k kurokawa tokyotech

49
1 kurochan 12-15 Jan 2009 Prof. Kosuke Kurokawa Tokyo Institute of Technology (kurochan (a) iri.titech.ac.jp) Prof. Kosuke Kurokawa Tokyo Institute of Technology (kurochan (a) iri.titech.ac.jp) The particularity of the power network incorporating with the aggregation of distributed PV systems The particularity of the power network incorporating with the aggregation of distributed PV systems 12-15 January 2009

Upload: andrejcerne

Post on 27-Apr-2015

33 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: K Kurokawa TokyoTech

1 kurochan

12-15 Jan 2009

Prof. Kosuke KurokawaTokyo Institute of Technology(kurochan (a) iri.titech.ac.jp)

Prof. Kosuke KurokawaTokyo Institute of Technology(kurochan (a) iri.titech.ac.jp)

The particularity of the power network incorporating with the aggregation

of distributed PV systems

The particularity of the power network incorporating with the aggregation

of distributed PV systems12-15 January 2009

Page 2: K Kurokawa TokyoTech

2 kurochan

12-15 Jan 2009

Part 1:

General Considerations – Particularity of PV

Part 2:

Aggregation of a large number of PV systems

Part 3:

Bulk Systems – LSPV to VLSPV

The particularity of the power network incorporating with the aggregation of

distributed PV systems

Page 3: K Kurokawa TokyoTech

3 kurochan

12-15 Jan 2009

1. Irregularity: - Random fluctuation for seconds, minutes to

hours by cloud movementcan be equalized over a broader area

2. Regularity: - Daily change by earth rotation: day and night

can be equalized by east-west inter-tie- Seasonal change by orbital motion

can be equalized by north-south intertie- Limited capacity factor < 2800/8760 ×100 %

≈30 % terrestrially max3. Universality:

- almost Everywhere Accessible: peaceful energy- terrestrial max: 2800 kWh/m2 in Sahara

- however, rather evenly distributed: e.g., 1400 kWh /m2 in Japan; 1200 kWh/m2 in Central Europe

Particularity in Solar PV Power GenerationB

road

er

Are

aLo

ng

er

Ter

m

Page 4: K Kurokawa TokyoTech

4 kurochan

12-15 Jan 2009

NEDO’s City of Ota Project

Page 5: K Kurokawa TokyoTech

5 kurochan

12-15 Jan 2009

Tokyo Dome

TokyoJapan

Page 6: K Kurokawa TokyoTech

6 kurochan

12-15 Jan 2009

Residential PV Potential Central Tokyo (23-Wards)

yellow dots: residential roofs

Residential Roofs

20%

A Half of Roofsfor PV

Annual E. = 10.8 TWh/Y

PV capacity = 9.7 GW

PV area = 65.0 km2

Palace

TYO Dome

72% population in Greater Tokyo(8.5 /11.8 Mln)

Page 7: K Kurokawa TokyoTech

7 kurochan

12-15 Jan 2009

Very-Thin Cell/Multi-junction 7 JPY/kWh

Elec

tric

ity C

ost-d

own

New MaterialEntering

Battery Backed-up

Large SystemLong Life BOS

<<Cell Tech>>Cost Reduction by Tech. Generation

Change

Bulk Si &Thin Film Si/ Compound

Grid-Connected PV with Higher

Degree of Autonomy

Active Grid

Control

New Material/ Structure

Ex: Dye-sensitized

2002 2007 2010 2020 2030

~50JPY/kWh

30 JPY/kWh

23JPY/kWh

14 JPY/kWh

<<System Tech>>Less-dependent on

Grid from Individual to Clustered

http://www.nedo.go.jp/english/archives/161027/pv2030roadmap.pdf

22%η module 50JPY/W

PV2030 Roadmap

Page 8: K Kurokawa TokyoTech

8 kurochan

12-15 Jan 2009

250

200

150

100

50

0

7,950

8,000In

stal

labl

e PV

(GW

) in

2030

Case 1

54GW

Case 2

102GW

Case 3

202GW

Potential

8,000GW

Industrial

Use

SingleFamily

UnusedH2, etc.

Multi-Family

Public

TransportBusiness

PV2030Base Case

10% approx. of Domestic Electricity

Case 1: Business as usualCase 2: R&D and Market Penetration according PV2030 Base CaseCase 3: Accelerated R&D and Market Penetration with large–scale industrial usePotential: Physical Limit by residential, public, industrial, unused land, etc.

