jung, 2013 efa with small sample sizes

Upload: fastford14

Post on 02-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Jung, 2013 EFA With Small Sample Sizes

    1/6

    Behavioural Processes 97 (2013) 9095

    Contents lists available at SciVerse ScienceDirect

    Behavioural Processes

    j ournal homepage: www.elsevier .com/ locate /behavproc

    Exploratory factor analysis with small sample sizes:A comparison ofthree approaches

    SunhoJung

    School of Management, Kyung HeeUniversity, 1 Hoegi-dong, Dongdaemon-gu, Seoul, 130-872, Republic of Korea

    a r t i c l e i n f o

    Article history:

    Received 23 February 2012

    Received in revised form 13 August 2012Accepted 29 November 2012

    Keywords:

    Exploratory factor analysis

    Small sample size

    Regularized exploratory factor analysis

    Generalized exploratory factor analysis

    Unweighted least-squares

    a b s t r a c t

    Exploratory factor analysis (EFA) has emerged in the field ofanimal behavior as a useful tool for deter-

    mining and assessing latent behavioral constructs. Because the small sample size problem often occurs in

    this field, a traditional approach, unweighted least squares, has been considered the most feasible choice

    for EFA. Two new approaches were recently introduced in the statistical literature as viable alternatives

    to EFA when sample size is small: regularized exploratory factor analysis and generalized exploratory

    factor analysis. A simulation study is conducted to evaluate the relative performance of these three

    approaches in terms of factor recovery under various experimental conditions of sample size, degree

    of overdetermination, and level of communality. In this study, overdetermination and sample size are

    the meaningful conditions in differentiating the performance ofthe three approaches in factor recovery.

    Specifically, when there are a relatively large number offactors, regularized exploratory factor analysis

    tends to recover the correct factor structure better than the other two approaches. Conversely, when

    few factors are retained, unweighted least squares tends to recover the factor structure better. Finally,

    generalized exploratory factor analysis exhibits very poor performance in factor recovery compared to

    the other approaches. This tendency is particularly prominent as sample size increases. Thus, generalized

    exploratory factor analysis may not be a good alternative to EFA. Regularized exploratory factor analysis

    is recommended over unweighted least squares unless small expected number offactors is ensured.

    2013 Elsevier B.V. All rights reserved.

    1. Introduction

    Exploratory factoranalysis (EFA) is a basic tool in the behavioral

    sciences. Theattractionof EFAis its ability to investigatethe nature

    of unobservable behavioral constructs (often called latent vari-

    ables) that account for relationships among measured variables.

    Traditionally, unweighted least squares (ULS) and maximum like-

    lihood(ML)havebeen two of themostpopular estimation methods

    in EFA (e.g., Fabrigar et al., 1999). Despite the popularity of ULS and

    ML, the development of a new factor analysis procedure continues

    to be actively studied (e.g., Bentler and de Leeuw, 2011). Recently,

    two new approaches have been published in the statistical litera-

    ture as viable alternatives to EFA in small sample size situations:One is regularized EFA (REFA) (Jung and Lee, 2011), and the other

    is generalized EFA (GEFA) (Trendafilov and Unkel, 2011).

    Researchers in animal behavior have long recognized the bene-

    fit of studying an underlying latent variable and the importance of

    EFA. However, the small sample size problem often limits the gen-

    eral applicability of EFA in animal behavior studies (e.g., Budaev,

    2010). Both REFA and GEFA are shown to perform well particularly

    when sample sizes are small (Jung and Lee, 2011; Trendafilov and

    E-mail address: [email protected]

    Unkel, 2011). Thus, use of these approaches can be valuable in ani-

    mal behavior research. In fact, our review found one instance of

    an application of REFA in the study of animal personality (Konecn

    et al., in press). However, the new approaches may still be novel to

    researchers in animal behavior. Moreover, previous research has

    not compared the performance of the new approaches to that of

    traditional approach. It would be useful to know under what cir-

    cumstances the new approaches are preferable to the traditional

    approach. The objective of this article, therefore, is to make the

    new approaches more accessible to researchers in animal behav-

    ior, and to evaluate the traditional and new approaches in terms of

    factor recovery capability using a Monte Carlo simulation study.

    The article is organized as follows. We offer a general overviewpointing to the relative strengths and weaknesses of the traditional

    andnew approaches. Then, we describethedesignofthesimulation

    study and report results. An empirical study is conducted as well,

    to investigate factor recovery in a more realistic context. Finally,

    we discuss the implications of the study and also offer recommen-

    dations based on the factor recovery capability.

