = 0.44 kN/m

    Axial Loading on Member

    = 3453.262384

    Length of Member = 4.62 m

    Moment on Member = 1.173942 kN m

    Trail section = 50 x 125

    Z = 1.30E+05

    m,a = 9.02E+00

    c,a = 0.552521981

    x = 320.0829892

    y = 128.0331957

    = 320.0829892

    K12 = 0.03960829 For Medium

    K3 = 1.25

    c,g = 19.4

    c,adm = 0.960501021

    Check for very short term condition

    K3 = 1.75

    K12 = 0.028850779 320.083

    c,adm = 0.979483934

    For =

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    22/68

    c,a = 0.552521981

    K7 = 1.10109106

    m,g = 19.3

    m,adm = 37.18935056

    m,a = 9.02E+00

    Euler Critical Stress

    e = 2 N/mm2

    Euler Co-efficient Keu = 0.984499194

    Interaction Formula = 0.246248674 + 0.575244

    = 0.821492187

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    23/68

    Lets check deflection

    2470 mm length Span Continuation of Cantilever Portion of 1820 mm is considered

    1 Geomatric Properties

    = 1.82 m

    = 0.4 m

    Raft Dimension

    = 50 mm= 125 mm

    = b x h

    = mm2

    = 1/12 x b x h3

    = mm4

    2 Loading

    = 0.6 kNm-2

    = 0.5 kNm-2

    = (DL+IL) x JS xLe

    = 0.8008 kN

    3 K-Factors

    = 1

    = 1 for longterm

    = 1

    = 1 for notch fro

    = 1

    = (300 mm /h)0.11

    K7 = 1.10109106

    = 1

    4 Grade Stress

    Strength Class

    = 19.3 Nmm-2

    = 4.3 Nmm-2

    no wa

    = 2.3 Nmm-2

    Reference was made to Ex 5.15 on page No:249 Analysis of Structures Vol-1 By Prof V.N. Vazirani, Dr M.

    Dr S.K.Duggal

    It is illustrated that Bending Moment of Inclind member could be written as in the form of

    member

    Reference was made to Example 4.2 Design of Main Beam from from Structural Timber Design By Abdy Ke

    BS 5268: Part 2, Tables 14

    Kempas Grade HS

    Bending parallel to grain m.g.//

    Compression perpenidcular to grain c.g.pp

    Shear parallel to grain g.//

    Bearing : assume 50 mm, but located>75 mm

    from the end of the member (K4, Table 18)

    Notch end effect (K5,Clause 2.10.4)

    Form factor K6 (K6, Clause 2.10.5)

    Depth factor (K7 Clause 2.10.6)

    No Load sharing(K8, Clause 2.9) K8

    Effective span Le

    Spacing of Rafters, JS

    Breadth of Section, bDepth of section, h

    Dead Load, DL

    Imposed Load, IL

    Cross-sectional area, A

    Second moment of area Ixx

    8.1E+06

    6.25E+03

    Total Load, W

    Load Duration(K#, Table 17) K3

    Service class 1 (K2, Table 16) K2

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    24/68

    = Nmm-2

    5 Bending stress

    = W.Le/2

    = 0.728728 kN-m

    = bh2/6

    = mm3

    = M/ Zprovided

    = Nm-2

    = 19.3 x K2.K3.K6.K

    21.25105746 Nm-2

    6 Lateral stability

    = 2.5End held in position for h/b=3, No Leteral Support for h/b = 2

    7 Shear stress

    = W(N+L)2/2Le

    N=1290 mm Cantilever portion N = 1820 mm

    L= Span length following Cantilever 1750 mm Span L = 2470 mm

    W = 0.44 kN/m =N/mm

    = W(N+L)2/2Le

    = 1639.231579 N

    3 Fv

    2 b .