Installable PV (GW) up to 2030

2 trillion JPY/Y Market

23JPY /kWh

14JPY /kWh

7JPY/kWh

Page 9: K Kurokawa TokyoTech

9 kurochan

12-15 Jan 2009

NEDO’s PV Cluster Demonstration Experiment Project in City of Ota

No. of PV Houses: 550

Page 10: K Kurokawa TokyoTech

10 kurochan

12-15 Jan 2009

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700

東西距離 [m]

南北

距離

[m

]

W-E distance (m)

S-N

dis

tan

ce (

m)

NEDO’s PV Cluster D e m o n s t r a t i o n Experiment Project i n C i t y o f O t a

No. of PV Houses: 550

Page 11: K Kurokawa TokyoTech

11 kurochan

12-15 Jan 2009

Example:Equalization over Area

Average

≈75

0m

≈500m

Ver

tical

Axi

s: Ir

radi

ance

(kW

m-2

)H

oriz

onta

l Axi

s: T

ime

of d

ay (h

our:

min

ute)

“Josai-no-Mori”New Town

Ota City

Page 12: K Kurokawa TokyoTech

12 kurochan

12-15 Jan 2009

1 PV House 516 PV Houses

0 2 4 6 8 10 12 14 16 18 20 22 240

0.5

1

1.5

2

2.5

32007年07月31日 (番号:001)

時間 [hour]

有効

電力

[kW

]

0 2 4 6 8 10 12 14 16 18 20 22 240

200

400

600

800

1000

1200

1400

1600

2007年07月31日 (面)

時間 [hour]

有効

電力

[kW

]

NEDO’s City of Ota Project

Time of day (hour) Time of day (hour)

PV

out

put (

kW)

PV

out

put (

kW)

Equalization

31 July 2007) 31 July 2007)

Page 13: K Kurokawa TokyoTech

13 kurochan

12-15 Jan 2009

Equalization – An Example

1 PV House 516 PV Houses

Time of day (hour) Time of day (hour)

PV

out

put (

kW)

PV

out

put (

kW)

Page 14: K Kurokawa TokyoTech

14 kurochan

12-15 Jan 2009

Fluctuation Energy by FrequencyP

ow

er S

pec

tru

m

Frequency (Hz)

Page 15: K Kurokawa TokyoTech

15 kurochan

12-15 Jan 2009

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fluctuation Energy by Time PeriodP

ow

er S

pec

tru

m

Period (s)

Page 16: K Kurokawa TokyoTech

16 kurochan

12-15 Jan 2009

0 2 4 6 8 10 12 14 16 18 20 22 240

0.5

1

1.5

2

2.5

3

2007年08月07日 (番号:001)

時間 [hour]

有効

電力

[kW

]

0 2 4 6 8 10 12 14 16 18 20 22 240

50

100

150

200

250

300

350

400

2007年07月31日 (面)

時間 [hour]

有効

電力

[kW

]

1 PV House 516 PV Houses

Residential Loads

Larger Equalization

Page 17: K Kurokawa TokyoTech

17 kurochan

12-15 Jan 2009

ExpectedOverall

PV Output

Source: Agency of Resources and Energy, METI, 9 Sept. 2008

Expected Equaliztion for Broader Area

METI’s Monitoring Plan

≈200 sites over Japan

Page 18: K Kurokawa TokyoTech

18 kurochan

12-15 Jan 2009

Regularity - Residential PV Subsidy Program

0

20

40

60

80

100

120

4 5 6 7 8 9 10 11 12 1 2 3

1997 年度

1998 年度

1999 年度

2000 年度

2001 年度

2002 年度

2003 年度

月別平均

 全平均

最大年 (FY2001) = 1055 (kWh/kW)最小年 (FY2003) = 886 (kWh/kW)平 均 値 = 980 (kWh/kW)

FY97FY98

FY03

FY00FY01

FY99

FY02

平均年 全平均

月等

価稼

働時

間(k

Wh/

kW)

kWh/kW/YAverage for All Reported HousesM

on

thly

Yie

ld (

h)

FY1997-2003

Source: New Energy Foundation

Max (FY2001): 1055 (h)Min (FY2003): 896 (h)Average: 980 (h)