    2. Background

    In animal behavior research, small sample sizes may be rule

    rather than the exception (e.g., Havstad and Olson-Rutz, 1991). The

    0376-6357/$ seefrontmatter 2013 Elsevier B.V. All rights reserved.

    http://dx.doi.org/10.1016/j.beproc.2012.11.016

    http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.beproc.2012.11.016http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.beproc.2012.11.016http://www.sciencedirect.com/science/journal/03766357http://www.elsevier.com/locate/behavprocmailto:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.beproc.2012.11.016http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.beproc.2012.11.016mailto:[email protected]://www.elsevier.com/locate/behavprochttp://www.sciencedirect.com/science/journal/03766357http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.beproc.2012.11.016
  • 8/10/2019 Jung, 2013 EFA With Small Sample Sizes

    2/6

    S. Jung / Behavioural Processes97 (2013) 9095 91

    potential application of EFA in this research even involves those

    cases where the number of variables exceeds the sample size (e.g.,

    Liu and Gershenfeld, 2003). In general, MLis most frequently rec-

    ommended for use in EFA (e.g., Fabrigar et al., 1999). However,

    ML requires large sample sizes to yield reliable and stable solu-

    tions (e.g., MacCallum et al., 1999). Previous research has shown

    that ULS can yield high quality solutions with small sample sizes

    (below 50) under ideal conditions of few factors, highly reliable

    data, andhigh communalities(e.g., Preacherand MacCallum, 2002).

    Although these conditions often fail in practice, ULS has been the

    most feasible option for EFA in animal behavior research (Budaev,

    2010). Here, only ULS is considered the traditional approach (here-

    after referred to as ULSFA).

    ULSFA, REFA, and GEFA are based on a common factor model.

    This model partitions variance of each measured variable into

    two parts: unique variance (uniqueness) due to a unique factor

    and common variance (communality) due to the common factors.

    Unique factors represent latent variables specific to only one mea-

    sured variable, whereas common factors are shared among two

    or more measured variables and represent latent variables that

    can explain relationships among measured variables. Thus, factor

    analysis concerns only common variance to derive the patterns of

    relations between the commonfactors and the measured variables

    (i.e., factor loadings). However, this requires the computation ofunique variances in some way. Broadly speaking, REFA and GEFA

    differ from ULSFA in that estimation of unique variances is sep-

    arated from estimation of factor loadings. In REFA, only a single

    parameter needs to be determined to obtain estimates of unique

    variances. GEFA first derives unique factor scores and then uses

    them to estimate unique variances.

    Compared to ULSFA, REFA and GEFA have several advantages.

    ULSFA relies on complicated iterative algorithm, whereas REFA

    and GEFA simplify the estimation of parameters in the model.

    REFA assumes that the true unique variances are proportional

    to their tentative estimates. That is, REFA involves estimating a

    single parameter representing proportion. Unique variances are

    estimated by multiplying their tentative quantities by an esti-

    mate of the proportion. After unique variance estimates have beenobtained, factor loadings are then computed by a closed-form for-

    mula (e.g., Jreskog, 1977). On the other hand, GEFA first derives

    the common and unique factor scores for each observation. For

    these latent variable scores, factor loadings and unique variances

    are then found respectively using separate linear regression anal-

    yses.

    Another advantage results from the piece-by-piece approach

    that REFA and GEFA take to estimate parameters in the model.

    Data sets with small samples and many measured variables are

    common in behavioral research. With many parameters relative

    to sample size, iterative numerical methods would be feasible but

    computationally demanding. The implementation of these meth-

    ods may present numerical difficulties (e.g., nonconvergence). To

    deal with this problem, methodologists have advocated subdivid-ing the parameters into several subsets (e.g., Bollen, 1996).

    However, compared to ULSFA, REFA and GEFA also have several

    limitations.For EFA, an overall model fit index can be used in deter-

    mininghowwellthe model fits a sampleas a whole. ULSFAprovides

    indices to assess the models goodness of fit and also permits sta-

    tistical significance testing (Browne, 1984). However, no overall fit

    indices are available for these two new approaches. Another limi-

    tation is the absence of software programs for implementation of

    the new approaches. The lack of statistical software could make

    applied researchers less motivated to understand and implement

    the new approaches. In contrast, ULSFA are readily implemented

    and available in many software programs, including SPSS, SAS,

    Mplus (Muthn and Muthn, 2006), CEFA (Browne et al., 1998),

    FACTOR (Lorenzo-Seva and Ferrando, 2006).