    = 0.393415579 Nmm-2

    = 2.3 x K2.K3.K5.K

    = 2.3

    8 Bearing stress

    = W(N+L)2/2Le

    ( Ref:Example 5.8 pages (233-237) and page 1317 of APPENDIX from Analysis of structure Vol-1 by ProfDr M.M. Ratwani,Dr. S.K.Duggal )

    ( Ref:Example 5.8 pages (233-237) and page 1317 of APPENDIX from Analysis of structure Vol-1 by Prof

    Dr M.M. Ratwani,Dr. S.K.Duggal )

    =

    Section modulus Zprovided

    Applied bending stress

    BS 5268; Part 2, Clause 2.10.8, and Table 19

    Maximum depth to breadth ratio, h/b

    Applied shear force from shear force diagram

    Applied shear force Fv

    Applied bending moment

    Mean modulus of elasticity, load sharing Emean

    1.E+05

    5.60

    Applied Load from shear force diagram

    Permissible shear stress, no notch

    Applied shear force Fv

    19100

    Applied shear stress a

    Permissible bending stress

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    25/68

    1639.231579 N

    Assume bearing width, bw, of 100 mm either side

    bw = 100

    = Fv/(b .bw)

    = 3.E-03

    = 4.3 x K2.K3.K4.K

    = 4.3

    = Fv/(b . c.a.pp)

    9 Deflection

    w = (DL+IL) x JS kN/m

    = 0.44

    L = 2570.019 mm

    = 2.570019 m

    N = 1820

    1.82 m

    I = Ixx

    = 8138020.833 x 1.E+05

    n = N/L

    = 0.708165971

    = WLe3N

    24E I

    OR

    ( Ref: pages (232-233) along with figure 12.16 of Timber Designers' Manuel 3rd Ed by E.C.Ozalton )

    = 7.55 mm

    = (1.2/Gbd)wx.dx

    Shear Modulus =Shear stress/Shear strain i.e. say G=(/)

    Poissson's ratio ( ) = Lateral strain /Longitudinal strain

    ( Ref:Example 5.8 pages (233-237) and page 1317 of APPENDIX from Analysis of structure Vol-1 by Prof

    Dr M.M. Ratwani,Dr. S.K.Duggal )

    ( Ref:page 451 of Analysis of structure Vol-1 by Prof V.N.Vaziani, Dr M.M. Ratwani,Dr. S.K.Duggal )

    ( Ref:page 272 of Strength of Materials for Civil Engineers 2nd Ed by T.H.G.Megson )

    Permissible bearing stress c.a.pp

    Minimum required bearing width

    Applied bearing stress c.a.pp

    Defelection due to Bending m

    Defelection due to Shearing

    Defelection due to Bending m

    (3n

    3

    +4n

    2

    -1)

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    26/68

    E=2G(1+)

    Also G=Emean/16

    (19.2/Ebd)wx.dx

    = 0.117206933

    = 7.67 mm

    OR

    = Le/180

    = 10.11 mm

    Lets Check with Interaction Formula

    UDL on Member = 0.44 kN/m

    Axial Loading on Member

    = 512.4862134 N

    Horizontal Length of Member X2 = 2.47 m

    Horizontal Length of Cantilever X1 = 1.82 m

    Inclined Length of Member l = 2.570019

    Inclined Length of Cantilever a = 1.887432

    Moment on Member = 0.070098719 kN m

    Trail section = 50 x 125

    Z = 1.30E+05

    m,a = 0.538358161

    c,a = 0.081997794

    ( Ref:page 18: 2.5.7 Additional Properties of Structural Timber Design by ABDY KERMANI )

    ( Ref:Deflection Limit from page 68 of Structural Engineer's Pocket Book by FIONA COBB )

    ( Ref:4th line of 1st pargraph from page 232 of Timber Designers' Manuel 3rd Ed by E.C.Ozalton

    ( Ref:page 249-251 of Analysis of structure Vol-1 by Prof V.N.Vaziani, Dr M.M. Ratwani,Dr. S.K.Dug

    Defelection due to Shear s

    Total Defelection due to Bending plus Shear T

    Permissible deflection for Cantilevers adm

    =

    = ( 19 .2) .( M )

    ( b . h ) . E

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    27/68

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    28/68

    k5=he/h

    fig 2(b) of the code

    ne

    .Ratwani,

    Horizontal

    ramani

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    29/68

    .K8

    .N.Vaziani,

    .N.Vaziani,

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    30/68

    mm3

    .N.Vaziani,

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    31/68

    al )