7 year Ave./M 7 year Ave./Y

Month

Page 19: K Kurokawa TokyoTech

19 kurochan

12-15 Jan 2009

0

20

40

60

80

100

120

4 5 6 7 8 9 10 11 12 1 2 3

1997 年度

1998 年度

1999 年度

2000 年度

2001 年度

2002 年度

2003 年度

月別平均

 全平均

最大年 (FY2001) = 1055 (kWh/kW)最小年 (FY2003) = 886 (kWh/kW)平 均 値 = 980 (kWh/kW)

FY97FY98

FY03

FY00FY01

FY99

FY02

平均年 全平均

月等

価稼

働時

間(k

Wh/

kW)

Seasonal Regularity - Residential PV Subsidy ProgramAverage Monthly Yield for All Reported Houses

Mo

nth

ly Y

ield

(h

)

Source: New Energy Foundation

Max (FY2001): 1055 (h)Min (FY2003): 896 (h)Average: 980 (h)

7 year Ave./M 7 year Ave./Y

Month

PV Yield (h) in FY1997 to 2003

FY1997FY1998FY1999FY2000FY2001FY2002FY2003Monthly average for 7 yrsAnnual average for 7 yrs

Page 20: K Kurokawa TokyoTech

20 kurochan

12-15 Jan 2009

GWrelative to

PV Yield (h)by NEF

FYFYFY

FYFY

Source 1: Typical 5 electricity consumptions by 10 utilities in Japan but 9 in 1975 reported by the Federation of Electric Power Companies of Japan.Source 2: Kurokawa added PV generation curve coincident to monthly PV yield reported by NEF as on the previous slide.

Seasonal Balance between PV and Electricity

Month

Excess

Shortage

Page 21: K Kurokawa TokyoTech

21 kurochan

12-15 Jan 2009

Daily Power Balance between PV and Electricity

31 Jul 7529 Aug 8525 Aug 95 24 Jul 0120 Jul 04

GW

10 Utilities in Japan but 9 in 1975Source: The Federation of Electric Power Companies of Japan + Kurokawa

100GW

Extreme Case A: 100 GW PV Introduction over Japan

Clear day profile

Page 22: K Kurokawa TokyoTech

22 kurochan

12-15 Jan 2009

Daily Power Balance between PV and Electricity

31 Jul 7529 Aug 8525 Aug 95 24 Jul 0120 Jul 04

GW

10 Utilities in Japan but 9 in 1975Source: The Federation of Electric Power Companies of Japan + Kurokawa

100GW

150GW

Not Suitable for Nuclear Operation

ExcessExtreme Case B: 150 GW PV

Page 23: K Kurokawa TokyoTech

23 kurochan

12-15 Jan 2009

Daily Power Balance between PV and Electricity

31 Jul 7529 Aug 8525 Aug 95 24 Jul 0120 Jul 04

GW

10 Utilities in Japan but 9 in 1975Source: The Federation of Electric Power Companies of Japan + Kurokawa

100GW

150GW

Role of Battery Storage

Extreme Case C: 150 GW PV + Storage

Stable margin for nuclear operation

Page 24: K Kurokawa TokyoTech

24 kurochan

12-15 Jan 2009

Issues: Massive, Bulky PV Penetration and its Integration to Power Systems

- In spite of large possibility for PVs in kWh, Solar Power Peak in kW tends to become much larger than gross electric power system peak .

- In case of Nuclear Power Station: utilizing Pumping-up Station for adjusting power balance.

- In case of the higher penetration of PV, some energy storage may be introduced. What Kind, Where and How Large?

Page 25: K Kurokawa TokyoTech

25 kurochan

12-15 Jan 2009

Nuclear PSPumping-up

Substation

PV bPV b

Existing DistributionSubstation

B

Orderly Flow

Control

PVPVPV

incl. Eq.