    Beyond the theoretical characteristics among the three

    approaches we have discussed, theutility of a factoranalysis proce-

    dure depends heavily on its ability to recover the underlying factor

    structure, which is required for good interpretation and inference.

    In thenext section,we present a simulation studythat evaluatesthe

    performance of REFA and GEFA relative to ULSFA in terms of factor

    recovery. Based on our findings, we provide guidelines in the Dis-

    cussion and recommendations section for choosing between the

    three approaches.

    3. Simulation design

    In the present simulation study, we investigate the capability

    of the three approaches in population factor recovery under sev-

    eral experimental conditions of sample size, communality, and

    overdetermination. These conditions are commonly encountered

    in simulations based on exploratory factor analysis (e.g., Hogarty

    et al., 2005). Prior research has shown that level of commu-

    nality moderates the impact of sample size on factor recovery

    (e.g., MacCallum et al., 1999). Degree of overdetermination was

    shown to greatly influence the quality of factor solutions, partic-

    ularly with small samples (e.g., Preacher and MacCallum, 2002).

    Overdetermination is defined as the ratio of factors to measured

    variables. If the number of observed variables (p) is held con-stant, varying the number of factors (f) leads to different degrees

    of overdetermination. Fewer factors indicate higher degree of

    overdetermination. Withp held constant (p= 20), the Monte Carlosimulations involved manipulating four experimental conditions

    as follows.

    1 Approach: REFA, GEFA, and ULSFA.

    2 Sample Size: N=5, 10,20, 30,and 50.

    3 Communality: High (0.60.7), Low (0.20.4), and Wide (0.20.8).

    4 Overdetermination: High (f=3) and Low (f=7).

    Using a method developedby Tuckeret al.(1969), six population

    correlation matrices were generated to correspond to the six com-

    binations of communality and overdetermination. Individual-levelmultivariate normal data were drawn from N(0,), where is the

    population covariance matrix, using the Cholesky decomposition

    (Wijsman, 1959). One hundred samples were generated for each

    level of the experimental conditions resulting in 3000 samples for

    each approach (5 Sample Sizes3 levels of communality2 degrees

    of overdetermination100 Replications). All sample matrices were

    factor analyzed using each of the three approaches. All simulations

    were carried out using MATLAB (R2010a).

    4. Simulation results

    To assess the degree of factor pattern recovery under the

    three approaches, we computed the root mean squared deviation

    (denoted asg) (Velicer and Fava, 1998) as follows:

    g=

    trace

    ( )

    ( )

    pf

    1/2

    . (1)

    This index represents the average difference between sample

    loadings andtheir correspondingpopulation loadings. In thisstudy,

    thevalueofgwascomputed after the sign of loading estimates was

    recovered usinga procedure suggested by Cliff (1966). Because this

    value can be affected by the rotational indeterminacy, the loadings

    produced by each of the three approaches were not submitted to

    the rotation method.

    An ANOVA test was performed using the root mean squared

    deviation g as the dependent variable and the four experimental

  • 8/10/2019 Jung, 2013 EFA With Small Sample Sizes

    3/6

    92 S. Jung / Behavioural Processes97 (2013) 9095

    Table 1

    The results of an ANOVA testfor the root mean squared deviation (g) (Sig.= significance, 2 = effect size).

    Source SS DF F Sig. 2

    Approach (A) 1,020,833 2 23806 0.00 0.84

    Communality (C) 1205 2 28 0.00 0.01

    Overdetermination (O) 25576 1 1192 0.00 0.12

    Sample size (N) 56418 4 657 0.00 0.23

    A*C 3044 4 35 0.00 0.02

    A*O 33353 2 111 0.00 0.15

    A*N 270325 8 1576 0.00 0.59C*O 1582 2 36 0.00 0.01

    C*N 2711 8 15 0.00 0.01

    O*N 1530 4 17 0.00 0.01

    A*C*O 3005 4 35 0.00 0.02

    A*C*N 6902 16 20 0.00 0.04

    A*O*N 7500 8 43 0.00 0.04

    C*O*N 2266 8 13 0.00 0.01

    A*C*O*N 2266 16 6 0.00 0.01

    Error 190,236 8910

    conditions as design factors. Table 1 presents the results of the

    ANOVA. As the table shows, all of the main and interaction effects

    werestatistically significant.This should notbe toosurprising given

    the large numberof observations (i.e.,a total of 9000 observations).