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    32/68

    O.k

    130.7651

    O.k

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    33/68

    UDL on Member = 0.44 kN/m

    Axial Loading on Member

    = 512.4862134 N

    Horizontal Length of Member X2 = 2.47 m

    Horizontal Length of Cantilever X1 = 1.82 m

    Inclined Length of Member l = 2.570019

    Inclined Length of Cantilever a = 1.887432

    Moment on Member = 0.070098719 kN m

    Trail section = 50 x 125

    Z = 1.30E+05

    m,a = 0.538358161

    c,a = 0.081997794

    x = 178.0561394

    y = 71.22245575

    = 178.0561394

    K12 = 0.120349401 For Medium

    K3 = 1.25

    c,g = 19.4

    c,adm = 2.918472963 > 0.081998

    K3 = 1.75

    K12 = 0.089337591 For =

    Check for very short term condition

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    34/68

    c,adm = 3.033011216

    c,a = 0.081997794

    K7 = 1.10109106

    m,g = 19.3

    m,adm = 37.18935056

    m,a = 5.38E-01

    Euler Critical Stress

    e = 5 N/mm2

    Euler Co-efficient Keu = 0.997795692

    Interaction Formula = 0.014508118 + 0.028096

    = 0.042604248 < 1

    Lets check deflection

    It follows : Example 4.2 Design of Main Beam from Structural Timber Design By Abdy Keramani

    2470 mm length Span Continuation of Cantilever Portion

    1 Geomatric Properties

    = 2.47 m

    = 0.4 m

    Raft Dimension

    = 50 mm

    = 125 mm

    = b x h

    = 6.25 x 1.E+03

    = 1/12 x b x h3

    = mm4

    2 Loading

    = 0.6 kNm-2

    = 0.5 kNm-2

    = (DL+IL) x JS xLe

    = 1.0868 kN

    3 K-Factors

    = 1

    8.1E+06

    Effective span

    Breadth of Section, b

    Depth of section, h

    Cross-sectional area, A

    Spacing of Rafters, JS

    Second moment of area Ixx

    Dead Load, DL

    Imposed Load, IL

    Total Load, W

    Service class 1 (K2, Table 16) K2

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    35/68

    = 1 for longterm

    Bearing : assume 50 mm, but located>75 mm

    from the end of the member (K4, Table 18) = 1

    = 1 for no notch

    = 1

    = (300 mm /h)0.11

    K7 = 1.10109106

    = 1.1

    4 Grade Stress

    BS 5268: Part 2, Tables 14

    Kempas Grade HS Strength Class

    = 19.3 Nmm-2

    = 4.3 Nmm-2

    no wa

    = 2.3 Nmm-2

    = Nmm-2

    5 Bending stress( Ref:Example 5.8 pages (233-237) and page 1317 of APPENDIX from Analysis of structure Vol-1 by

    = W x (L2-a

    2)2

    8.L2

    L = 2470 mm

    = 2.47 m

    a = 1820 mm

    1.82 m

    = W x (L2-a

    2)2

    8.L2

    = 0.070098719 kN-m

    = bh2/6

    = mm3

    = M/ Zprovided

    = Nm-2

    = 19.3 x K2.K3.K6.K

    23.37616321 Nm-2

    6 Lateral stability

    = 2.5

    End held in position and compression edge held in line as by direct connection of sheating,

    19100

    1.30E+05

    5.38.E-01

    Load Duration(K#, Table 17) K3

    Notch end effect (K5,Clause 2.10.4)

    Form factor K6 (K6, Clause 2.10.5)

    Depth factor (K7 Clause 2.10.6)