Adv. Distr. Expected:B << Σb

to overcome voltage rise by reversal flow to minimize total cost

Location of Battery Storage

Bulk PV B

b: a distributed small battery for each houseΣb: aggregation of distributed small batteriesB: capacity of Battery stationB: capacity of battery station for Bulk PV

Page 26: K Kurokawa TokyoTech

26 kurochan

12-15 Jan 2009

MET-PV2 (Tokyo)

Number of Days0.000.180.36

0.540.720.9

1.08

1.261.44

0.00

0.18

0.540.720.9

1.08

1.261.44

PV E

nerg

y by

18%

Eff

icie

ncy

(kW

/m2 )

Hourly Irradiation for Average Year

Page 27: K Kurokawa TokyoTech

27 kurochan

12-15 Jan 2009

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

時刻(h)

負荷

量(kW

h/h)

FebJanMarDecAprNovSept

MayAugJulOctJunD

eman

d En

ergy

(kW

h/h)

Japanese Standard Time (h)

Monthly-Averaged Hourly Domestic Energy Consumption by A Fully Electrified Home

Monthly-Averaged Hourly Domestic Energy Consumption by A Fully Electrified Home

Note: Specified for year around 2030 by Jyukankyo Research Institute Inc.

Page 28: K Kurokawa TokyoTech

28 kurochan

12-15 Jan 2009

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000 1200 1400

蓄電池容量 (kWh)

電力

量 (

kWh)

余剰電力量

不足電力量

METPV2 (Tokyo)

Number of Days0.00

0.18

0.36

0.54

0.72

0.9

1.08

1.26

1.44

0.00

0.18

0.54

0.72

0.9

1.08

1.26

1.44PV

Ene

rgy

by 1

8% E

ffic

ienc

y (k

W/m

2 )

-800.0

-600.0

-400.0

-200.0

0.0

200.0

400.0

1 21

41

61

81

101

121

141

161

181 201

221

241

261 281 301 321

341

361

SOC

(kW

h)

Number of Days

SurplusShortage

Ener

gy (k

Wh)

Battery Capacity (kWh)

20 kWh preferred

Winter

Summer7 kW PV

1230 kWh1/60

Optimized Storage Capacity

Optimized Storage Capacity

Ignoring Seasonal Gap → supplied by Exteral Utility

Page 29: K Kurokawa TokyoTech

29 kurochan

12-15 Jan 2009

Efficient LNG-fired plants

Superconductingpower transmission

SolarOil LNG Coal Nuclear Power BiomassEfficiency improvement Low carbon Tech

Efficient coal-fired power plant

Advancednuclear power

Wind

Power generation/transmission

Power generation/transmission CCS

Innovative Photovoltaics

Sup

ply

sid

eD

eman

d s

ide

Hydrogen production/storage/transportPower storage Power electronics

Cross-sectionalCross-

sectional

HEMS/BEMS/Regional EMS

Efficient houses/bldgs.

Efficient lighting

Superheat pumps

Low energy IT devices/networks

Fuel cells for residential use

Residence/Building

Residence/Building

Innovative materials/manufacturing process

Steel-making process with hydrogen

IndustryIndustry

Key Innovative Energy Technologies toward “Cool Earth 50”

PHEV/EVITS FCVTransportTransport Biofuel

Page 30: K Kurokawa TokyoTech

30 kurochan

12-15 Jan 2009

At

leas

t 5

0%

Glo

bal

E

mis

sio

ns

Red

uct

ion

PV R&D Initiatives toward ‘Cool Earth 50’

English translation from http://www.iae.or.jp/research/result/ene_map_2008.html

2000 2010 2020 2030 2050

Electricity Cost Target 23 JPY/kWh 14 JPY/kWh 7 JPY/kWh

thin-bulk c-Sihybrid TF-SiCISdye-sensitizedpolymer R&D for

Tomorrow

2nd Gen2nd GenPV2030

η > 40%

1st Gen1st Genc-Sia-Si

Market Deployment& Dissemination Sunshine Project

New SS ProjectB

road

er

Dis

sem

inat

ion

ultra high efficiencymulti-junction cellquantum nano-structureothers innovative

Cool Earth 50 3rd Gen3rd Gen

InnovativePV Cells2008-2014

PV

Ele

ctri

city

Co

st

Co

mp

etit

ive

to M

assi

ve

Po

wer

NEW

Jpn. Yen /kWh

Page 31: K Kurokawa TokyoTech

31 kurochan

12-15 Jan 2009

Considerations on storage in Cool Earth 50

Ni-H

Capacitor

NaS

Li-metal, Li-S

20 years15,000 JPY/kWh

500 Wh/kg5,000 JPY/kWh

For Vehicles

For Stationary

Adv. Li-ion

Page 32: K Kurokawa TokyoTech

32 kurochan

12-15 Jan 2009

-

Network Topic in Cool Earth 50

HEMS

BEMS

Local-level EMS

*

* ESCO: Energy Service Company proposing business for energy conservation

Page 33: K Kurokawa TokyoTech

33 kurochan

12-15 Jan 2009

- Bulk storage with PV Power Plant

Considerations on storage battery for PV

• Possible Locations of Energy Storage in Grids with PV Systems (in summary)In the case of bulk introduction of PV among national electric grids

Preferable Principle: Social Cost Minimum to fulfill the balance of local energy supply and demand with local storage.