    Thus,it is crucial toexaminethe effectsizeas well (e.g.,Paxton et al.,

    2001). Following accepted practice, we focus on main and interac-tion effects whose sizes were at least medium (i.e.,2 greater than0.06) (Cohen, 1988).

    First, approach (2 = 0.84), overdetermination (2 = 0.12), andsample size (2 =0.23) had large main effects. Here, approachwas the most important determinant of the root mean squared

    deviation, followed in descending order by sample size and

    overdetermination. There are likely meaningful differences in the

    root mean squared deviation among the three approaches. It

    appears that there was little difference in the root mean squared

    deviation between REFA (7.2) and ULSFA (7.3), whereas GEFA

    exhibited a much higher level of the root mean squared devia-

    tion (29.9). Moreover, it is likely that the levels of the root mean

    squared deviation were higher when the number of factors was

    small (16.5)than when the number of factors was large (13.1). Thisresult is somewhat counterintuitive and needs some explanation.

    In the study, the large number of factors (f= 7) has the larger num-

    berof estimatedparameters thanthe small number of factors (f=3):

    the former has 140 unknown elements, and the latter has 60. Note

    that the number of unknown elements is used as denominator to

    calculate the root mean squared deviation.

    Second, the ANOVA test reveals two two-way interactions

    worthy of examination: that between approach and sample size

    (2 =0.58) and that between approach and overdetermination(2 = 0.15). Fig. 1 displays the average values of the root meansquared deviation of the three approaches across sample sizes. On

    average, the loading estimates of ULSFA involved a little smaller

    values ofg than those under REFA when N 10, whereas REFA

    resulted in the smallest value ofg at N=5. GEFA exhibited thelargest values ofgacross all sample sizes. Fig. 1 demonstrates thepoor factor recovery of GEFA particularly for larger sample sizes. In

    fact, GEFA had much higher values ofgwith N= 50 than withN= 5.Conversely, REFA and ULSFA performed better in factor recovery

    for larger sample sizes. Fig. 2 displays the average values of the

    root mean squared deviationof the threeapproachesunder thetwo

    levels of overdetermination. When the number of factors is small

    (i.e.,f= 3), ULSFA was associated with the smallest level of the root

    mean squared deviation (7.3) and REFA was associated with the

    second smallest (7.9). Conversely, when the number of factors is

    large, REFA involved the smallest level of the root mean squared

    deviation (6.6) and ULSFA had the second smallest (7.2). At both

    levels of overdetermination, GEFA yielded the largest level of the

    root mean squared deviation.

    The above ANOVA test suggested that factor recovery of the

    three approaches was distinct between the two levels of overde-

    termination. To gain a greater understanding of factor recovery

    capability of the three approaches under this condition, we further

    investigated the overall finite-sample properties of the estimated

    loadings of the three approaches across the overdetermination lev-els. Tables 2 and 3 presents the average relative biases, standard

    deviations, and mean square errors of factor loading estimates

    obtained from thethree approaches under the two levelsof overde-

    termination. Among these properties, the mean square error (MSE)

    is the average squared difference between a parameter and its esti-

    mate, therebyindicatinghow faran estimate is,on average,fromits

    parameter value, i.e., the smaller the mean square error, the closer

    the estimate is to the parameter. Specifically, the MSE is given by

    MSE(j) = E[(j j)2

    ] = E[(j E(j))2

    ] + (E(j) j)2. (2)

    As shown in Eq. (2), the MSE of an estimate is the sum of its

    variance and squared bias. Thus, the MSE accounts for both bias

    and variability of the estimate (Mood et al., 1974).

    Fig.1. Theaveragevaluesfor indexof rootmeansquareddeviation(g) oftheloading

    estimates obtained from the three approaches across different sample sizes.

  • 8/10/2019 Jung, 2013 EFA With Small Sample Sizes

    4/6

    S. Jung / Behavioural Processes97 (2013) 9095 93

    Table 2

    Overall finite-sample properties of the loading estimates of the three approaches under high overdetermination (f = 3) acrossdifferent sample sizes (RB= relative bias (%),

    SD = standard deviation, MSE =mean square error).

