july 2021 the insurance rationale for carbon removal solutions

44
01 Executive summary 02 The case for carbon removal 08 The removal industry landscape 22 The role of insurance 39 Conclusion July 2021 The insurance rationale for carbon removal solutions

Upload: others

Post on 26-Mar-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

01 Executivesummary02 Thecaseforcarbon

removal08 Theremovalindustry

landscape22 Theroleofinsurance39 Conclusion

July2021

The insurance rationale for carbon removal solutions

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 1

Executivesummary

Carbonremovalisthecaptureandpermanentstorageofcarbondioxide(CO2)fromtheatmosphere.Tolimitglobalwarmingto2015ParisAccordlevels,theworld’snetemissionsofgreenhousegasesneedtodroptozeroby2050.Thereafter,therewillstillbeworktodotosustainnet-negativeemissionsthroughthesecondhalfofthecentury.Zeroemissionsisfarfromreality.Evenwithactionstotransitiontoalow-carboneconomy,globalemissionsarestillrising,anditmaytakemanydecadestofullydecarbonisesomesectors.Thereforebalancingresidualandreversinghistoricalemissionswillrequirebillionsoftonnesofnegativeemissionsuptoandafter2050.

Inthiscontext,scalingthedeploymentofcarbonremovaltechnologiesandactivitieswillbecentraltokeepingglobalwarmingatsafelevelsoverthelongterm.“Net-zeroemissions”hasbecomecommonparlanceinthepublicandprivatesectors,anacknowledgmentoftheneedto:1)double-downonemissionreductionefforts;and2)buildacarbonremovalindustrycapableofdeliveringnegativeemissionsatthespeed(withinthreedecades)andscale(10–20billiontonnesperyear)thatclimatesciencesayswillberequiredtoenablesustainablelivingforfuturegenerations.

Themainbarriertodeploymentofcarbonremovalislackofbusinesscase.Intheabsenceofcarbonpricinginmanypartsoftheworld,societydisposesofcarbonintotheatmosphereatwill.Asufficientlyhighfeeonemissionswouldinternaliseexpectednegativeexternalities,andfosterlow-carbondecisionmakinginproductionandconsumption.Intheabsenceofafeeandpolicymandates,thereislittleincentivetocut,letalonecollectandstoreemissions.Thatsaid,recentyearshaveseentheemergenceoffirstcommercialprovidersofcarbonremovalservicesandalsomarketplaceinitiativestocommoditisecarbonremovaloutcomes.

Carbonintheatmospherecanbecapturedandstoredthroughdifferentmeans.Theleastcost-intensiveinvolvessequesteringcarboninforests,wetlands,oceansandsoil.Whenexecutedproperly,theseso-callednature-basedsolutionsaddressmultiplesustainabilitygoals,includingadaptationtoclimatechangeandpreservingtheintegrityofecosystemsandbiodiversity.Buttherecanbeopportunitycosts,suchasafforestationprojectscompetingwithagricultureforlandresources.Moreover,nature-basedsolutionsaresusceptibletoreversalthroughcatastropheeventslikefiresandfloods,and/orman-madethreats(eg,deforestation).

Therearealsotechnologicalsolutionsforremoval.Carboncanbefilteredfromtheatmosphereandusedascommercialgoodsinlong-livedproductslikeconcrete.CO2canalsobecontainedandmineralisedinundergroundrocklayers,forinstanceindepletedoilandgasreservoirs.Theimplementationcostsofthesesolutionsarehigherthanfornature-basedapproaches,andexistingsolutionsareunder-deployedandnewonesunder-developed.Importantly,however,theriskofreversalislower.

There/insuranceindustrycanassistwithscaling-upofthecarbonremovalindustryinthreeways.First,re/insurerscanimprovethebankabilityofcarbonremovalprojectsbyprovidingcompensationforlossesinthecaseofadverseevents.Standardengineeringpolicies(eg,contractorsallriskpolicies)cancovertheconstruction,operationanddeconstructionrisksofcarbonremovalfacilities(forairfilters,CO2pipelines,orinjectionrigsamongothers).Andstandardpropertyinsurance,includingforlossesresultingfromnaturaldisasters,cancovertechnologyinfrastructureandnaturalassetslikeforests.Morechallengingarepotentiallong-termliabilityexposuresarisingfromtheriskofcarbonstoragereversal.

Second,asinstitutionalinvestorsre/insurerscanprovidefinancingforremovalprojectsandinfrastructure.Carbonremovalisalong-terminvestmentopportunitythroughwhichre/insurerscanbalancetheirlong-termliabilities,andrunanet-zeroemissionsassetportfoliostrategy.Andthird,re/insurerscanbeearlybuyersofcarbonremovalcertificatestobalancetheirownoperationalfootprintinpursuitofnet-zeroemissions.Thatfootprintissmallrelativetoothersectors,makingfirst-moverremovalprojectsmoreaffordable.Byenteringlong-termofftakeagreementsandguaranteeingfuturerevenues,re/insurerscanbestrongpartnersforthecarbonremovalindustry,whilealsogainingaccesstoitsnewriskpoolsandassetclasses.

Fornet-zero,emissionsneedtobereducedandresidualsremoved.

Withoutcarbonpricingorpolicymandates,carbonremovalhaslackedabusinesscase.Nevertheless,theindustryisnowgainingafoothold.

Nature-basedsolutionsmakeuseofscarcelandresources,butcomewithmanyco-benefits.

Technicalsolutionsforcarbonremovalcarryhighercosts,buttheriskofstoragereversalislower.

Re/insurerscansupportthecarbonremovalindustrydevelopmentsbytakingonsomeoftheassociatedrisks,…

…bymakinglong-terminvestmentsinremovalprojectsandinfrastructure,andbybuyingcarbonremovalservices

Carbonremovalisrequiredtoachievenet-zeroemissionsby2050andnet-negativeemissionslongthereafter.

2 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

Thecaseforcarbonremoval

Awarmingworld

Risingtemperaturesarecausingclimatechangeeffectsofincreasingvisibility,frequencyandseverity.Theincreaseinglobaltemperaturesisduetoanthropogenic(man-made)greenhousegas(GHG)emissions.AccordingtotheIntergovernmentalPanelonClimateChange(IPCC),humanactivityhascausedapproximately1.0°Cofglobalwarmingfrompre-industriallevels.1Sincethebeginningoftheindustrialrevolution,humanshavereleased2200billiontonnesofcarbondioxide(CO2)intotheatmosphere,2halfofitduringthelastthreedecadesalone.3Currently,theworldemitsaround40billiontonnesofCO2annually.Unabated,thisemissionratewouldseethe+1.5°CwarminglimitoftheParistargetreachedin10years,andthe+2°Climitin30years.4Bytheendofthecentury,temperatureswouldrisebybetween3.7°Cand4.8°C.5Evenifallemissionsarehaltedimmediately,GHGswillremainintheatmosphereformanycenturies,exacerbatingtheimpactsofclimatechange.6

Climatechangeisasystemicthreat,withfar-reachingconsequencesfortheworldandlifeasweknowit.Increasingtemperaturesaremeltingtheplanet’sicereservoirsandwarmingtheoceans.Togethertheseareleadingtorisingsealevels,andanincreaseinthefrequencyandseverityofextremeweathereventssuchasdroughts,hurricanesortorrentialrains.Beyondlastingimplicationsonnaturalecosystems–withclimatechangeseenasoneofthemostimportantdriversforfuturebiodiversitylossandecosystemdegradation–thesephysicalchangeswilllikelycauseincreasedmortalityanddamagetohumanhealth,foodandwaterscarcity,diseasespreadandmoredamagetoanddevaluationofpropertyassets.7Fromabroadeconomicperspective,arecentSwissReInstitutereportestimatesthatunabatedfromtoday,thephysicaleffectsofwarmingtemperaturescouldresultinan18%losstoglobalgrossdomesticproductbymid-century,relativetoaworldofnoclimatechange.8

Acallbyclimatescience

TheglobaltargetoftheParisAgreementof2015istolimitglobalwarmingtowellbelow2°C,andpreferablyto1.5°C.Thisisthecapthatscientistssaycanstillpreventtheworstimpactsofclimatechange.TheIPCCsaysthatlimitingglobalwarmingto1.5°CwillrequireGHGemissioncutsof50%by2030,andnet-zeroemissionsby2050.9Fornet-zero,anyresidualemissionswouldhavetobebalancedbythesameamountofnegativeemissions,inotherwords,permanentremovalandstorageofcarbonfromtheatmosphere.ThisprocessisknownasCarbonDioxideRemoval(CDR),orcarbonremoval.TheIPCCfurtherpredictsthatglobalemissionlevelswouldberequiredtostaynet-negative(negativeemissions>residualgrossemissions)throughoutthesecondhalfofthecurrentcentury.Bytheyear2100,dependingonhowfastwestartreducingemissions,thecarbonremovalindustrywillhavetodelivercumulativelyupto1000billiontonnesofnegativeemissions.Forcontextofscale,thatisalmosthalfofallthatalreadyhasbeenemittedsincepre-industrialtimes.10Figure1showsfouremissionscenariosmodelledbytheIPCCthatwouldallowlimitingglobalwarmingto1.5°C.Three

1 Global Warming of 1.5°C,IPCC,2018.2 Ibid.3 More than half of all CO2 emissions since 1751 emitted in the last 30 years, Institute for European

Environmental Policy, 29 April 2020.4 J.Rockström,etal.,“Theworld’sbiggestgamble”,Earth’s Future,vol4,2016.5 See“ContributionofWorkingGroupsI,IIandIIItotheFifthAssessmentReportoftheIntergovernmental

PanelonClimateChange”,inClimate Change 2014: Synthesis Report,IPCC,2014.6 CO2emissionsstayintheatmospherefordecadestocenturies.Itisestimatedthatevenafter1000

years,15–40%oftheanthropogenicCO2emissionsremainintheatmosphere.OtherGHGhaveshorterresidencetimesintheatmosphere(eg,methane12years;NOx~100years)butexhibitastrongergreenhouseeffect(eg,methane25timesstrongerradiativeforcingthanCO2;NOx~300timesstronger).SeeDie Treibhausgase,GermanEnvironmentAgency,2020.