In the case of distributed approach of PV aggregation in urban residential communities

- Battery Station beside distribution substation, as a social infrastructure (its cost met by the society), not for individual PV homes

Battery controller gives an additional value –“Scheduled Orderly Power Flow”

Page 34: K Kurokawa TokyoTech

34 kurochan

12-15 Jan 2009

The Main Objectives:

- Maximize PV installation into a residential community.

- Allow grid power flow downward and upward equally.

- Stabilize the fluctuation of power flow specified by | PV ~ Load | to raise added value for purchase & sale.

- Minimize storage capacity by community-scale optimization.

- Extend to regional DES management in longer-term view.

Proposal of Autonomy Enhanced PV Clusters

Page 35: K Kurokawa TokyoTech

35 kurochan

12-15 Jan 2009

PE*Exte

rnal

Uti

lity

Orderly Flow

BatteryStation

Anchored to centre

Possible Solution: Storage Battery + PE

• Local Battery station for the community can be provide for massive PV clusters in conjunction with voltage distribution compensation by power electronics (PE) to accept 100% reversal power flow.

• This battery station can control power between its community and external utility to keep it in a pre-specified pattern.

AVR AVRPre-specifiedProfile

Q Compens.

PE*: power electronic controller

Page 36: K Kurokawa TokyoTech

36 kurochan

12-15 Jan 2009

有効

電力

(%)

4 8 12 16 20

100

024

Orderly Strategy for External Utility

Orderly Purchase from outside

Submit Purchase Plan to power pool prior to 24 hours before

Discharge

Discharge for Load

Charge orHP-hot water

Charge

Constant Power from outside without Q

(Winter Term: PC P Shortage)P/Q Zero Connection or Isolating

0

• Necessary InfoNext Day Load Next day PV GenBattery SOCNext Day ShortagePower Pool Trends

Load Profile

• Battery StorageAutonomy-Enhanced PV Cluster (AE-PVC) Function Following Fast Load Orderly PW Purchase

PV Gen

Page 37: K Kurokawa TokyoTech

37 kurochan

12-15 Jan 2009

AC Storage Device

Community Grids

Autonomy-Enhanced, Community-basePV Cluster Concept by employing Active Control

Community Substation

Inter-Utility Connector(Router)

Series Power Device

Inter-Feeder Router (LPC)

PVPV

PV

PVPV

PV

PVPV

PV

PVPV

PV

PVPV

PV

AC Storage Device

PVPV

PV

PVPV

PV

PVPV

PV

PVPV

PV

Shunt Power Device

Series Power Device

Shunt Power Device

Inter-Feeder Router (LPC)

Series Power Device

Ext

erna

l Util

ityLess Interactive

100% PV Clusters

AutonomyEnhanced

PVPV

PV

PVPV

PV

PVPV

PV

PVPV

PV

PVPV

PV

AE-PVC Concept

Page 38: K Kurokawa TokyoTech

38 kurochan

12-15 Jan 2009

Area BArea A

Decentralized, Autonomous, Asynchronous Power Router - Basic Concept

Power Router: Asynchronous, i-controlled AC-AC converterPPV: Current controlled PV Inv.,PA, PB: autonomously balanced by freq.-droop for each town.,)QA, QB: autonomously balanced by voltage-droop for each town,PAB, (QAB): adjusted according to ΔfA~ΔfB (and VA~VB)

PAB

(QAB)

PA1QA1

PBQB

PA2QA2

i-command

ΔVA=VA-VA0

Δ fA =fA-fA0

CompareΔVB=VB-VB0

Δ fB =fB-fB0

PPV

i-controlled

PPV

i-controlled

PowerRouter

Source: K. Kurokawa: Further considerations on solar PV community concept consisting of massive roof-top PVs and domestic loads, 22nd EU-PVSEC, Milan, 3-7 Sept. 2007, PL2.