    Load sharing appies with Purlin(K8, Clause 2.9)K8

    Bending parallel to grain m.g.//

    Compression perpenidcular to grain c.g.pp

    Shear parallel to grain g.//

    Mean modulus of elasticity, load sharing Emean

    Applied bending moment

    Applied bending moment

    Section modulus Zprovided

    Applied bending stress

    Permissible bending stress

    BS 5268; Part 2, Clause 2.10.8, and Table 19

    Maximum depth to breadth ratio, h/b

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    36/68

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    37/68

    = 0.01 mm

    = -0.11 mm

    ( Ref:Deflection Limit from page 68 of Structural Engineer's Pocket Book by FIONA COBB )

    = Le/330 Or 14 mm

    = 7.484848485 mm

    = ( 19 .2) .( M )

    ( b . h ) . EDefelection due toShear s

    Total Defelection due toShear plus Bending T

    Permissible deflection adm

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    38/68

    O.k

    178.0561

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    39/68

    O.k

    mm2

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    40/68

    ne

    rof V.N.Vaziani, Dr M.M. Ratwani,Dr. S.K.Duggal )

    .K8

    deck or joist

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    41/68

    rof V.N.Vaziani, Dr M.M. Ratwani,Dr. S.K.Duggal )

    2.47 m

    1.82 m

    0.564474 m

    0.44 kN/m=N/mm

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    42/68

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    43/68

    Lets check deflection

    It follows : Example 4.2 Design of Main Beam from Structural Timber Design By Abdy Keramani

    2470 mm length Span Continuation of Cantilever Portion

    1 Geomatric Properties

    = 4.81 m= 0.4 m

    Raft Dimension

    = 50 mm

    = 150 mm

    = b x h

    = 7.5 x 1.E+03 mm2

    = 1/12 x b x h3

    = mm4

    2 Loading

    = 0.6 kNm-2

    = 0.5 kNm-2

    = (DL+IL) x JS xLe

    = 2.1164 kN

    3 K-Factors

    = 1

    = 1 for longterm

    Bearing : assume 50 mm, but located>75 mm

    from the end of the member (K4, Table 18) = 1

    = 1 for no notch

    = 1

    = (300 mm /h)0.11

    K7 = 1.079228237

    = 1.1

    4 Grade Stress

    BS 5268: Part 2, Tables 14

    Kempas Grade HS Strength Class

    = 19.3 Nmm-2

    = 4.3 Nmm-2

    no wane

    = 2.3 Nmm-2

    = Nmm-2

    5 Bending stress

    ( Ref:Example 5.8 pages (233-237) and page 1317 of APPENDIX from Analysis of structure Vol-1 by Prof V.N.V

    19100

    Depth factor (K7 Clause 2.10.6)

    Load sharing appies with Purlin(K8, Clause 2.9)K8

    Bending parallel to grain m.g.//

    Compression perpenidcular to grain c.g.pp

    Shear parallel to grain g.//

    Mean modulus of elasticity, load sharing Emean

    Imposed Load, IL

    Total Load, W

    Service class 1 (K2, Table 16) K2

    Load Duration(K#, Table 17) K3

    Notch end effect (K5,Clause 2.10.4)

    Form factor K6 (K6, Clause 2.10.5)

    Effective spanSpacing of Rafters, JS

    Breadth of Section, b

    Depth of section, h

    Cross-sectional area, A

    Second moment of area Ixx

    1.4E+07

    Dead Load, DL

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    44/68

    = W x (L2-a

    2)

    2

    8.L2

    L = 4810 mm

    = 4.81 m

    a = 0 mm

    0 m

    = W x (L2-a

    2)

    2

    8.L2

    = 1.2724855 kN-m

    = bh2/6

    = mm3

    = M/ Zprovided

    = Nm-2

    = 19.3 x K2.K3.K6.K7.K8

    22.91201546 Nm-2

    6 Lateral stability

    = 3

    End held in position and compression edge held in line as by direct connection of sheating, deck or joi

    7 Shear stress

    = W(N+L)2/2Le kN

    W = 0.44 kN/m =N/mm

    = W(N+L)2/2Le

    = 5212.730769 N

    = 3 Fv

    2 b .