7 E.S.Brondizio,J.Settele,S.Díaz,andH.T.Ngo(editors),Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services,IPBES,2019.

8 The economics of climate change: no action not an option,SwissReInstitute,April20219 IPCC,2018,op.cit.10 1750–2017:2200billiontonnesCO2.SeeIbid.

Carbonemissionshavecausedglobaltemperaturestoriseby1.0°Calready.

Theeffectsofclimatechangearefarreachingandwillimpactnature,humans,andtheglobaleconomy.

Limitingglobalwarmingto1.5°Crequiresemissioncutsof50%by2030,net-zeroemissionsby2050,andnet-negativeemissionsthereafter.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 3

scenariosassumemoreorlessstringentemissioncutsstartingimmediately.Anotherassumesaninitialhigh-emissionslifestyle(essentiallycurrentbusiness-as-usual)thatwould,inturn,requireevenlargeramountsofnegativeemissionslater.

Source:SwissRe,basedonGlobal Warming of 1.5°C,IPCC,2018(overlapofthescenariosP1-4).

Thescenarioillustratesthreeimportantfindings.First,itwillrequiredeepemissioncutstofollowthe1.5°Cnet-emissionpathway,andthelongerwewait,thesteeperthereductionpathwillneedtobe.Second,evenwithbesteffortstoreduceemissions,therewillberesidualcarbonrelease,meaningthatemissionswillnotreachabsolutezerothiscentury.

Third,thechallengeishuge.In2050,societymusthavethecapacitytoremoveupto10billiontonnesofCO2fromtheatmosphereeveryyear:that’saquarterofwhatisemittedeachyeartoday.Itwilltaketimetobuildthatcapacity,andworkneedstostarttoday,parallelto(notinsteadof)stringentemissionreductionefforts.Laterthiscentury,itwilltakeupto20billiontonnesofnegativeemissionseachyeartostayontrackwiththe1.5°Cglobalwarmingtarget.Asananalogy,20billiontonnescorrespondstotoday’semissionsgeneratedbyhumanconsumptionofalloilandgasproductsinoneyear:ifittakesatrillion-dollarindustrytoprovideforalltheoilandgasthatcauses20billiontonnesofemissionstoday,11itwilltakethenexttrillion-dollarindustrytoremovethatsameamountfromtheatmospherein2050+.12

Certainhard-to-abateindustriesaremoredifficultandmoreexpensivetodecarbonise.Table1outlineshoweachsectorcontributestoGHGemissions.Itshowscurrentabsoluteandrelativeemissionsalongsidesector-specificreductionmeasuresandkeymitigationchallenges.Thesehelpexplainandreaffirmwhynegativeemissionsareanecessityiftheworldistolimittemperatureriseto1.5°C.13

11 Thetop20globaloilandgascompaniestogetherhadcumulativerevenuesofUSD3.4trillionin2020.SeeGlobal 500,Fortune,accessedon8February2021.

12 Ananalogysharedinotherpublications.Forexample,An investor guide to negative emission technologies and the importance of land use,VividEconomics,2020;Global Climate Restoration for People, Prosperity and Planet,ArizonaStateUniversity,2020;“OccidentaltoStripCarbonFromtheAirandUseIttoPumpCrude”,Bloomberg Businessweek,accessed13January2021.

13 Forfurtherreading,see“Specialfeature:Movingtoalow-carbonfuture,”SONAR,SwissRe,2020.

Figure 1 Net-emissionpathwaystolimitglobalwarmingto1.5°C

20202010 2030 2040 2050 2060 2070 2080 2090 2100

–20

–10

0

10

20

30

40

Global CO2 emissionsbillion tonnes per year

Net-zero

Residual emissions that cannot be reduced yet

Negative emissions requiredto balance the residual emissions

Massive emission reductions

Business as usual emissions

Net-emission pathways

to limit warming to 1.5°C

Emissions from oil & gas today...

EvenwithbesteffortstoreduceGHGemissions,therewillberesidualcarbonreleaseintotheatmosphere.

SomuchsothattohitParisAgreementtargets,carbonremovalwillneedtoreachadouble-digitbilliontonnescale.

Notallemissionscanbereadilyreduced.Hencetheneedfornegativeemissions.

4 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The case for carbon removal

Table 1 Emissions,reductionmeasuresandmitigationchallenges,bysector1415

Sector Absolute (relative) emissions inbilliontonnesCO2eqperyear

Key reduction measures15 (excludinggeneral,cross-sectorialpolicymeasureslikecarbonpricing,carbon-intensitymandates,etc)

Key sector specific mitigation challenges16 (excludinggeneral,morebroadlyapplicablechallengeslikelackofregulation,consumerpreferences,economical/structuralimpediments,etc)

Energy 17GtCO2(34.6%)

– makeglobalelectricityproductionwhollyrenewable– reappraiseenergyinfrastructure:addelectricitystoragecapacity;buildrobustandfasttransmission/distributionlines,andsmart,localgrids.

– fuelswitch(green/blueH2andsynthetic-/bio-methane)andfuelefficiencyforback-upplants

– fossilfuelsubsidiesofUSD333billionperyear(USD5.3trillionperyearifthevalueofcombustion-relatedexternalitiesisincluded),creatinganegativecarbonpriceatproductionandconsumptionside17

– lackofseasonalstorageoptions/capacity– newrenewableenergyinfrastructurecompetesforotherland-usepurposes,andmaycompromisehabitatandbiodiversityprotection.– energysecurity:increaseddemandforelectricityoutweighsadditionofnewrenewablecapacity,andoldfossilpowerplantsremainoperational

– longinvestmentcyclesinenergyinfrastructure,causingalock-inofemissions– lackofde-riskingforrenewableenergyinvestmentsindevelopingcountries(reducingthecostofcapitalthatweighsheavyonrenewableassets)18

Agriculture,forestryandotherlanduse

11.8GtCO2(24%)

– decreasenumberofmethane-producinglivestock:changetoplant-richdiets,anddiversifyproteinconsumptionawayfrommeat

– reducewaste/lossofcropandfood– optimisefertiliseruse(precisionfarming,nitrificationinhibitors,biochar)– conserveexistingandrestorecarbonpools(soils,forests)throughimprovedlandmanagement,agriculturalpracticesandfireprevention

– populationgrowth(foodsecurity)– subsidiesforunsustainablefarmingpractices,withlessthan5%ofUSD600billioninglobalagriculturesubsidiesgoingtoconservationefforts19

– increasingshareofmeatinaveragediet– higherlanduseperyield– technical,economic,educational,culturalimpedimentstonew(lessintensive)agriculturalorforestrypractices– lackofvaluationofpositiveexternalitiesfromclimate/biodiversityfriendlyagricultureandforestry(improvedlocalair,soil,andwaterquality)– unmitigateddeforestation,includingdrivenbylandgrab/speculation20

– increasedfrequencyandseverityofnaturalhazards(wildfire,droughts,storms)– counter-productivesubsidiesthatdonotreducetheglobalwarmingfootprintofagriculture,northenegativeimpactsonbiodiversity21

– foodwasteduetoinefficientharvesting,transportandstoragecapacities

Industry 10.3GtCO2(21%)

– increaseenergyandmaterialsefficiencyinmanufacturingandconstruction– improveproductdesigntolowerembodiedcarbonandincreasecircularity(facilitatedismantling,sorting,re-using,re-cycling,productlongevity)

– substituterawmaterialswithlowcarbonalternatives(eg,masstimber,carbon-fixingconcrete)

– electrifyproductionprocesses– switchtorenewableheat/processfuelsandreactants(blue/greenhydrogen)– carboncapture(utilisation)andstoragetodecarboniseheavyindustry,inparticularcementandchemicalsworks

– comparedtoconsumer-facingindustries,hard-to-abatematerialproducersectors(cement,mining,textiles,chemicals,steel,aluminium)havethehigheremissionintensity(CO2/product)butsmallermargins(income/product),makingaffordabilityofemissionreductionmeasureschallenging22

– longinvestmentcyclesforheavymachinery/processingplants– performanceandconcernsaboutcost/willingnesstopaybyclients/consumers– intransparencyofsupplychains

Transport 6.9GtCO2(14%)

– electrifylight-dutyroadtransport,mostlythroughbatteryelectricvehicles– modalshifts(increasepublictransport,moreefficientmodesforlogistics)– fuelswitch(biofuels,hydrogen/ammonia,syntheticfuels)inheavy-dutyroadtransport,shippingandaviation

– improvefuelefficiency– substituteandoptimisetravel(remotecollaboration,longer/lesstrips,etc.)

– increaseddemandformobility– increaseinglobaltrade– airplanes,trainsandshipswithincreasedlongevityseetotallife-cycleadjustedusagecostdecline,anargumenttokeepoperatinginefficienttransportmeans/infrastructure

– lackofinfrastructurepreventsadoptionatscale(eg,fewsuperchargingstationsforelectricvehicles)– transportinfrastructureinvestmentsarelongtermandtiedowncapital.

Buildings(operationsonly)

3.1GtCO2(6.4%)

– improvebuildings’energyefficiencytechnology(appliances,heatingetc)– advancebuildingautomationandcontrolsystems/meters(smartbuilding)– buildingconstruction:replacefossil-fuelledbuildingtechnologywithlow-carbonalternatives(rooftopsolar,heatpumps,biofuels,districtheating/cooling)

– slowrenovation/renewalcycleforbuildings(andenergyintensiveappliances)– concernsoverhigherinvestmentoutweighsbenefitsfromlowerrunningcost23

– lackofaccesstofinancing

Source:SwissReInstitute

14 TableisbuiltontheFifthAssessmentReportbytheIPCC(2014)andamendedbasedonauthors’judgementandfurtherliteratureasindicatedseparately:Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,IPCC,2014.Forfurtherreference,othersourcesusedwereClimateEngineering:Risks,Challenges,Opportunities?GermanResearchFoundation,January2019;andCO2-neutralbis2035:EckpunkteeinesdeutschenBeitragszurEinhaltungder1,5-°C-Grenze,WuppertalInstitute,2020.