Page 39: K Kurokawa TokyoTech

39 kurochan

12-15 Jan 2009

Decentralized, Autonomous Power RouterExpected Basic Control Functions

Router Functions realized by Asynchronous Power Conditioners such as BTB, Matrix Converters, etc.

Current control on individual PVs and droop V/F control on battery station(s).

Power Flow Control by localized sensing on router terminals, including zero P/Q control.

Local Voltage Control. Local Frequency Control independent from External Grids Local Frequency adjusted according to supply/demand

balance.The possibility of Next Generation Power Electronics by

SiC Technology for reducing size/cost. (BTB, Matrix C.)

Page 40: K Kurokawa TokyoTech

40 kurochan

12-15 Jan 200923MW La Hoya Plant - Cloud Movement !

Page 41: K Kurokawa TokyoTech

41 kurochan

12-15 Jan 2009

60MW PV Plant: Olmedilla (Cuenca)Presently World Largest PV Plant

08905

Page 42: K Kurokawa TokyoTech

42 kurochan

12-15 Jan 2009

Prim

ary

Ene

rgy

Sup

ply

[EJ/

Y]

1,600

1,400

1,200

1,000

800

600

400

200

0

WBGU: German Advisory Council on Global Change

YEAR2000 2060 2070 20820502010 2020 2030 2040 2100

GeothermalOther REsSolar heat

Solar electricity

Wind

Biomass adv

Nuclear PWGasCoalOil

Biomass tradHydro-PW

Prim

ary

Ene

rgy

Sup

ply

[EJ/

Y]

1,600

1,400

1,200

1,000

800

600

400

200

02000 2010 2020 2030 2040 2050

YEAR

WBGU: German Advisory Council on Global Change

Our Future Directions toward 2100

Page 43: K Kurokawa TokyoTech

43 kurochan

12-15 Jan 2009Proposed Scenarios toward 2030-2050 & beyond

Community Scale Grid Scenario (Micro-Grid)

VLS-PV to Global-Grid

PV module Technology1974 2000 2100205020302010

Large Scale to Very Large Scale PV

Developing Region Scenario

1G 2G3GRecycle 4.4TW/Y

133TW cum4.4TW/Y

SHS

Large Scale to Very Large Scale PV

Rooftop PVCommunity-Grid

+ StorageInternational to Global Grid

+ Storage

Mini-Grid+ Storage

kk-Ver.f08829

Glo

bal

En

erg

y M

ix

Page 44: K Kurokawa TokyoTech

44 kurochan

12-15 Jan 2009

PossibleMEDITERRANEAN NETWORKTO GLOBAL NETWORK

PossibleMEDITERRANEAN NETWORKTO GLOBAL NETWORK

IEA PVPS Task8

Page 45: K Kurokawa TokyoTech

45 kurochan

12-15 Jan 2009

Page 46: K Kurokawa TokyoTech

46 kurochan

12-15 Jan 2009

• Solar PV is not a niche energy source: it is clearly a major contribution for the 21st century energy portfolio.

• Residential PV rooftops are the first option -meaningful for urban communities; they also play a part of the earlier investment in industrial applications for stations.

• Improvements in the distribution grids are required to integrate massive aggregation of residential PV and must be part of urban planning .

• Higher Penetration requires the modification of grid operation for balancing demand/supply and the deregulation of power systems.

• Bulk PV systems will require substantial social support to move forward in the 21st century.

• Power grid modification by the principle of Social Cost Minimum and its cost shared by the whole society with consensus.

Recommendations

Page 47: K Kurokawa TokyoTech

47 kurochan

12-15 Jan 2009

Prof. Kosuke Kurokawa([email protected])Tokyo Institute of Technology

Prof. Kosuke Kurokawa([email protected])Tokyo Institute of Technology

The particularity of the power network incorporating with the aggregation

of distributed PV systems

The particularity of the power network incorporating with the aggregation

of distributed PV systems

Page 48: K Kurokawa TokyoTech

48 kurochan

12-15 Jan 2009

[PV2030](1) K. Kurokawa, F. Aratani: Perceived technical issues accompanying large PV development and Japanese "PV2030“, 19th

EU-PVSEC, Paris, 7-11 June 2004, 6DP2.5.(2) K. Kurokawa: Photovoltaic technology direction - Japanese "PV2030", 31st IEEE-PVSC, Orlando, Jan. 3-7, 2005,Keynote

Session 2.