    GEFA ULSFA REFA

    RB SD MSE RB SD MSE RB SD MSE

    N= 5 90 0.91 0.91 4 0.46 0.21 8 0.44 0.20

    N= 10 195 1.04 1.41 6 0.34 0.11 4 0.34 0.12

    N= 20 304 1.12 2.21 9 0.25 0.06 10 0.25 0.06

    N= 30 419 1.13 2.95 3 0.20 0.04 2 0.21 0.04

    N= 50 608 1.10 4.54 1 0.15 0.02 2 0.17 0.03

    Table 3

    Overall finite-sample properties of the loading estimates of the three approaches under low overdetermination (f = 7) across different sample sizes (RB= relative bias (%),

    SD = standard deviation, MSE =mean square error).

    GEFA ULSFA REFA

    RB SD MSE RB SD MSE RB SD MSE

    N= 5 58 0.62 0.44 20 0.35 0.13 11 0.31 0.09

    N=10 217 0.82 0.93 11 0.32 0.11 4 0.27 0.07

    N= 20 449 0.97 1.58 25 0.26 0.07 16 0.21 0.04

    N= 30 498 1.05 2.12 8 0.24 0.06 7 0.19 0.03

    N= 50 486 1.14 3.14 28 0.20 0.04 16 0.15 0.02

    In the study,absolutevalues of relative bias greater than 10 per-cent may be singled out as unacceptable (Lei, 2009). As shown in

    Table 2, when few factors are retained, both REFA and ULSFA on

    average yielded unbiased estimates of loadings across all sample

    sizes whereas GEFA yielded tremendously and positively biased

    loading estimates regardless of sample sizes. In addition to relative

    bias, it is important to evaluatethe stabilityof the three approaches.

    The stability of each approach was examined by computing the

    standard deviation. REFA produced on average the standard devia-

    tions of the estimates almost identical to those of ULSFA. As sample

    size increased, the standard deviations of the estimates tended to

    decrease across these two approaches. Conversely, GEFA was asso-

    ciated with much larger standard deviations, and the degree of

    Fig.2. Theaveragevaluesfor indexof rootmeansquareddeviation(g)oftheloading

    estimates obtained from the three approaches acrosstwo levels of overdetermina-

    tion (3 factors= high overdetermination, 7 factors= lower overdetermination).

    standard deviations tended to increase with larger sample sizes.Overall,ULSFA showedthe smallest mean squareerrors of the load-

    ingestimates. However, thedifferences in the mean squared errors

    of the estimates were negligibly small between ULSFA and REFA.

    On the other hand, GEFA clearly exhibits its inconsistency: larger

    sample size does not help produce the loading estimates closer to

    the true population values.

    As Table 3 shows, when a large number of factors are retained,

    REFA was theleast biasedof the three approaches.REFAled totoler-

    able degreeof bias forestimates ofloadings acrosssamplesizes. The

    estimates under REFA were consistently associated with smaller

    standard deviations than those under the other approaches. On

    average, REFA has the smallest mean squareerrors of factorloading

    estimates across all ample sizes. In particular, this tendency of fac-

    tor recoverywas more apparentin the two smallest sample sizes. Ingeneral, under low overdetermination, REFA led to more accurate

    and stable solutions than the other approaches.

    5. Empirical example

    The simulation study presented in the previous section com-

    pared the performance of the three approaches under various

    experimental conditions commonly encountered in behavioral

    research. Nonetheless, the range of conditions in this study may

    still be limited in scope. Questions are often raised regarding the

    validity of results from a Monte Carlo simulation study. In this sec-

    tion, we provide concrete empirical evidence supporting results of

    the simulation study.An empirical example is presented using the sensory attribute

    data collected by quantitative evaluation of fluid milk using a con-

    sumer panel (Chapman et al., 2001). The data set consisted of nine

    milkproducts describedby eight sensory attributes (e.g., aroma, fla-

    vor, texture, etc.).Twelve sensory panelists were asked to rate each

    of the products on each attribute, using an intensity scale ranging

    from 0 (not present) to 10 (extremely strong). Because the attribute

    rating data collected from multiple panelists often reveal a lack of

    agreement, the attributeratingsof the panelists are aggregated into

    a singlegroup compositevalue. Thearithmeticmeanof theindivid-

    ual ratings of the panelists was computed to aggregate the ratings

    (see Chapman et al. (2001), pp. 1415). The aggregation of response

    data helps minimize individual-level biases and errors, and thus

    improves estimation accuracy (Van Bruggen et al., 2002).