15 SeealsoSONAR2020,SwissRe,op.cit.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 5

Table 1 Emissions,reductionmeasuresandmitigationchallenges,bysector1415

Sector Absolute (relative) emissions inbilliontonnesCO2eqperyear

Key reduction measures15 (excludinggeneral,cross-sectorialpolicymeasureslikecarbonpricing,carbon-intensitymandates,etc)

Key sector specific mitigation challenges16 (excludinggeneral,morebroadlyapplicablechallengeslikelackofregulation,consumerpreferences,economical/structuralimpediments,etc)

Energy 17GtCO2(34.6%)

– makeglobalelectricityproductionwhollyrenewable– reappraiseenergyinfrastructure:addelectricitystoragecapacity;buildrobustandfasttransmission/distributionlines,andsmart,localgrids.

– fuelswitch(green/blueH2andsynthetic-/bio-methane)andfuelefficiencyforback-upplants

– fossilfuelsubsidiesofUSD333billionperyear(USD5.3trillionperyearifthevalueofcombustion-relatedexternalitiesisincluded),creatinganegativecarbonpriceatproductionandconsumptionside17

– lackofseasonalstorageoptions/capacity– newrenewableenergyinfrastructurecompetesforotherland-usepurposes,andmaycompromisehabitatandbiodiversityprotection.– energysecurity:increaseddemandforelectricityoutweighsadditionofnewrenewablecapacity,andoldfossilpowerplantsremainoperational

– longinvestmentcyclesinenergyinfrastructure,causingalock-inofemissions– lackofde-riskingforrenewableenergyinvestmentsindevelopingcountries(reducingthecostofcapitalthatweighsheavyonrenewableassets)18

Agriculture,forestryandotherlanduse

11.8GtCO2(24%)

– decreasenumberofmethane-producinglivestock:changetoplant-richdiets,anddiversifyproteinconsumptionawayfrommeat

– reducewaste/lossofcropandfood– optimisefertiliseruse(precisionfarming,nitrificationinhibitors,biochar)– conserveexistingandrestorecarbonpools(soils,forests)throughimprovedlandmanagement,agriculturalpracticesandfireprevention

– populationgrowth(foodsecurity)– subsidiesforunsustainablefarmingpractices,withlessthan5%ofUSD600billioninglobalagriculturesubsidiesgoingtoconservationefforts19

– increasingshareofmeatinaveragediet– higherlanduseperyield– technical,economic,educational,culturalimpedimentstonew(lessintensive)agriculturalorforestrypractices– lackofvaluationofpositiveexternalitiesfromclimate/biodiversityfriendlyagricultureandforestry(improvedlocalair,soil,andwaterquality)– unmitigateddeforestation,includingdrivenbylandgrab/speculation20

– increasedfrequencyandseverityofnaturalhazards(wildfire,droughts,storms)– counter-productivesubsidiesthatdonotreducetheglobalwarmingfootprintofagriculture,northenegativeimpactsonbiodiversity21

– foodwasteduetoinefficientharvesting,transportandstoragecapacities

Industry 10.3GtCO2(21%)

– increaseenergyandmaterialsefficiencyinmanufacturingandconstruction– improveproductdesigntolowerembodiedcarbonandincreasecircularity(facilitatedismantling,sorting,re-using,re-cycling,productlongevity)

– substituterawmaterialswithlowcarbonalternatives(eg,masstimber,carbon-fixingconcrete)

– electrifyproductionprocesses– switchtorenewableheat/processfuelsandreactants(blue/greenhydrogen)– carboncapture(utilisation)andstoragetodecarboniseheavyindustry,inparticularcementandchemicalsworks

– comparedtoconsumer-facingindustries,hard-to-abatematerialproducersectors(cement,mining,textiles,chemicals,steel,aluminium)havethehigheremissionintensity(CO2/product)butsmallermargins(income/product),makingaffordabilityofemissionreductionmeasureschallenging22

– longinvestmentcyclesforheavymachinery/processingplants– performanceandconcernsaboutcost/willingnesstopaybyclients/consumers– intransparencyofsupplychains

Transport 6.9GtCO2(14%)

– electrifylight-dutyroadtransport,mostlythroughbatteryelectricvehicles– modalshifts(increasepublictransport,moreefficientmodesforlogistics)– fuelswitch(biofuels,hydrogen/ammonia,syntheticfuels)inheavy-dutyroadtransport,shippingandaviation

– improvefuelefficiency– substituteandoptimisetravel(remotecollaboration,longer/lesstrips,etc.)

– increaseddemandformobility– increaseinglobaltrade– airplanes,trainsandshipswithincreasedlongevityseetotallife-cycleadjustedusagecostdecline,anargumenttokeepoperatinginefficienttransportmeans/infrastructure

– lackofinfrastructurepreventsadoptionatscale(eg,fewsuperchargingstationsforelectricvehicles)– transportinfrastructureinvestmentsarelongtermandtiedowncapital.

Buildings(operationsonly)

3.1GtCO2(6.4%)

– improvebuildings’energyefficiencytechnology(appliances,heatingetc)– advancebuildingautomationandcontrolsystems/meters(smartbuilding)– buildingconstruction:replacefossil-fuelledbuildingtechnologywithlow-carbonalternatives(rooftopsolar,heatpumps,biofuels,districtheating/cooling)

– slowrenovation/renewalcycleforbuildings(andenergyintensiveappliances)– concernsoverhigherinvestmentoutweighsbenefitsfromlowerrunningcost23

– lackofaccesstofinancing

Source:SwissReInstitute

14 TableisbuiltontheFifthAssessmentReportbytheIPCC(2014)andamendedbasedonauthors’judgementandfurtherliteratureasindicatedseparately:Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,IPCC,2014.Forfurtherreference,othersourcesusedwereClimateEngineering:Risks,Challenges,Opportunities?GermanResearchFoundation,January2019;andCO2-neutralbis2035:EckpunkteeinesdeutschenBeitragszurEinhaltungder1,5-°C-Grenze,WuppertalInstitute,2020.

15 SeealsoSONAR2020,SwissRe,op.cit.

1617181920212223

16 Engströmetal.,“Carbonpricingandplanetaryboundaries”,NatureCommunicationsvol.11,202017 Measuring Fossil Fuel Subsidies in the Context of the Sustainable Development Goals.UNEP,OECDandIISD,2019.18 Derisking renewable energy investment. A Framework to Support Policymakers in Selecting Public Instruments to Promote Renewable Energy Investment in

Developing Countries.UNDP,2013.19 Redirecting Agricultural Subsidies for a Sustainable Food Future,WorldResourcesGroup,21July2020.20 “CurblandgabbingtosavetheAmazon”,NatureEcology&Evolution,vol3,2019.21 L.Gubler,S.A.Ismail,I.Seidl, Biodiversity damaging subsidies in Switzerland, Swiss Academies Factsheet 15, 2020; and The Economics of Biodiversity:

The Dasgupta Review,UKTreasury,202122 Net-Zero Challenge: The supply chain opportunity WorldEconomicForumandBostonConsultingGroup,2021.23 Energysavingscanrelativelyquicklycoverinvestmentcosts.SeeGlobalEnergyAssessment.CambridgeUniversityPress,2012.Thereportestimatesa

USD24billiontotalinvestmentneedtorealizeambitiousclimategoalsforbuildings,incontrasttocumulatedUSD65billionenergysavingsby2050,inducedbytheseinvestments.

6 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The case for carbon removal

Anewindustrytakingshape

TolimitglobalwarmingtotheParisAgreementtarget,thecaseforcarbonremovalisclear,butthecommercialrationaleisstillunfolding.Somecarbonremovalsolutionsarewellestablishedbuthavenotyetbeenwidelydeployed.Othershavenotyetmovedbeyondearlyresearchstage.Intheabsenceofuniversalcarbonpricingpoliciesandassociatedfees(polluter-pays-principlecomparabletoamunicipalwastecollectionfee),pollutershavelittleeconomicincentivetocut,collectanddisposeofemissions.Inotherwords,carbonremovalstilllacksabusinesscase.

Thissituationhasbeenchangingsince2019,aftertheIPCC(attherequestofthepartiestotheParisAgreement)publisheditsspecialreportassessingwhatitwilltaketolimitglobalwarmingto1.5°C.24Thenumberofagents/companiesdevelopingcarbonremovaltechnologies,practicesandserviceshasincreasednotablysincethen.25Thescale-upplansreachfromafew10000tonnesremovaltodaytohundredsofmillionsoftonnesbytheendofthedecade.Thefrontrunnersareattractinginvestorinterest,includingthosedevelopingtheleastmatureandmostexpensivesolutions.26

Theprivatesectoristhemaindriverofcurrentmomentum.Sinceearly2020,increasingnumbersofcompanieshavepledgedtoachievenet-zeroemissionsfromtheirownoperations,attimesincorporatingtheirsupplyand/orentirevaluechains.Somehavepledgedtoreversehistoricemissionsaltogether.27Many(butnotall)ofthecommitmentsacknowledgetheneedtobalanceunavoidedemissionsviacarbonremovalandsomefirms,includingSwissRe,havealreadyboughtfirstremovalservices.28,29Buyersrequireattestationthattheservicecapturesandstoresacertainamountofcarbonfromtheatmosphere.Theattestationisusuallyintheformofacarboncertificatepertonneremoved.Thepriceofthecertificateisthepriceabuyeriswillingtopayvoluntarilytocompensateforunavoidableemissions.Thusthefirstbusinesscasesforcarbonremovalservicesarebeingbuiltonthesalesofcarbonremovalcertificates,and2019sawthefirstmarkettradingofsuchcertificates.30

24 IPCC,2018,op.cit.25 See,forexample“Removecarbon.RestoreForests”,pachama.com;“EnableremovalofCO2fromthe

air”,climeworks.com,bothaccessedon8February2021.26 See,forexample,“PledgebyAmazon:TheRightNowClimateFund”, us.1t.org;“SwissCarbonCapture

StartupRaisesUSD76minFundingRound”, bloomberg.com,2June2020;“BlamedforClimateChange,OilCompaniesInvestinCarbonRemoval”,The New York Times,7April2019.