[Network Concepts and Advanced PCSs for PVs](3) K. Kurokawa: Areal evolution of PV systems, PVSEC-9, Miyazaki, PL-II-3, pp.881-884, Nov. 11-15, 1996.(4) K. Kurokawa, S. Wakao, Y. Hayashi, I. Ishii & K. Otani, M. Yamaguchi, T. Ishii, Y. Ono: Conceptual Study on Autonomy-

Enhanced PV Clusters for Urban Community to Meet the Japanese PV2030 Requirements, 20th EU-PVSEC, Barcelona, 2005.6.6-10, 6DP.2.3.

(5) Shinji Wakao, Yasuhiro Hayashi, Naoki Ueda, Akitaka Onoyama, Kosuke Kurokawa, Masahide Yamaguchi, Kenji Otani, Yukiyoshi Ono: Investigation of the Configuration of Autonomy-Enhanced PV Clusters for Urban Community, PVSEC-15, Shanghai, 10-14 Oct. 2005, PV0654-O5.

(7) Masahide Yamaguchi, Tatsuya Kawamatsu, Takafumi Takuma, Kosuke Kurokawa, Kenji Otani, Shinji Wakao, Yasuhiro Hayashi, Yukiyoshi Ono:Investigation of Battery Storage Station of Autonomy-Enhanced PV Clusters for Urban CommunityPVSEC-15, Shanghai, 10-14 Oct. 2005.

(8) Kyungsoo Lee, Kosuke Kurokawa: Study on D-UPFC in the clustered PV system with Grid, PVSEC-15, Shanghai, 10-14 Oct. 2005, PV0722-05.

(9) K. Kurokawa, Shinji Wakao, Yasuhiro Hayashi, Hiroshi Yamaguchi, Kenji Otani, Masahide Yamaguchi, Takafumi Ishii and Yukiyoshi Ono: Autonomy-Enhanced, PV Cluster Concept for Solar Cities to Meet the Japanese PV2030 Roadmap2nd International Solar Cities Congress, Oxford UK, 3-6 April 2006, 7E.2.

(10) K. Kurokawa: A conceptual study on solar PV cities for 21st century: WCPEC-4, Hawaii, April 8-12, 2006(11) Kyungsoo Lee, Hirotaka Koizumi, Kosuke Kurokawa: Voltage Control of D-UPFC between a Clustered PV System and

Distribution System, PESC06, Jeju, 2006.6.18-22, p.1367-1371.(12) Kyungsoo Lee, Hirotaka Koizumi, Kosuke Kurokawa: Voltage sag/swell controller by means of D-UPFC in the distribution

system, WCPEC-4, Hawaii, April 8-12, 2006. (13) Lee Kyungsoo, K.yamaguchi, H.Koizumi, K.Kurokawa: D-UPFC as a Voltage Regulator in the Distribution System,

Renewable Energy 2006, 2006.10.10-13, P-N-5.(14) T.Kamakura, K.Hayashi, Y.Ohashi, K.Kurokawa: Considerations on power line router by using matrix converter,

Renewable Energy 2006, 2006.10.10-13, P-Pv-7.(15) Y.Nakamura, H.Koizumi, K.Kurokawa: A new type of scaled-down network simulator for testing PV inverters, Renewable

Energy 2006, 2006.10.10-13, P-Pv-11.(16) H. Igarashi, T. Sato, K. Kurokawa: About the Examination of an Alternative Technique of the Motor Load According to the

Resonance Load, Renewable Energy 2006, 2006.10.10-13, P-Pv-17.(17) T. Shimada, K. Kurokawa, T. Yoshioka: Grid-connected photovoltaic system with battery, Storage Conference, Aix en

Provence, Oct. 20-22, 2003.(18) T. Shimada, K. Kurokawa: Grid-connected photovoltaic systems with battery storages, RENEWABLE ENERGY 2006,

2006.10.10-13, O-Pv-6-1.(19) T. Shimada, K. Kurokawa: High precision simulation model of battery characteristics, RENEWABLE ENERGY 2006,

2006.10.10-13, P-Pv-1.(20) K. Kurokawa: Further considerations on solar PV community concept consisting of massive roof-top PVs and domestic

loads, 22nd EU-PVSEC, Milan, 3-7 Sept. 2007, PL2.