  • 8/10/2019 Jung, 2013 EFA With Small Sample Sizes

    5/6

    94 S. Jung / Behavioural Processes97 (2013) 9095

    Table 4

    Factor loadings and uniquevariancesfor thefour factors from thesensory attribute data (F= factors, = unique variances).

    Attributes REFAa ULSFA

    Fl F2 F3 F4 Fl F2 F3 F4

    Cooked aroma 0.965 0.001 0.027 0.228 0.230 0.979 0.008 0.040 0.209 0.000

    Caramel aroma 0.476 0.529 0.615 0.222 0.262 0.524 0.576 0.556 0.292 0.151

    Grainy aroma 0.949 0.015 0.251 0.024 0.251 0.975 0.007 0.224 0.021 0.035

    Cooked flavor 0.681 0.556 0.090 0.383 0.268 0.727 0.591 0.073 0.341 0.144

    Sweet flavor 0.030 0.107 0.865 0.192 0.403 0.046 0.081 0.987 0.147 0.000

    Bitter flavor 0.189 0.008 0.242 0.815 0.433 0.187 0.008 0.191 0.965 0.000

    Dry texture 0.007 0.888 0.094 0.102 0.371 0.022 0.992 0.094 0.083 0.186

    Lingering aftertaste 0.002 0.740 0.332 0.422 0.358 0.023 0.813 0.424 0.398 0.264

    a Factornames: F1: Cooked; F2: Drying/lingering; F3: Sweet;F4: Bitter.

    Kaisers criterion suggested a four factor solution. To facilitate

    interpretation of the results, the factors were then orthogonally

    rotated using a varimax rotation. GEFA was not considered for the

    study due to its worst performance on factor recovery across all

    experimental conditions. In this empirical study, REFA and ULSFA

    were applied to the mean attribute ratings. If Heywood cases

    (i.e., negative variance estimates) occur in the iteration process,

    ULSFA set communalities to one (e.g., Dillon et al., 1987). The

    results of these analyses are presented in Table 4. The varimax

    rotated factor loadings produced by ULSFA were almost consis-tently larger than the corresponding REFA solutions. This was due

    to the existence of zero entries in the estimated unique variances

    under ULSFA. Some researchers assume that the Heywood case

    variable is explained entirely by the corresponding common factor.

    However, this assumption is unrealistic because of the presence of

    measurement error in behavioral research. It appears that ULSFA

    may overestimate factor loadings and therefore pose a more diffi-

    cult interpretation problem. Results from ULSFA indicated that an

    attribute of caramel aroma may cross-load (i.e., having large fac-

    tor loadings on the second and third factors). Compared to ULSFA,

    REFA offered greater conceptual clarity on the extracted factors.

    6. Discussion and recommendations

    In this article, we undertook investigations of the relative

    performance of regularized exploratory factor analysis and gener-

    alized exploratory factor analysis with respect to the more familiar

    unweighted least squares in exploratory factor analysis using both

    simulated and empirical data. Based on our simulation results, we

    would provide some recommendations for the applied researcher

    in animal behavior.

    First, we recommend the adoption of regularized exploratory

    factor analysis as a sensible alternative to generalized exploratory

    factor analysis, a technique specifically designed to derive fac-

    tors when the number of variables is larger than the number

    of observations. As we demonstrate, regularized exploratory fac-

    tor analysis performed much better than generalized exploratory

    factor analysis in terms of factor recovery, under small sample sit-uations. Moreover, the loading estimates produced by generalized

    exploratory factor analysis never converge to the true population

    values as sample size increases(i.e., the estimates are inconsistent).

    Second, if the number of expected factors is small, we rec-

    ommend the use of unweighted least squares. On average, this

    approachperforms better thanor as wellas regularized exploratory

    factor analysis in terms of factor recovery. The relatively good per-

    formanceof unweighted leastsquares in situations involving fewer

    underlying factors has been previously reported in the literature

    (e.g., Preacher and MacCallum, 2002).

    Finally, if researchers have little confidence thatthe true num-

    ber of factors is small, they should use regularized exploratory

    factor analysis because it outperforms unweighted least squares in

    factor recovery when there are a relatively large number of factors.

    Under the same situation, all three approaches yielded biased esti-

    mates of factor loadings. However, regularized exploratory factor

    analysis had (acceptably) lower levels of relative bias compared to

    the other two approaches. Moreover, regularized exploratory fac-

    tor analysis resulted in more accurate estimates of loadings. The

    high performance level of regularized exploratory factor analysis

    was more prominent in very small samples.