27 See,forexample, Carbon Removal Coprorate Action Tracker,InstituteofCarbonRemovalLaw&Policy,7May2020;Net-zero emissions: do our best, remove the rest,SwissRe,12April2020.

28 “Swiss-Rebackedcarbonremovalmarkettargetsgigatonscale-up”,theenergyst.com,June2020.29 See,forexample,R.Orbuch,“Stripe’sfirstcarbonremovalpurchases”,stripe.com,18May2020;

“FightingfortheFuture:ShopifyInvests$5MinBreakthroughSustainabilityTechnologies”,shopify.com,15September2020;Microsoft Carbon Removal – Lessons from an early corporate purchase,Microsoft,2021.

30 Forexample,“Carbonremovalstartshere:Theworld’sfirstB2Bmarketplace,standardandregistryfocusedsolelyoncarbonremovals”,puro.earth;“TheNoriCarbonRemovalMarketplace”,nori.com,bothaccessedon8February2021.

Theneedforcarbonremovalisclearbutthebusinesscaseisstillunfolding.

Theindustryisgainingafoothold...

...andtheprivatesectoristhemaindriver.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 7

Alltold,thecarbonremovalindustryisstillinearlystagesofdevelopment.Thereisalongwaytogoandlittletimetoreachthebillion-tonnesscaleofremovals.Barrierstodeploymentexistalongtheentirevaluechain.Keyconstraintsonthesupplysideincludehighcostandresourcerequirements,lackofeconomicincentives,lackofknowhow,resistancetochange,aswellascompetitionforland-useanduncertaintiesregardingthepermanenceofstorage.Onthedemandside,firstmoversareinclinedtowaitandseeinviewofhighinitialprices(free-riderproblem).Otherdemand-sideconstraintsincludelackofmarketaccess,lackofregulatoryrequirements,andtheperceptionthatsupportingcarbonremovalmaydeteractiontoreduceemissionsinthefirstplace(moralhazard).Supplyanddemandequilibriumisbeinghamperedbythelackofstandardisationofcarbonremovalservices,smalltransactionvolumes,limitedfungibilityandlackofregulationofinternationaltransfersofremovaloutcomes.

Allconstraintsaside,toanswerthecallofscienceandpreventtheworstimpactsofawarmingworld,thecarbonremovalindustrywillhavetoscalefromsome10000tonnesofnegativeemissionstodaytoaround10billiontonnesby2050.That’safactorincreaseof1millionoveraperiodofthreedecades,oracompoundannualgrowthrate(CAGR)ofcloseto60%.31Toreiterate,thetaskismassive.Oncetheindustryhastakenshape,furtherscalingwillrequirede-riskingandfinance.Thisiswherere/insurerswithappetiteforthejourneycanplaytotheirstrengths.

31 SwissReestimatesaCAGRof58%tomovefromafew10kilotonnesofnegativeemissionsservicesin2020to10gigatonnesby2050.Ifonsetofscalingupcarbonremovalservicesisdelayedto2025,theCAGRrisesto74%.Delayto2030=CAGRof100%.

Thebarrierstodevelopmentofcarbonremovalspansupply,marketplaceanddemand.

Thecarbonremovalindustryhastoscaleatanunprecedentedspeed.Thisrequiresde-riskingandaccesstocapital.

8 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

Theremovalindustrylandscape

CarbonremovalsolutionsdifferinhowatmosphericCO2iscaptured,processed,transportedandstored.TheyareoftenreferredtoasNegativeEmissionsTechnologies(NETs),butnotallrelyonthedeploymentoftechnologicalmeans.Therearethreemaincategoriesofcarbonremovalsolution(seeFigure2).

Nature-based solutionsthat use biological processes to capture CO2 from the atmosphere and store it in the form of organic matter. Examples: afforestation; soil carbon sequestration

Hybrid solutionswhich combine nature-based and technological processes. Example: bioenergy and carbon capture and storage (BECCS)

Technological solutions that use engineering tools to filter CO2 from air and store/process it in concentrated form. Example: direct air capture and storage (DACS)

Source:SwissRe

Scientistsagreethatnosingleapproachorsolutionhasthescalepotentialtoremoveenoughcarbontolimitglobalwarmingtowellbelow2°C.32Aswithotherclimatechangemitigationstrategies,aportfolioapproachthatexploitsnichesandsynergies,alignstothevariedneedsofcommunities,landscapesandeconomicpriorities,andfollowsriskdiversification,isrequired.Thepurposeofthischapteristoprovideabetterunderstandingofthecarbonremovallandscape,illustratedinFigure3.Thevaluechainofeachsolution—fromCO2capturefromair,toprocessing,transportandpermanentstorage—isdescribed.Thereafter,Table2providesanassessmentofthesolutionsfeaturingkeyparameterssuchascost,co-benefitsandpossibleadverseeffects.

32 IPCC,2018,op.cit.

Nature-based,technologicalandhybridsolutionsarethethreemaincategoriesofcarbonremoval.

Figure 2 Threemaincategoriesofcarbonremovalsolutions

Tomeetthecapacityrequired,carbonremovalsolutionsneedtodevelopedinparallel.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 9

Nature-based solutions include 1) Afforestation – planting forests on previously woodless land, 2) Soil carbon sequestration – increasing soil organic matter through changes in land manage-ment, 3) Blue carbon – fostering carbon uptake by wetlands; Technological solutions include: 4) Direct air capture and storage (DACS) – filtering CO2 directly from air and storing it permanently, 5) Enhanced weathering – fostering the fixation of CO2 through natural minerals, 6) Ocean alkalinisation – providing chemicals to ocean waters to foster the uptake of dissolved CO2;

Hybrid solutions include: 7) Bioenergy with carbon capture

& storage (BECCS) – extracting heat and power from biomass

then capturing the resulting CO2 from the flue gas and storing it, 8) Biochar –

producing charcoal from biomass and using it eg, as soil amendment, 9) Ocean fertilisation –

providing nutrients to foster algal growth;Storage options for concentrated CO2 from BECCS

and DACS are 10) geological reservoirs similar to an oil filed (porous rock in great depth, sealed by impermeable caprock) or 11) long-lived products such as aggregates, carbon fibres, etc.

9-Ocean fertilization

2-Soil carbon sequestration

4-DACS

8-Biochar1-Afforestation

7-BECCS

3-Blue carbon

6-Oceanalkalinisation

5-Enhanced weathering

11-Long-lived products

10-Geological storage 10-Geological storage

Figure 3 Carbonremovallandscape

Source:SwissRe

10 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The removal industry landscape

Nature-basedsolutions

PlantsremoveCO2fromtheatmospherethroughphotosynthesisanduseitasbuildingblockstoproducetheirbiomass(leaves,wood,roots),inwhichthecarbonremainsstoredaslongastheplantlives.Deadbiomassdecomposesandreleasessomecarbonbacktotheatmosphere,andsomeisconvertedtohumusorpeat.Mostnature-basedsolutions–likeafforestationandpracticestoimprovesoilcarbonsequestrationarewell-establishedandrelativelyinexpensive.33,34Otherareasofnature-basedcarbonremovalactivitylikebluecarbonremainlessexplored.35Ifundertakencorrectly,nature-basedsolutionscanyieldco-benefitsbeyondcarbonsequestration,includingfloodprotection,droughtresilienceandotherbenefitslikebiodiversityconservationandthemaintenanceofessentialecosystemservices.

Onthedownside,nature-basedsolutionsrequirelandandwaterresources.Theycompeteforlandwithfoodandfodderproduction,andotherhumanactivities,whichsetsalimittotheireconomicfeasibilityandscalability.36Moreover,theydonotproducenegativeemissionsinstantaneously:ittakesdecadestogrowaforestoraccumulatehumus.37Anotherriskisthedurabilityofstorageduetoenvironmentalandhumanimpacts.Globalwarmingandchangingprecipitationaltertheabilityoftreesandvegetationtosequestercarbon,andwildfiresorchangesinlandmanagementmayquicklyreleasetheCO2backintotheatmosphere.Thethreemainnature-basedsolutiontypescurrentlyareafforestationandimprovedforestmanagement,soilcarbonsequestrationandbluecarbon.

Afforestation and improved forest managementAfforestationistheplantingoftreesonpreviouslywoodlessland.Improvedforestmanagementseekstoincreasethecarbonstockofanexistingforest.38

Capture:treesandundergrowthcapturecarbonfromtheatmosphereviaphotosynthesis.

Processing: none. Transport: movingseedlingsorsaplingstofinalplantingsite. Storage: intheformofmaturingandmatureforests,includingthelivingbiomass

andthecarbonstoredinforestsoils.Notethatthewoodybiomassmayalsobeharvestedandmanufacturedintolong-livedconstructionmaterialslikemasstimber,whichcanremain(storecarbon)inbuildingsforseveraldecades.

33 S.Fussetal.“Negativeemissions—Part2:Costs,potentialsandsideeffects”,Environmental Research Letters,vol.13,2018.

34 C.Beuttler,S.Keel,J.Leifeld,TheRoleofAtmosphericCarbon Dioxide Removal in Swiss Climate Policy,FederalOfficefortheEnvironment,October2019.

35 Coastal Blue Carbon – methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows, ConservationInternational,IOC-UNESCOandIUCN,2014.