    = 1.042546154

    = 2.3 x K2.K3.K5.K8

    L=9'-9" Span following Cantilever

    Applied shear force from shear force diagram

    Applied shear force

    Applied shear stress a

    Applied shear stress

    Permissible shear stress, no notch

    6.79.E+00

    Permissible bending stress

    BS 5268; Part 2, Clause 2.10.8, and Table 19

    Maximum depth to breadth ratio, h/b

    Applied shear force from shear force diagram

    N=6'-0" Cantilever portion

    Applied bending moment

    Applied bending moment

    Section modulus Zprovided

    1.88E+05

    Applied bending stress

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    45/68

    = 2.53

    8 Bearing stress

    = 5.213 kN

    Assume bearing width, bw, of 50 mm either side

    bw = 100

    = Fv/(b .bw)

    = 1.042546154

    = 4.3 x K2.K3.K4.K8

    = 4.73

    =

    9 Deflection

    = Emean

    ( Ref:Example 5.8 pages (233-237) and page 1317 of APPENDIX from Analysis of structure Vol-1 by Prof V.N.V

    l = 4.81

    a= 0

    = (l2-a

    2)/2l x= 2.405

    = 0.5 w= 0.44

    = 0

    = wl4(m

    4-2m

    3(1-n

    2)+m(1-2n

    2))

    24EI

    = 11.42 mm

    = 0.17 mm

    = 11.59 mm

    ( Ref:Deflection Limit from page 68 of Structural Engineer's Pocket Book by FIONA COBB )

    = Le/330 Or 14 mm

    = 14.57575758 mm

    ( b . h ) . E

    Total Defelection due toShear plus Bending T

    Permissible deflection adm

    x

    m=x/l

    n=a/l

    m

    Defelection due toShear s =

    Permissible shearing stress

    Minimum required bearing width

    Load Sharing system E

    Max Defelection due to Bending at x=(l2-a2)/2l m =

    ( 19 .2) .( M )

    Applied Load from shear force

    Applied bearing stress c.a.pp

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    46/68

    Lets Check with Interaction FormulaUDL on Member = 0.44 kN/m

    = 0.55756767 N

    = 4.81 m

    = 0 m

    = 5.0013

    = 0

    = 1.2724855 kN m

    = 50 x 150

    Z = 1.88E+05

    m,a = 6.786589333

    c,a = 7.43424E-05

    x = 346.5002282

    y = 115.5000761

    = 346.5002282

    K12 = 0.0339821 For Medium

    K3 = 1.25

    c,g = 19.4

    c,adm = 0.824065919 > 7.43E-05 O.k

    Trail section

    Axial Loading on Member

    Horizontal Length of Member X2

    Horizontal Length of Cantilever X1

    Inclined Length of Member l

    Inclined Length of Cantilever a

    Moment on Member

    Check for very short term condition

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    47/68

    K3 = 1.75

    K12 = 0.089337591 346.5002

    c,adm = 3.033011216

    c,a = 7.43424E-05

    K7 = 1.079228237

    m,g = 19.3

    m,adm = 36.45093369

    m,a = 6.79E+00

    Euler Critical Stress

    e = 1 N/mm2

    Euler Co-efficient Keu = 0.999992432

    Interaction Formula = 0.186185648 + 9.02E-05

    = 0.186275862 < 1 O.k

    For =

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    48/68

    ziani, Dr M.M. Ratwani,Dr. S.K.Duggal )

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    49/68

    t

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    50/68

    ziani, Dr M.M. Ratwani,Dr. S.K.Duggal )

    m

    m

    m

    kN/m=N/mm

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    51/68

    Lets check deflection

    It follows : Example 4.2 Design of Main Beam from Structural Timber Design By Abdy Keramani