    Researchers routinely rely on factor retention criteria such as

    parallel analysis (Horn, 1965) in order to determine the number of

    factors to retain unless they have an a priori hypothesis about thenumberof factors to extract. Yet, no extantmethod forfactor reten-

    tion decisionscan avoiderroneous conclusions.In addition, it is not

    straightforward to assess the degree of under- and overdetermina-

    tion of the number of factors. Other things being equal, retaining

    a small number of factors is deemed preferable because retaining

    too many often hinders interpretability. In most cases, however,

    retainingtoo fewfactors maytend to reduce communalities, which

    in turn has adverse effect on factor recovery in small samples (e.g.,

    MacCallum et al., 1999). Unless researchers have tremendous con-

    fidence that the correct number of factors is small, we suggest that

    theyconsider regularized exploratory factor analysisa complement

    or substitute forunweighted least squares under small samplesize.

    Our study provides a greater understanding of the three avail-

    able approaches to exploratory factor analysis with small samplesizes. We hope that this study leads researchers in animal behavior

    to adoptregularized exploratory factor analysis in manysituations,

    particularly those in which the researchers should expect to retain

    a relative large number of factors. In many research domains, it

    is often unavoidable to have data with many measured variables

    and small sample size; some specific examples include behavior

    genetics and neuroimaging data analysis, among others. In these

    domains, use of regularized exploratory factor analysis can also be

    valuable.

    As doothersimulationstudies, thepresentstudyis notfreefrom

    limitation. Althoughthe simulation studytook intoaccount various

    experimental conditions that are frequently used in Monte Carlo

    simulation studies in the domain of exploratory factor analysis, it

    may be necessary to contemplate a wider range of conditions formore careful investigations of the relative performance of the three

    approaches.

    Appendix A. Supplementary data

    Supplementary data associated with this article can be

    found, in the online version, at http://dx.doi.org/10.1016/j.beproc.

    2012.11.016.

    References

    Bentler,P.M.,de Leeuw, J.,2011. Factor analysisvia components analysis.Psychome-

    trika 76, 461470.

    http://dx.doi.org/10.1016/j.beproc.2012.11.016http://dx.doi.org/10.1016/j.beproc.2012.11.016http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0005http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0005http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0005http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0005http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0005http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0005http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0005http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0005http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0005http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0005http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0005http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0005http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0005http://dx.doi.org/10.1016/j.beproc.2012.11.016http://dx.doi.org/10.1016/j.beproc.2012.11.016
  • 8/10/2019 Jung, 2013 EFA With Small Sample Sizes

    6/6

    S. Jung / Behavioural Processes97 (2013) 9095 95

    Bollen, K.A.,1996. An alternativetwo stageleast squares (2SLS) estimatorfor latentvariable equations. Psychometrika 61, 109121.

    Browne, M.W., 1984. Asymptotically distribution-free methods for the analysis ofcovariancestructures.BritishJournalof Mathematical andStatistical Psychology37, 6283.

    Browne, M. W., Cudeck, R., Tateneni, K., Mels, G. (1998) CEFA: ComprehensiveExploratory Factor Analysis. WWW document and computer program. URLhttp://quantrm2.psy.ohio-state.edu/browne/

    Budaev, S.V.,2010. Usingprincipal components and factor analysisin animalbehav-ior research: caveats and guidelines. Ethology 116, 472480.

    Chapman, K.W., Lawless, H.T., Boor, K.J., 2001. Quantitative descriptive analysis

    andprincipalcomponent analysisfor sensorycharacteristics of ultrapasteurizedmilk. J. Dairy Sci. 84, 1220.

    Cliff, N., 1966. Orthogonal rotation to congruence. Psychometrika 31, 3342.Cohen, J., 1988. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.

    Lawrence Earlbaum Associates, Hillsdale, NJ.Dillon,W.R.,Kumar,A.,Mulani,N.,1987. Offendingestimatesin covariancestructure

    analysis: comments on the causes of and solutions to Heywood cases. Psychol.Bull. 101, 126135.

    Fabrigar, L.R.,Wegener,D.T., MacCallum, R.C.,Strahan,E.J., 1999. Evaluating the useofexploratory factor analysis in psychological research. Psychol. Methods 4 (3),272299.

    Havstad, K.M., Olson-Rutz, K.M., 1991. Sample size determination for studyingselected cattle foraging behaviors. Appl. Anim. Behav. Sci. 30, 1726.