36 P.Smith,etal.,“BiophysicalandeconomiclimitstonegativeCO2emissions”,Nature Publishing Group, Nature Climate Change,vol.6,2016.

37 Dependingonspeciesandgeography,onaverage,agrown-uptreecanabsorbroughly22kgCO2peryear.See Forests, health and climate change, EuropeanEnvironmentAgency,2011.Asasapling,itwillabsorbmuchless.IttakesaUKbroadleaftreeitsfulllifetimeof~100yearstocapture1tonneofCO2.SeeHow much CO2 can trees take up?TheGranthamInstitute,2015.

38 Notethatinthecontextofclimateprotection,forestmanagementstrategiescanleadto:1)emissionavoidance:upholdingtheexistingforestcarbonstock,alsoknownasavoideddeforestation;2)emissionreversal:restoringtheforestcarbonstockofarecentlydegradedforest,alsoknownasreforestation;or3)negativeemissionsthroughafforestationorimprovedforestmanagement.Allthreeareimportantmeasurestomitigateclimatechange,butonlyafforestationandimprovedforestmanagementshouldbecountedascarbonremoval.Inpractice,af-andreforestationareoftenusedinterchangeably,asthereisnoconsensusonthetimescaletobeappliedfordefining“recentlydegraded”for“previouslywoodless”.The Economist Intelligence Unit (2020)suggeststhatplantingonlandthathasbeenwoodlessforatleast50yearsqualifiesasafforestation,andlessthanthatasreforestation.

Nature-basedsolutionsuseplantstocaptureCO2fromair.Theycanharnessmanyco-benefits…

..butfacelimitsofscalability.Resultsalsotakealongtimetorealise.

Afforestationistheplantingofnewtreestoincreasethecarbonstockofforests.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 11

Soil carbon sequestrationThroughregenerativeagriculturalpractices,soilsaccumulateorganicmatterintheformofsub-surfacebiomassandhumus.Theaimofsoilcarbonsequestrationistodeploylandmanagementpracticesthateitherincreasethecarboninputtosoils(throughcovercrops,croprotations,manure/compost/residueaddition,improvedgrazingmanagement)ordecreasethecarbonlossfromsoils(no-/low-tillage,switchfromannualtoperennialcropsandgrasses).39

Capture:viaplantbiomassgrowthanddecomposition,atmosphericCO2endsupinsoils.

Storage:intheformofsoilorganicmatter.

Blue carbonThisistheconservationandrestorationofcoastalwetlands(mangroves,seagrassmeadows,saltmarshes,macroalgae)andfreshwaterpeatlands,whichcansequestermorecarbonfasterthananyotherecosystem.40,41However,therearegapsintheunderstandingofsequestrationratesandhowhumanscanoptimally(ornegatively)influencethem.42

Capture:viaplantbiomassgrowthanddecomposition,atmosphericCO2endsupinwetlandecosystems.

Transport: movingseedsandsaplingstoplantingsites. Storage: intheformofthelivingbiomass,soilcarbon,peatandsedimentsthat

accumulateinwetlands.

39 K.Paustian,E.Larson,J.Kent,E.Marx,A.Swan,Soil carbon sequestration as a biological negative emission strategy.FrontiersinClimate,16October2019.

40 D.Herretal., Coastal “blue” carbon.InternationalUnionforConservationofNatureandNaturalResources,2015.

41 D.Gordon,B.C.Murray,LPendletonandB.Victor,Financing Options for Blue Carbon: Opportunities and Lessons from the REDD+ Experience.NicholasInstituteforEnvironmentalPolicySolutions,DukeUniversity,2011.

42 ConservationInternational,IOC-UNESCO,andIUCN,2014,op.cit.Thesebodiesclassifyfiveareasinwhichfurtherresearchisstillneeded:geography,sequestrationandstorage,emissionsandremovals,humandriversofecosystemdegradation,andcoastalerosion.

Regenerativeagriculturalpracticesincreasethecarbonstockinsoils.

Restorationandconservationofcoastalzonesandwetlandsincreasethecarbonstockintheseecosystems.

12 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The removal industry landscape

Technologicalsolutions

TechnologicalsolutionsuseindustrialprocessestoremoveatmosphericCO2forcapturing,storageorboth.Theyrelyonmachinery,processingorstorageinfrastructure,aswellaslogisticstotransportthecapturedconcentratedCO2products.Thestepsareenergyintensive.TheenergyusedshouldbefromrenewablesourcestopreventputtingnewCO2intotheatmospherewhileremovingwhatisalreadythere.Forexample,tocaptureonetonneofCO2directlyfromtheairusingcurrentfiltertechnologiesrequires2300kWhofenergy,equivalenttotheenergycontentin0.2tonnesofoil.43Producing,transportingandburning0.2tonnesofoilreleasesroughly0.6tonnesofCO2.Iftheenergytocapture1tonneofCO2fromaircamefromoil,thenetbenefitwouldbejust0.4tonnesofCO2capture.44

Technologicalsolutionsaremorecapital-andoperating-expenditureintensivethannature-basedalternatives.Also,theco-benefitsinvolvedarefewerandlessobvious(eg,jobcreation,re-purposingofstrandedinfrastructure,45innovationspill-over).46

Thishelpsexplainwhytechnologicalsolutionsarestillatanearlystageofdevelopmentanddeployment.Intheabsenceofstringentcarbonpricing,mandatesorvoluntarybuyers,therehasbeenlittlebusinessjustificationtodevelopexpensiveequipmenttocleantheairofCO2.Ontheupside,landrequirementsaresmallandthestorageinchemicalorgeologicalsystemsismoredurablethanthestoragepotentialofbiologicalsystems.Thetwomaintechnologicalsolutionsarecurrentlydirectaircaptureandstorage,andenhancedweathering.

Direct air capture and storage (DACS)CO2isfiltereddirectlyfromambientair,compressedandtheninjectedintogeologicalformationsdeepundergroundforpermanentstorage.

Capture:throughchemicalfiltersinairprocessingunits,CO2isbroughtfromonly0.04%concentrationintheairtocloseto100%concentrationintheresultinggasproduct.Thisseparationtaskrequireselectricitytodrivesufficientamountsofairthroughtheunit(10–20%oftotalenergy),andheattoregeneratethefilters(80–90%oftotalenergy).47

Processing:aftercapture,theconcentratedCO2streamisliquifiedincompressors(>65baratambienttemperature).

Transport:aircaptureunitsareideallyco-locatedatarenewableenergysourceorastoragesiteorboth,sothataircapturecantakeplaceanywhere(independentfromaCO2pointsource).Therefore,onlylimitedornoCO2transportinfrastructure–suchaslong-distancepipelines–isrequired.

Storage:thecompressed,liquifiedCO2ispumpedthroughaninjectionwellintogeologicalstructures,usuallyat800(minimum)to2500(maximum)metresdepth.Likeoilorgasfields,thesestructuresconsistofporousrocktoppedbyalayerofdensecaprock.Onceinjectedatapressureslightlyabovethereservoirpressure(minimum80bar,wellbelowfracturingpressure),physicalandchemicalprocessesstabilisetheCO2overtime.48AbenefitofstoringCO2geologicallyisthatexistingdepletedoilandgasfieldscanbere-filledusingoldinfrastructure.

43 Energyconsumptionofdirectaircapturetechnologyis~200tonnesoilequivalent(toe)pertonneCO2captured.Burningatonneofoilroughlyemits~3tonnesofCO2.SeeDirect Air Capture – more efforts needed,InternationalEnergyAgency(IEA),June2020,

44 Ibid.45 “Strandedinfrastructure”areinfrastructureassetsthatseenprematurewrite-downduetoeconomicor

unexpectedregulatoryreasons.Forexample,fossilenergyinfrastructurelikeanoilpipelinemaybere-purposedtoserveforCO2transport.

46 J.Minxetal“Negativeemissions–Part1:Researchlandscapeandsynthesis”, Environmental Research Letters,vol13,2018.

47 IEA,June2020,op.cit.48 Withinthestoragereservoir,theCO2:1)istrappedphysicallybeneaththecaprock(structuraltrapping,

immediatelyeffective):2)getsimmobilizedintheformoftrillionsoftinybubblesbehindporenecks(residualtrapping,immediatelyeffective);then3)startsdissolvingintheporefluidandsinkstothebottom(dissolutiontrapping,takesyearstocenturies);andlater4)reactswiththerocktoformstablemineralcarbonates(mineraltrapping,takesdecadestomillennia).Overtime,thesefoursequentialtrappingmechanismstransformCO2intoevermoredurableformsofstorage.SeeSpecialReportonCarbonCaptureandStorage,IPCC,2005.

Technologicalsolutionsuseengineeringtoolstoremovecarbon,andrequirelotsofrenewableenergy.

Technologicalsolutionsarestillatanearlystageofdevelopment.

DACSdeploysfiltermachinestocaptureCO2directlyfromair.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 13

InNorthAmerica,CO2injectionintomaturingoilfieldsthroughonewellispracticedtoproducemoreoilinanotherwellnearby.ThisisknownasEnhancedOilRecovery(EOR).Intheory,moreCO2canbeinjectedandsequesteredthanthatemittedthroughdownstreamoilusage.AnotherspecialcaseforgeologicalCO2storagehasbeendemonstratedinIceland,wherecapturedCO2ispre-dissolvedinwaterandtheninjectedintobasalts,atypeofrockthatreactwiththeCO2toformstableminerals.49

AircapturedCO2canbeprocessedintolong-livedproductslikecarbonfibre,aggregatesandotherbuildingblocksforconcreteandprecipitatedcalciumcarbonate.Thisisreferredtoas‘carbontech’,orcarboncapture,utilisationandstorage(CCUS).Currently,carbontechmakesuseofjustsome200MtCO2perannum,includingCO2usedforEORandshort-livedproductssuchassyntheticfuelsorplastics(=carboncaptureandutilisation,CCU),meaningitplays/willlikelyplayjustasmallroleintheglobalquesttodelivergigatonsofnegativeemissions(seealsoCarbon removal vs. carbon capture and storage: what are the differences? onp15).