    2470 mm length Span Continuation of Cantilever Portion

    1 Geomatric Properties

    = 2.31 m= 0.4 m

    Raft Dimension

    = 50 mm

    = 150 mm

    = b x h

    = 7.5 x 1.E+03 mm2

    = 1/12 x b x h3

    = mm4

    2 Loading

    = 0.6 kNm-2

    = 0.5 kNm-2

    = (DL+IL) x JS xLe

    = 1.0164 kN

    3 K-Factors

    = 1

    = 1 for longterm

    Bearing : assume 50 mm, but located>75 mm

    from the end of the member (K4, Table 18) = 1

    = 1 for no notch

    = 1

    = (300 mm /h)0.11

    K7 = 1.079228237

    = 1.1

    4 Grade Stress

    BS 5268: Part 2, Tables 14

    Kempas Grade HS Strength Class

    = 19.3 Nmm-2

    = 4.3 Nmm-2

    no wane

    = 2.3 Nmm-2

    = Nmm-2

    5 Bending stress

    ( Ref:Example 5.8 pages (233-237) and page 1317 of APPENDIX from Analysis of structure Vol-1 by Prof V.N.V

    Mean modulus of elasticity, load sharing Emean 19100

    Form factor K6 (K6, Clause 2.10.5)

    Depth factor (K7 Clause 2.10.6)

    Load sharing appies with Purlin(K8, Clause 2.9)K8

    Bending parallel to grain m.g.//

    Compression perpenidcular to grain c.g.pp

    Shear parallel to grain g.//

    Dead Load, DL

    Imposed Load, IL

    Total Load, W

    Service class 1 (K2, Table 16) K2

    Load Duration(K#, Table 17) K3

    Notch end effect (K5,Clause 2.10.4)

    Effective spanSpacing of Rafters, JS

    Breadth of Section, b

    Depth of section, h

    Cross-sectional area, A

    Second moment of area Ixx

    1.4E+07

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    52/68

    = W x (L2-a

    2)

    2

    8.L2

    L = 2310 mm

    = 2.31 m

    a = 0 mm

    0 m

    = W x (L2-a

    2)

    2

    8.L2

    = 0.2934855 kN-m

    = bh2/6

    = mm3

    = M/ Zprovided

    = Nm-2

    = 19.3 x K2.K3.K6.K7.K8

    22.91201546 Nm-2

    6 Lateral stability

    = 3

    End held in position and compression edge held in line as by direct connection of sheating, deck or joi

    7 Shear stress

    = W(N+L)2/2Le kN

    W = 0.44 kN/m =N/mm

    = W(N+L)2/2Le

    = 5212.730769 N

    = 3 Fv

    2 b .

    = 1.042546154

    = 2.3 x K2.K3.K5.K8

    Applied shear stress

    Permissible shear stress, no notch

    N=6'-0" Cantilever portion

    L=9'-9" Span following Cantilever

    Applied shear force from shear force diagram

    Applied shear force

    Applied shear stress a

    Applied bending stress

    1.57.E+00

    Permissible bending stress

    BS 5268; Part 2, Clause 2.10.8, and Table 19

    Maximum depth to breadth ratio, h/b

    Applied shear force from shear force diagram

    Applied bending moment

    Applied bending moment

    Section modulus Zprovided

    1.88E+05

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    53/68

    = 2.53

    8 Bearing stress

    = 5.213 kN

    Assume bearing width, bw, of 50 mm either side

    bw = 100

    = Fv/(b .bw)

    = 1.042546154

    = 4.3 x K2.K3.K4.K8

    = 4.73

    =

    9 Deflection

    = Emean

    ( Ref:Example 5.8 pages (233-237) and page 1317 of APPENDIX from Analysis of structure Vol-1 by Prof V.N.V

    l = 2.31

    a= 0

    = (l2-a

    2)/2l x= 1.155

    = 0.5 w= 0.44

    = 0

    = wl4(m

    4-2m

    3(1-n

    2)+m(1-2n

    2))

    24EI

    = 0.61 mm

    = 0.04 mm

    = 0.65 mm

    ( Ref:Deflection Limit from page 68 of Structural Engineer's Pocket Book by FIONA COBB )

    = Le/330 Or 14 mm

    = 7 mm

    ( 19 .2) .( M )