REFERENCES

Page 49: K Kurokawa TokyoTech

49 kurochan

12-15 Jan 2009

[Evaluation for NEDO/City of Ota Project](21) Yuzuru Ueda, Takashi Oozeki, Kosuke Kurokawa, Takamitsu Itou, Kiyoyuki Kitamura, Yusuke Miyamoto, Masaharu

Yokota, Hiroyuki Sugihara: Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems” Electrical Engineering in Japan, Vol. 158, No. 2, pp9-19, 30 January 2007.

(22) Yuzuru Ueda, Takashi Oozeki, Kosuke Kurokawa, Takamitsu Itou, Kiyoyuki Kitamura, Yusuke Miyamoto, MasaharuYokota, Hiroyuki Sugihara, Shogo Nishikawa: Analytical results of output restriction due to the voltage increasing of power distribution line in grid-connected clustered PV systems, 31st Photovoltaic Specialists Conference Proceedings, pp.1631-1634, Florida USA, January 2005.

(23) N. Kawasaki, T. Oozeki, K. Kurokawa: Impact Statement of Distribution Network by Fluctuation of PV system Output by Using Frequency Analysis, 20th EU-PVSEC, Barcelona, 2005.6.6-10, 6DV.4.50.

(24) Yuzuru Ueda, Takashi Oozeki, Kosuke Kurokawa, Takamitsu Itou, Kiyoyuki Kitamura, Yusuke Miyamoto, MasaharuYokota, Hiroyuki Sugihara, Shogo Nishikawa: Detailed performance analyses results of grid-connected clustered PV systems in Japan –first 200 systems results of demonstrative research on clustered pv systems, 20th European Photovoltaic Solar Energy Conference Proceedings, pp.2466-2469, Barcelona Spain, June 2005.

(25) Yuzuru Ueda, Takashi Oozeki, Kosuke Kurokawa, Takamitsu Itou, Kiyoyuki Kitamura, Yusuke Miyamoto, MasaharuYokota, Hiroyuki Sugihara: Advanced analysis of shading effect using minutely based measured data for PV systems”,15th International Photovoltaic Science & Engineering Conference (PVSEC-15) Technical Digest, pp.444-445, Shanghai China, October 2005.

(26) N.Kawasaki, T.Oozeki, K.Kitamura, H.Sugihara, S.Nishikawa, K.Kurokawa: An Evaluation Method of Area-dependency Equalization of Output Fluctuation from Distributed PV System by Using Frequency Analysis, PVSEC-15, Shanghai, 10-14 Oct.2005.

(27) Yuzuru Ueda, Kosuke Kurokawa, Takamitsu Itou, Kiyoyuki Kitamura, Yusuke Miyamoto, Masaharu Yokota, Hiroyuki Sugihara: Performance ratio and yield analysis of grid connected clustered PV systems in Japan, 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, pp.2296-2299, Hawaii USA, May 2006.

(28) Yuzuru Ueda, Kosuke Kurokawa, Takamitsu Itou, Kiyoyuki Kitamura, Katsumi Akanuma, Masaharu Yokota, Hiroyuki Sugihara: Performance analyses of battery integrated grid-connected residential PV systems, 21st European Photovoltaic Solar Energy Conference Proceedings, pp.2580-2584, Dresden Germany, September 2006.

(29) Yuzuru Ueda, Kosuke Kurokawa, Takamitsu Itou, Kiyoyuki Kitamura, Katsumi Akanuma, Masaharu Yokota, Hiroyuki Sugihara: Analysis Results of Maximum Power Point Mismatch on Grid-connected PV Systems, Renewable Energy 2006 Proceedings, Makuhari Japan, October 2006.

(30) N. Kawasaki, T. Oozeki, K. Otani, K. Kurokawa: An Evaluation Method of the Fluctuation Characteristics of Photovoltaic Systems by Using Frequency Analysis, Solar Energy Materials & Solar Cells, Vol.75.

(31) N.Kawasaki, K. Kurokawa, K. Kitamura, H. Sugihara, S. Nishikawa: An Evaluation of Area-Dependency Equalization of Fluctuation Characteristics from Distributed PV Systems, Renewable Energy 2006, 2006.10.10-13, P-Pv-90.

REFERENCES