Enhanced weatheringChemicalweatheringisthenaturalprocessbywhichrocksurfacegetsattackedwhenexposedtoatmosphericCO2dissolvedinwater.Thisprocesscanbeenhancedbyenlargingthesurfaceareaofsuitablerocksandoptimallyexposingthemtorain-oroceanwater.50

Capture:alkalinerocksuchasolivineisminedandfinelygroundtoincreasesurfaceareabeforebeingspreadevenlyoversoilorbeaches.CO2inwaterformscarbonicacidthatattacksanddissolvestherockgrains,therebyformingastablemineral/bicarbonatesolution.Enhancedweatheringcanalsobecarriedoutinanengineeredreactorwheretemperature,pressureandpHconditionscanbevariedtoincreasethespeedofreactions(mineralcarbonation,ormineralisation).51

Processing:miningandgrindingrock. Transport:fromthemine/grindertotheweatheringsitesusingtrucks,trainsand

ships. Storage: chemicallyfixedasbicarbonatesolution(pore-,surface-,oceanwater)

andeventuallyprecipitatedascarbonateminerals.

49 See,forexample,theCarbfixprojectinIceland.

50 R.DSchuiling,P.Krijgsman,“EnhancedWeathering:AnEffectiveandCheapTooltoSequesterCO2”,Climatic change,vol74,2006.SeealsoD.J.Beerling,E.P.Kantzas,etal.,“Potentialforlarge-scaleCO2removalviaenhancedrockweatheringwithcroplands.Nature,vol583,2020.

51 K.Lackneretal.,“Carbondioxidedisposalincarbonateminerals”,Energy,vol20,1995.

Inconcentratedform,theCO2canbestoredingeologicalformations...

...andalsoinlong-livedproducts.

EnhancedweatheringacceleratesthenaturalprocessbywhichmineralscanbindCO2dissolvedinwater.

14 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

Hybridsolutions

Hybridsolutionsseektocombineandreapthebenefitsofdifferentfeaturesofnature-basedandtechnologicalapproaches.Whatnaturedoesbestissun-poweredaircapturethroughphotosynthesis.Technology,ontheotherhand,isbetteratconvertingCO2intodurableformsofstorage.

Bioenergy with carbon capture and storage (BECCS)Biomassisconvertedtoheatandpowerinapowerplantortoenergycarrierslikeethanol,methanolorbiogasinanindustrialfacility.TheconversionresultsinbiogenicCO2thatisseparatedfromtheoff-gasthroughconventionalpointsourcecarboncapturemethods.TheconcentratedCO2canbesentforgeologicalstorageorprocessedintolong-livedproducts.The“CCS”partofBECCSisthesameastheconventionalcarboncaptureandstoragevaluechaintodecarboniselargepointsourcesofCO2suchascoalfiredpowerplants(seealsoCarbon removal vs. carbon capture and storage: what are the differences? below)52

Capture:thefirststepofcapturingofCO2fromtheairisthroughphotosynthesisinplants.

Processing: plantbiomassisharvestedandburned,orconvertedtobiofuelsandotherchemicals.TheresultingbiogenicCO2canbethenstrippedrelativelyeasilyfromthefluegas/processgasusingconventionalCO2capturemethods(eg,aminescrubbing).53ThisisthesecondcapturestepinBECCS.TheconcentratedCO2isthencompressedandsentforstorage.

Transport: twomainsteps:1)movingbiomassfromthefield/foresttotheprocessingplants:and2)fromthere,movingcompressedorliquifiedCO2inpipelines(typicallyat100barpressure,ambienttemperature)orusingtrucks/trains(~20bar,–20°C)orships(at7bar,–50°C)toastoragesite.Ideallybiomasssourceandstoragesitesareincloseproximitytokeeptransportcoststoaminimum.54

Storage: thestorageoptionsarethesameasforDACS.

BiocharBiocharresultsfromheatingbiomassunderlackofoxygen(pyrolysis).Itconsistsofcarbonblackwhichdecomposesveryslowlyundernaturalconditions,renderingbiocharamoredurablecarbonstorageformthantheoriginalbiomass.Itisusuallyaddedtodegradedtopsoiltoimprovesoilfertility.

Capture: plantgrowthcapturescarbonfromtheatmospherethroughphotosynthesis.

Processing: theplantbiomassisconvertedintobiocharinapyrolysisplant.Pyrolysisproducesamethaneandhydrogenrichoff-gas(syngas)thatcanbeusedtopowerthepyrolysisprocessorbeupgradedtosyntheticbiofuels.

Transport: biomassismovedfromthefield/foresttothepyrolysisplant,andthebiocharfromthatplanttoitsplaceofuse.55

Storage: intheformofcarbonblack,whichisstableoverdecadeswhenusedasbuildingblocksintheconstructionorchemicalindustries,56andcanalsobeusedforsoilamelioration.57

52 IPCC,2005,op.cit.53 NotethatconventionalCO2capturefromafluegascontaining4–25%CO2requiresmuchlessenergy

thandirectcapturefromaircontainingonly0.04%CO2.Asaruleofthumb,costofcapturescaleslinearlywithdilution(Sherwood’sRule).

54 IPCC,2005,op.cit.55 Mobilepyrolysisunitscouldbeusedtoprocessthebiomassandreturnthebiocharonfieldsite.See

“Useofmobilefastpyrolysisplantstodensifybiomassandreducebiomasshandlingcosts–apreliminaryassessment,”Biomass and Bioenergy,vol30,2006.

56 “Applicationofthebiochar-basedtechnologiesasthewayofrealizationofthesustainabledevelopmentstrategy”,Economic and Environmental Studies,OpoleUniversity,vol.17,2017

57 J.Lehmann,S.Joseph,Biochar for environmental management, first edition.Earthscan,2009.

Hybridsolutionscombinenature-basedandtechnologicalsolutions.

BECCSconvertsbiomasstoenergy,andcapturesandstorestheresultingbiogenicCO2fromthefluegas.

Heatingbiomassunderlackofoxygenproducesbiocharthatismoredurablethantheoriginalbiomass.

The removal industry landscape

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 15

Othersolutions

Otherless-developedcarbonremovalsolutionsincludeoceanfertilisationandalkalinisation.TheseacceleratethenaturalcarboncyclebymodifyingoceanchemistrytowardsahigherCO2uptakerate.

Ocean fertilisation providesthemissingnutrient–mostlyiron–thatcontrolsalgalgrowthdirectlyinthesurfacewaterathighsea.Algae(phytoplankton)growsandabsorbsCO2throughphotosynthesis.Itthendiesandsinks,creatingacarbonfluxtotheoceanfloor.

Ocean alkalinisationprovidesalkalinebrinesdirectlytooceanstoraisethepHofthewaterandallowmoreuptakeofatmosphericCO2.Thealkalinityisderivedfromminerals(silicates,limestone)orindustrialby-products(ashes,desalinationbrines).

Thereisstillmuchuncertaintywithrespecttotheeffectivenessandadverseimpactsonoceanecologyofthesesolutions,whichmeritsfurtherresearchbeforeconsideringlarge-scaledeployment.58

58 Uncharted Waters: Expanding the Options for Carbon Dioxide Removal in Coastal and Ocean Environments,EnergyFuturesInitiative,2020.

Otherapproachestocarbonremovalarelessdeveloped...

...andentailmanyunknowns.

16 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The removal industry landscape

Carbon removal vs. carbon capture and storage: what are the differences?Thetermscarbonremovalandcarboncaptureandstorage(CCS,orsimplycarboncapture)areoftenusedinterchangeably,butthereareimportantdifferences.CarbonremovalisthecaptureandstorageofCO2fromtheatmosphereforthesakeofproducingnegativeemissions.CCSisthecaptureandstorageofCO2fromthefluegasoflargeindustrialpointsourcesforthesakeofreducingemissionsfromfossilfueluse.59ThereareoverlapsintheCCSvaluechain,andthatofBECCSandDACS,whichallprovideconcentratedatmosphericCO2postcapture.ThethreeprocessescansharethesameCO2transportandstorageinfrastructure.InthecaseofBECCSandCCS,thepointsourcecapturetechnologyisthesame.

AnotherareaofconfusionisthefateoftheCO2oncecaptured,inparticularwhenitcomestocarbonbalance.CO2canbestoredgeologicallyasintheoriginalCCSvaluechain.Itcanbeconvertedtoshort-livedproductsthatwillreleasethecapturedCO2uponconsumption,knownascarboncaptureandutilisation(CCU),oritcanbeconvertedtolong-livedproductsthatholdCO2foralongtime,calledcarboncapture,utilisationandstorage(CCUS).DependingontheoriginoftheCO2(fossilderivedorbiogenic/directlyfromair),thethreeroutesleadtoacarbonbalancethatispositive(moreemissions),neutral(emissionsareavoided)ornegative(carbonisremoved).

TheCCUSrouteispreferableovergeologicalstorage,becauseitgivesvaluetoratherthandisposingofCO2emissionsasawasteproduct.However,thebulkmarketcurrentlyopentoreceiveCO2fromanexternalsourceisjustsome40milliontonnes/year,60andmostofthattakestheCCUratherthanCCUSroute.Thisiswellshortoftheneedformanybilliontonnesofemissionstobesequesteredtobalanceresidualandlegacyemissionsinlinewiththe1.5°Cwarminglimit.ThatiswhymostoftheconcentratedCO2comingfromBECCSandDACSplantswilleventuallyhavetotakethegeologicalstorageroute.

59 Twentyyearsago,CCSemergedasameanstodecarbonisecoal-andgas-firedpowerplantsatatimewhennewrenewableswerestillprohibitivelyexpensive.Today,utility-scalewindandsolararethecheapestenergysourceinmanypartsoftheworld,thustheroleofCCSinthepowersectorwilllikelybelimited.CCSremains,however,asolutiontodecarbonisehard-to-abateindustrialsectorslikecement.