    ( b . h ) . E

    Total Defelection due toShear plus Bending T

    n=a/l

    Permissible deflection adm

    m

    Defelection due toShear s =

    Load Sharing system E

    Max Defelection due to Bending at x=(l2-a2)/2l m =

    x

    m=x/l

    Applied Load from shear force

    Applied bearing stress c.a.pp

    Permissible shearing stress

    Minimum required bearing width

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    54/68

    Lets Check with Interaction FormulaUDL on Member = 0.44 kN/m

    = 0.267771584 N

    = 2.31 m

    = 0 m

    = 2.399708

    = 0

    = 0.2934855 kN m

    = 50 x 150

    Z = 1.88E+05

    m,a = 1.565256000

    c,a

    = 3.57029E-05

    x = 166.2566472

    y = 55.41888239

    = 166.2566472

    K12 = 0.136524546 For Medium

    K3 = 1.25

    c,g = 19.4

    c,adm = 3.310720248 > 3.57E-05 O.k

    Trail section

    Axial Loading on Member

    Horizontal Length of Member X2

    Horizontal Length of Cantilever X1

    Inclined Length of Member l

    Inclined Length of Cantilever a

    Moment on Member

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    55/68

    K3 = 1.75

    K12 = 0.101707005 166.2566

    c,adm = 3.452952825

    c,a = 3.57029E-05

    K7 = 1.079228237

    m,g = 19.3

    m,adm = 36.45093369

    m,a = 1.57E+00

    Euler Critical Stress

    e = 6 N/mm2

    Euler Co-efficient Keu = 0.999999047

    Interaction Formula = 0.042941492 + 1.08E-05

    = 0.042952276 < 1 O.k

    Check for very short term condition

    For =

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    56/68

    ziani, Dr M.M. Ratwani,Dr. S.K.Duggal )

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    57/68

    t

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    58/68

    ziani, Dr M.M. Ratwani,Dr. S.K.Duggal )

    m

    m

    m

    kN/m=N/mm

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    59/68

    Lets check deflection

    It follows : Example 4.2 Design of Main Beam from Structural Timber Design By Abdy Keramani

    6050 mm length Span Continuation of Cantilever Portion = 0.00 mm

    1 Geomatric Properties

    = 6.05 m

    = 0.4 m

    Raft Dimension

    = 50 mm

    = 200 mm

    = b x h

    = 10 x 1.E+03

    = 1/12 x b x h3

    = mm4

    2 Loading

    = 0.6 kNm-2

    = 0.5 kNm-2

    = (DL+IL) x JS xLe

    = 2.662 kN

    3 K-Factors

    = 1

    = 1 for longterm

    Bearing : assume 50 mm, but located>75 mm

    from the end of the member (K4, Table 18) = 1

    = 1 for no notch

    = 1

    = (300 mm /h)0.11

    K7 = 1.045610747

    = 1.1

    4 Grade Stress

    BS 5268: Part 2, Tables 14

    Kempas Grade HS Strength Class

    = 19.3 Nmm-2

    = 4.3 Nmm-2

    no wa

    = 2.3 Nmm-2

    = Nmm-2

    5 Bending stress

    ( Ref:Example 5.8 pages (233-237) and page 1317 of APPENDIX from Analysis of structure Vol-1 by

    = W x (L2-a

    2)2

    8.L2

    L = 6050 mm

    Applied bending moment

    Load sharing appies with Purlin(K8, Clause 2.9)K8

    Bending parallel to grain m.g.//

    Compression perpenidcular to grain c.g.pp

    Shear parallel to grain g.//

    Mean modulus of elasticity, load sharing Emean 19100

    Total Load, W

    Service class 1 (K2, Table 16) K2

    Load Duration(K#, Table 17) K3

    Notch end effect (K5,Clause 2.10.4)

    Form factor K6 (K6, Clause 2.10.5)

    Depth factor (K7 Clause 2.10.6)

    Depth of section, h

    Cross-sectional area, A

    Second moment of area Ixx

    3.3E+07

    Dead Load, DL

    Imposed Load, IL

    Effective span

    Spacing of Rafters, JS

    Breadth of Section, b

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    60/68

    = 6.05 m

    a = 0 mm

    0 m

    = W x (L2-a

    2)2

    8.L2

    = 2.0131375 kN-m

    = bh2/6

    = mm3

    = M/ Zprovided

    = Nm-2

    = 19.3 x K2.K3.K6.K

    22.19831617 Nm-2

    6 Lateral stability

    = 4

    End held in position and compression edge held in line as by direct connection of sheating,

    7 Shear stress

    = W(N+L)2/2Le kN

    W = 0.44 kN/m =N/mm

    = W(N+L)2/2Le

    = 5212.730769 N

    = 3 Fv

    2 b .