    Hogarty, K.Y., Hines, C.V., Kromrey, J.D., Ferron, J.M., Mumford, K.R., 2005. Thequality of factor solutions in exploratory factor analysis: the influence of sam-ple size, communality and overdetermination. Educ. Psychol. Measur. 65, 202226.

    Horn, J.L., 1965. A rationale and test for the number of factors in factor analysis.Psychometrika 30, 179185.

    Jreskog,K.G., 1977. Factor analysisby leastsquareand maximum-likelihood meth-ods. In: Enslein, K., Ralston, A., Wilf, H.S. (Eds.), Statistical Methods for DigitalComputers. Wiley,New York, pp. 125165, III.

    Jung, S., Lee, S., 2011. Exploratory factor analysis for small samples. Behav. Res.Method 43, 701709.

    Konecn, M., Weiss, A., Lhota, S., Wallner, B. Personality in Barbary macaques(Macaca sylvanus): temporal stability and social rank. J. Res. Personal.,http://dx.doi.org/10.1016/j.jrp.2012.06.004, in press.

    Lei, P.-W., 2009. Evaluating estimationmethods for ordinal data in structuralequa-tion modeling. Qual. Quant. 43 (3), 495507.

    Liu, X., Gershenfeld, H.K., 2003. An exploratory factor analysis of the tail suspen-sion test in 12 inbred strains of mice and an F2 intercross. Brain Res. Bull. 60,223231.

    Lorenzo-Seva, U., Ferrando, P.J., 2006. FACTOR: a computer program to fit theexploratory factor analysis model. Behav. Res. Methods, Instrum. Comp. 38,8891.

    MacCallum, R.C., Widaman, K.F., Zhang, S., Hong, S., 1999. Sample size in factoranalysis. Psychol. Methods 4, 8499.

    Mood, A.M., Graybill, F.A., Boes, D.C., 1974. Introduction to theTheory of Statistics.McGraw-Hill, New York.

    Muthn, L.K.,Muthn, B.O. (2006). Mplus.Statistical Analysis with Latent Variables.Users Guide, version 4.1. Los Angeles, California.

    Paxton,P., Curran, P.J.,Bollen, K.,Kirby,J.B., Chen,F., 2001. Monte Carlo experiments:design and implementation. Struct. Equat. Model.8, 287312.

    Preacher, K.J., MacCallum, R.C., 2002. Exploratory factor analysis in behaviorgenetics research: factor recovery with small sample sizes. Behav. Genet. 32,153161.

    Trendafilov, N.T., Unkel, S., 2011. Exploratory factor analysis of data matri-ces with more variables than observations. J. Computation. Graph. Stat. 20,874891.

    Tucker, L.R., Koopman, R.F., Linn, R.L., 1969. Evaluation of factor analytic researchprocedures by means of simulated correlation matrices. Psychometrika 34,421459.

    Van Bruggen, G.H., Lilien, G.L., Kacker, M., 2002. Informants in organizational mar-keting research:why usemultiple informants and howto aggregate responses.

    J. Mark. Res. 34 (November), 469L 78.Velicer, W.F., Fava, J.L., 1998. Effects of variable and subject sampling on factor

    pattern recovery. Psychol. Methods 3, 231251.Wijsman, R.A.,1959. Applications of a certain representationof theWishart matrix.

    Ann. Math. Stat. 30, 597601.

    http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://quantrm2.psy.ohio-state.edu/browne/http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0030http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0030http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://dx.doi.org/10.1016/j.jrp.2012.06.004http://dx.doi.org/10.1016/j.jrp.2012.06.004http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0095http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0095http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0095http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0100http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0100http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0140http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0135http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0130http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0125http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0120http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0115http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0110http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0100http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0100http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0100http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0100http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0100http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0100http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0100http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0100http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0100http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0095http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0095http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0095http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0095http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0095http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0095http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0095http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0095http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0095http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0095http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0095http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0090http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0085http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0080http://dx.doi.org/10.1016/j.jrp.2012.06.004http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0070http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0065http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0060http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0055http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0050http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0045http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0040http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0035http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0030http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0030http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0030http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0030http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0030http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0030http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0030http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0030http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0030http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0025http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0020http://quantrm2.psy.ohio-state.edu/browne/http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0015http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010http://refhub.elsevier.com/S0376-6357(12)00251-3/sbref0010