60 TotalbulkCO2marketis230MtCO2/year(PuttingCO2touse,IEA,2019).Ofthis130Mt/yrareforureaproductionandstemmostlyfromtheprocessitself(CO2frommethanereformingtoproduceammonia),and70–80Mt/yrareusedforEOR,wheretodateonly~20%stemfromanthropogenicsources,therestbeingdeliberatelyproducedfromnaturalCO2reservoirsindeepgeologicalformations.SeeClimate Intervention: Carbon Dioxide Removal and Reliable Sequestration,NationalAcademyofScience,2015.

ThevaluechainsofBECCS,DACSandCCSoverlap.

CCUSproduceslong-livedproductsthateffectivelystoreCO2.CCUproducesshort-livedproductsthatdon’tstoreCO2.

CCUSislimitedinstoragecapacity.ThebulkoftheconcentratedCO2hastogotogeologicalstorage.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 17

Figure 4 OverlapbetweencarbonremovalandCCSvaluechains

CO2 from atmosphere

Photo-synthesis

Biomass

Geologicalprocesses

Millions of yearsCoal, oil, gas

Combustion(point-source)

CO2 into atmosphere

CO2

capture

concentratedCO2

Geologicalstorage

Utilization &storage

Long-lived products(eg, concrete)

Utilization

CO2 intoatmosphere

Short-lived products(eg, synfuels)

Air capture

Biomassprocessing

Bio-diesel,wood, etc.

Today

Main input Fossil fuels

Output Heat/power,industrialproducts

Heat/power,industrialproducts

Heat/power,industrialproducts

CO2 balance Positive

CCS

more fuel

Neutral

BECCS

Biomass (land, water, fertilizer)

Negative

DACS

Heat/powerfrom renewables

Negative Neutral for fossil CO2Negative for bio/air CO2

CCUS

Heat/power(from renewables)

Long-lived products

Positive for fossil CO2Neutral for bio/air CO2

CCU

Heat/power(from renewables)

Short-lived products

CCS

CCUS

CCUBECCS

DACS

Source:SwissRe

18 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The removal industry landscape

Table 2 Carbonremovalsolutions:literature-basedassessment61

Method Readiness62 Cost todayUSD/tCO263

Energy requirementGJ/tC02

Land requirement ha/tCO2/yr

Scalability64 Permanence of storage74 Possible co-benefits75 Possible adverse effects76

Nature-based solutions

Afforestation (AF), improved forest management (IMF)

MatureAvailableatlargescale

1–100 –65 0.03–0.766

LowBarrierstoupscaling:

– landrequirementcreatescompetitionwithcropandfodderproduction,andconservationalgoals

– fullremovalpotentialunfoldsoverseveraldecades,foraslongasaforestgrows.Afully-grownforestcannotremovemorecarbon

– concernsaboutpermanence– lackofincentives/valuationofecosystem/climateservices

– lackofdemandforwoodinmostmarkets

Low77

Riskofreversalfrom:– illegalandlegaldeforestation(policychanges)

– slowdegradation(globalwarming,pests)

– naturalhazards(wildfires,storms)

– protectionandcreationofhabitatsthatconserveandenhancebiodiversity

– preventionofsoilerosion– improvedwaterquality/retention,localairqualityand(micro-)climaticconditions

– reversalofdesertification– jobcreationinforestryandeco-tourism– revenuefromsustainabletimber

– ill-managedafforestationefforts(monoculturetreeplantations,plantinginspecies-richecosystemslikesavanna)canharmbiodiversityandlivelihoodoflocalcommunities(displacement)

– foodsecuritycompromised– largewaterneedsforprojectsindryzones– treecoveragemayreducealbedo(reflectionofsunlightbackintospace),particularlyinsnow-richregions,whichmayexacerbateglobalwarming78

Soil carbon sequestration (SCS)

Early adoption – mature

– mostlyavailableatlargescale(afewpracticessuchasperennialisationarestillpre-mature)

0–4067 –68 –69 LowBarrierstoupscaling:

– lackofincentivesforwidespreadadoption,includingchallengesforfarmerswhensubsidysystemsaretiedtohighyieldofmonoculturalcommoditycrops

– resistancetochangeofestablishedpractices– risksassociatedwithtransitioningofpractices,suchasimpactonyieldandlabourinthefarmingpracticetransitionphase

– competinglanduses– timetakenforsoilcarbontobuildup– difficulties/uncertaintiesinmeasuringsoilcarbon– concernsaboutpermanence

LowRiskofreversalfrom:

– goingbacktooriginalpractices(eg,changeofownershipoftheland,policychanges,ceaseofincentives)

– environmentalchangesandhazards(floods,droughts)

– improvedcropyieldsaftertransitiontimewithpossibleloweryieldsforafewyears

– lowerexpensesforfertiliser,irrigationandcropprotectionchemicals,whichalsoreduceenvironmentalimpactsonsoil,water,air,faunaandhumanhealth

– increasedsoilresilienceandmicrobialbiodiversity

– improvedwaterretention(floodprotection)– improvedwaterqualityduetolowerfertiliserinputsandrunoff,andlesssoilwashingintowaterways

– significantreductionsinotherGHGemissions(eg,methane,N₂O)

– possibleincreaseofotherGHGemissions(N2O)

.

Blue carbon (BC)

Prototype – maturefromprototypes(eg,marinepermaculture)toavailableatlargescale(eg,mangroverestoration)

10–10070 –71 0.272 Low73

Barrierstoupscaling:– conflictsofuseincoastalzones– lackofincentivesforconservationandrestoration– waterpollution– concernsaboutpermanence– negativepublicperceptionofmangrovesandwetlands

Low79

Riskofreversalfrom:– land-usechange/ceaseofconservationpolicies

– coastalwetlandsvulnerabletosealevelriseandincreasedstormfrequency/intensity

– intactcoastalwetlandsprotectthecoastandinlandagainststormsurgeandotherstorm-relatedimpacts

– increasedbiodiversity/restoringfishstock– improvedwaterquality/foodsecurityforlocalcommunities

– jobcreation/protection(food,fishery,tourism)

– increasedtraceGHGemissions(CH4,N2O)

61 Theeditorialdeadlinetocompilethistablewas28February2021.62 Innovation needs in the Sustainable Development Scenario – Clean Energy Innovation Flagship Report:IEA,2020.Prototype=TRL4–6,Demonstration=

TRL7–8,Earlyadoption=TRL9–10(TRL10definedbyIEAas“Solutioniscommercialandcompetitivebutneedsfurtherintegrationefforts”),Mature=TRL11,definedbyIEAas“Proofofstabilityreached,withpredictablegrowth”.CommentsonthedevelopmentstatusadaptedfromG.F.Nemet,etal.“NegativeEmissions-Part3:Innovationandupscaling”,Environmental research letters,vol13,2018.

63 AdaptedfromFussetal.2018,op.cit.64 CategoriesdefinedbasedonaveragecumulativepotentialinGtCO2bytheyear2100,compliedfromliteraturebyMinxetal.2018,op.cit.,Table2:Low=0–150

Gt,medium=151–300Gt,high=>301GtCO2.Notethatthepotentialoftheindividualcarbonremovalsolutionsarenotnecessarilyadditiveassolutionscompeteforlimitedland,biomassfeedstock,andsuitablegeologicalstoragecapacity.CommentsonthelimitationsstatusadaptedfromNemetetal.,2018op.cit.

65 Af-andReforestation,andImprovedForestManagementhavebeenfoundtorequirenoadditionalenergyinputcomparedtoconventionalforestmanagement.Numbersdifficulttopinpoint

66 Land Use, Land-Use Change and Forestry,IPCC,2000.67 InformedbyP.Smith,“Soilcarbonsequestrationandbiocharasnegativeemissionstechnologies”, Global Change Biology,vol22,2016,andcurrentmarket

intelligence.68 SCShasbeenfoundtorequirenoadditionalenergyinputcomparedtoconventionallandmanagement.Numbersdifficulttopinpoint.69 SCSrequiresnoadditionallandbeyondwhatisalreadyusedforagriculture.70 NotassessedbyFussetal.2018,op.cit.Costbasedonauthors’judgementandWhat is Blue Carbon?AmericanUniversity71 Noreliablecalculationsorestimationsavailable72 Numberrefersonlytospecificmangroveplantations,otherwetlandecosystemsmaybedifferent.D.M.Alongi2012,“Carbonsequestrationinmangrove

forests”, Carbon Management,vol3,2012;O.J.Eeon,“Mangroves–acarbonsourceandsink”,Chemospherevol27,1993.73 NotassessedbyMinxetal.,2018,op.cit.AccordingtoGriscometal.in“Naturalclimatesolutions”,PNAS,2017.Afforestationandimprovedforest

managementtogetherhaveayearlypotentialof3.9GtCO2/yearin2030,whereascoastalwetlandandpeatlandrestorationtogetherhave0.6GtCO2/year.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 19

Table 2 Carbonremovalsolutions:literature-basedassessment61

Method Readiness62 Cost todayUSD/tCO263

Energy requirementGJ/tC02

Land requirement ha/tCO2/yr

Scalability64 Permanence of storage74 Possible co-benefits75 Possible adverse effects76

Nature-based solutions

Afforestation (AF), improved forest management (IMF)

MatureAvailableatlargescale

1–100 –65 0.03–0.766

LowBarrierstoupscaling:

– landrequirementcreatescompetitionwithcropandfodderproduction,andconservationalgoals

– fullremovalpotentialunfoldsoverseveraldecades,foraslongasaforestgrows.Afully-grownforestcannotremovemorecarbon

– concernsaboutpermanence– lackofincentives/valuationofecosystem/climateservices

– lackofdemandforwoodinmostmarkets

Low77

Riskofreversalfrom:– illegalandlegaldeforestation(policychanges)

– slowdegradation(globalwarming,pests)

– naturalhazards(wildfires,storms)