    = 0.781909615

    = 2.3 x K2.K3.K5.K

    = 2.53

    8 Bearing stress

    = 5.213 kNApplied Load from shear force

    Applied shear force from shear force diagram

    Applied shear force

    Applied shear stress a

    Applied shear stress

    Permissible shear stress, no notch

    Permissible bending stress

    BS 5268; Part 2, Clause 2.10.8, and Table 19

    Maximum depth to breadth ratio, h/b

    Applied shear force from shear force diagram

    N=6'-0" Cantilever portion

    L=9'-9" Span following Cantilever

    Applied bending moment

    Section modulus Zprovided

    3.33E+05

    Applied bending stress

    6.04.E+00

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    61/68

    Assume bearing width, bw, of 50 mm either side

    bw = 100

    = Fv/(b .bw)

    = 1.042546154

    = 4.3 x K2.K3.K4.K

    = 4.73

    =

    9 Deflection

    = Emean

    ( Ref:Example 5.8 pages (233-237) and page 1317 of APPENDIX from Analysis of structure Vol-1 by

    l =

    a=

    = (l2-a

    2)/2l x=

    = 0.5 w=

    = 0

    = wl4(m

    4-2m

    3(1-n

    2)+m(1-2n

    2))

    24EI

    = 12.06 mm

    = 0.20 mm

    = 12.26 mm

    ( Ref:Deflection Limit from page 68 of Structural Engineer's Pocket Book by FIONA COBB )

    = Le/330 Or 14 mm

    = 18.33333333 mm

    Lets Check with Interaction FormulaUDL on Member = 0.44 kN/m

    = 0.701306529 N

    Permissible deflection adm

    m

    Defelection due toShear s = ( 19 .2) .( M )

    ( b . h ) . E

    Total Defelection due toShear plus Bending T

    Max Defelection due to Bending at x=(l2-a2)/2l m =

    x

    m=x/l

    n=a/l

    Applied bearing stress c.a.pp

    Permissible shearing stress

    Minimum required bearing width

    Load Sharing system E

    Axial Loading on Member

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    62/68

    = 6.05 m

    = 0 m

    = 6.292487584

    = 0

    = 2.0131375 kN m

    = 50 x 200

    Z = 3.33E+05

    m,a = 6.039412500

    c,a = 7.01307E-05

    x = 435.9563281

    y = 108.989082

    = 435.9563281

    K12 = 0.021752194 For Medium

    K3 = 1.25

    c,g = 19.4

    c,adm = 0.527490711 > 7.01E-05

    K3 = 1.75

    K12 = 0.015758838

    c,adm = 0.535012561

    c,a = 7.01307E-05

    K7 = 1.045610747

    Trail section

    Check for very short term condition

    For =

    Horizontal Length of Member X2

    Horizontal Length of Cantilever X1

    Inclined Length of Member l

    Inclined Length of Cantilever a

    Moment on Member

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    63/68

    m,g = 19.3

    m,adm = 35.31550299

    m,a = 6.04E+00

    Euler Critical Stress e = 1 N/mm2

    = 0.999998006

    = 0.171013409 + 0.000133

    = 0.17114636 < 1

    Euler Co-efficient Keu

    Interaction Formula

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    64/68

    mm2

    ne

    rof V.N.Vaziani, Dr M.M. Ratwani,Dr. S.K.Duggal )

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    65/68

    .K8

    deck or joist

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    66/68

    rof V.N.Vaziani, Dr M.M. Ratwani,Dr. S.K.Duggal )

    6.05 m

    0 m

    3.025 m

    0.44 kN/m=N/mm

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    67/68

    O.k

    435.9563

  • 8/14/2019 K12 For Timber Designers' Manuel By me.xls

    68/68

    O.k