– protectionandcreationofhabitatsthatconserveandenhancebiodiversity

– preventionofsoilerosion– improvedwaterquality/retention,localairqualityand(micro-)climaticconditions

– reversalofdesertification– jobcreationinforestryandeco-tourism– revenuefromsustainabletimber

– ill-managedafforestationefforts(monoculturetreeplantations,plantinginspecies-richecosystemslikesavanna)canharmbiodiversityandlivelihoodoflocalcommunities(displacement)

– foodsecuritycompromised– largewaterneedsforprojectsindryzones– treecoveragemayreducealbedo(reflectionofsunlightbackintospace),particularlyinsnow-richregions,whichmayexacerbateglobalwarming78

Soil carbon sequestration (SCS)

Early adoption – mature

– mostlyavailableatlargescale(afewpracticessuchasperennialisationarestillpre-mature)

0–4067 –68 –69 LowBarrierstoupscaling:

– lackofincentivesforwidespreadadoption,includingchallengesforfarmerswhensubsidysystemsaretiedtohighyieldofmonoculturalcommoditycrops

– resistancetochangeofestablishedpractices– risksassociatedwithtransitioningofpractices,suchasimpactonyieldandlabourinthefarmingpracticetransitionphase

– competinglanduses– timetakenforsoilcarbontobuildup– difficulties/uncertaintiesinmeasuringsoilcarbon– concernsaboutpermanence

LowRiskofreversalfrom:

– goingbacktooriginalpractices(eg,changeofownershipoftheland,policychanges,ceaseofincentives)

– environmentalchangesandhazards(floods,droughts)

– improvedcropyieldsaftertransitiontimewithpossibleloweryieldsforafewyears

– lowerexpensesforfertiliser,irrigationandcropprotectionchemicals,whichalsoreduceenvironmentalimpactsonsoil,water,air,faunaandhumanhealth

– increasedsoilresilienceandmicrobialbiodiversity

– improvedwaterretention(floodprotection)– improvedwaterqualityduetolowerfertiliserinputsandrunoff,andlesssoilwashingintowaterways

– significantreductionsinotherGHGemissions(eg,methane,N₂O)

– possibleincreaseofotherGHGemissions(N2O)

.

Blue carbon (BC)

Prototype – maturefromprototypes(eg,marinepermaculture)toavailableatlargescale(eg,mangroverestoration)

10–10070 –71 0.272 Low73

Barrierstoupscaling:– conflictsofuseincoastalzones– lackofincentivesforconservationandrestoration– waterpollution– concernsaboutpermanence– negativepublicperceptionofmangrovesandwetlands

Low79

Riskofreversalfrom:– land-usechange/ceaseofconservationpolicies

– coastalwetlandsvulnerabletosealevelriseandincreasedstormfrequency/intensity

– intactcoastalwetlandsprotectthecoastandinlandagainststormsurgeandotherstorm-relatedimpacts

– increasedbiodiversity/restoringfishstock– improvedwaterquality/foodsecurityforlocalcommunities

– jobcreation/protection(food,fishery,tourism)

– increasedtraceGHGemissions(CH4,N2O)

61 Theeditorialdeadlinetocompilethistablewas28February2021.62 Innovation needs in the Sustainable Development Scenario – Clean Energy Innovation Flagship Report:IEA,2020.Prototype=TRL4–6,Demonstration=

TRL7–8,Earlyadoption=TRL9–10(TRL10definedbyIEAas“Solutioniscommercialandcompetitivebutneedsfurtherintegrationefforts”),Mature=TRL11,definedbyIEAas“Proofofstabilityreached,withpredictablegrowth”.CommentsonthedevelopmentstatusadaptedfromG.F.Nemet,etal.“NegativeEmissions-Part3:Innovationandupscaling”,Environmental research letters,vol13,2018.

63 AdaptedfromFussetal.2018,op.cit.64 CategoriesdefinedbasedonaveragecumulativepotentialinGtCO2bytheyear2100,compliedfromliteraturebyMinxetal.2018,op.cit.,Table2:Low=0–150

Gt,medium=151–300Gt,high=>301GtCO2.Notethatthepotentialoftheindividualcarbonremovalsolutionsarenotnecessarilyadditiveassolutionscompeteforlimitedland,biomassfeedstock,andsuitablegeologicalstoragecapacity.CommentsonthelimitationsstatusadaptedfromNemetetal.,2018op.cit.

65 Af-andReforestation,andImprovedForestManagementhavebeenfoundtorequirenoadditionalenergyinputcomparedtoconventionalforestmanagement.Numbersdifficulttopinpoint

66 Land Use, Land-Use Change and Forestry,IPCC,2000.67 InformedbyP.Smith,“Soilcarbonsequestrationandbiocharasnegativeemissionstechnologies”, Global Change Biology,vol22,2016,andcurrentmarket

intelligence.68 SCShasbeenfoundtorequirenoadditionalenergyinputcomparedtoconventionallandmanagement.Numbersdifficulttopinpoint.69 SCSrequiresnoadditionallandbeyondwhatisalreadyusedforagriculture.70 NotassessedbyFussetal.2018,op.cit.Costbasedonauthors’judgementandWhat is Blue Carbon?AmericanUniversity71 Noreliablecalculationsorestimationsavailable72 Numberrefersonlytospecificmangroveplantations,otherwetlandecosystemsmaybedifferent.D.M.Alongi2012,“Carbonsequestrationinmangrove

forests”, Carbon Management,vol3,2012;O.J.Eeon,“Mangroves–acarbonsourceandsink”,Chemospherevol27,1993.73 NotassessedbyMinxetal.,2018,op.cit.AccordingtoGriscometal.in“Naturalclimatesolutions”,PNAS,2017.Afforestationandimprovedforest

managementtogetherhaveayearlypotentialof3.9GtCO2/yearin2030,whereascoastalwetlandandpeatlandrestorationtogetherhave0.6GtCO2/year.

74 Authors’judgment:low=decades,medium=centuries,high=millennia.IndicationofriskofstoragereversaladaptedfromFussetal.,2018op.cit.75 AdaptedfromFussetal.,2018,op.cit.76 Ibid.77 C.f.10–100yearscontracteddurabilityforforestprojects,Microsoft,2021op.cit.78 C.A.Williams,etal.,“ClimateimpactsofUSforestlossspannetwarmingtonetcooling,“Science Advances, vol7,2021.79 NotassessedbyFussetal.2018,op.cit..Thepermanenceconstraintswithunderlyingrisksofstoragereversalare,however,notdissimilarfromafforestation

(eg,mangroves)andsoilcarbonsequestration(eg,saltmarshes).

20 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The removal industry landscape

Method Readiness62 Cost todayUSD/tCO263

Energy requirementGJ/tCO2

Land requirement ha/tCO2/yr

Scalability64 Permanence of storage74 Possible co-benefits75 Possible adverse effects76

Technological solutions

Direct air capture and storage (DACS)

PrototypeThreefront-runningcompanies(Climeworks(CH),CarbonEngineering(CA),GlobalThermostat(US))runprototypes.Laterin2021,Climeworkswillopentheworld’sfirstpre-commercialdemonstration80

600–100081 6.7-12.382 <0.00183 HighBarrierstoupscaling:

– highcost(asaconsequenceoflowtechnologyreadinessandresource/energyintensityduetophysical/thermodynamicconstraints)

– highdemandof(clean)energy– slowdevelopmentofgeologicalstorageinfrastructure,alsoduetolackofpublicacceptance(fearofleakage)

– lackofconsistentregulationandstandards

HighRiskofreversalfrom:

– leakagealongfaulty/abandonedwells

– undiscoveredcaprockdeficiencies

– slowmigrationoutofthestoragereservoirtogetherwithformationfluids

– jobcreation/preservation(foroil&gasindustrytransitioningtonewbusinessmodel;CO2-as-a-service,“reversethepump”)94

– repurposingofidleinfrastructure– scientificinsightsandinnovationspill-overbenefits

– parasiticenvironmentalimpactsfromDACsupplychain(metals,chemicals,othermaterials)andcleanenergysources(andtheirsupplychains)

– inducedseismicityduringgeologicalstorageoperation

– incaseofleakage:contaminationofgroundwaterwithdisplacedreservoirfluids,ifCO2makesitswaytosurface(eg,alongwellcasing),humanhealthriskthroughasphyxiation(CO2isheavierthanairandmayaccumulateinditches,pits,etc.)

Enhanced weathering (EC)

PrototypeEarlyapplicationsonly84

50–20085 12.586 <0.0187 MediumBarrierstoupscaling:

– fundamentalunderstandingofimpacts/effectiveness

– veryslowsequestrationrates– costoftransportofminerals

Low – highRiskofreversalfrom:

– changesinwaterchemistry(eg,drainagefromsoils,externaldisturbances,includingacidrain)

– addingcertainmineralstoleachedsoilimprovessoilfertility(nutrients,higherpH,nutrientretentioncapacity,moistureretention)andthuscropyields

– jobcreation/preservationinmining– repurposingofidleinfrastructure

– potentialheavymetalrelease– negativeecological/socialimpactofmineralextractionandtransport

– healthrisksrelatedtofine-grainmatter

Hybrid solutions

Bioenergy with carbon capture and storage (BECCS)

DemonstrationLimitednumberoffull-scaledemonstrationplants88

15–400 Energyproduction0.8-10.989

0.03–0.590 HighBarrierstoupscaling:

– costofindustrialcaptureandstorage– availability/accessibilityofbiomass(competitionwithotheruses,eg,biofuels)

– competitionforagriculturallandifbiomassstemsfromdedicatedenergycrops(ifbiomassstemsfromforests,moretonnesofCO2canbestoredperlandareawithBECCScomparedtoAF/IMF,becausetheforestbiomasscanbeharvestedseveraltimes)

– lackofconsistentregulationandstandards

HighRiskofreversalsameasforDACS(seeabove)

– biomasscansubstitutefossilfuelstoproducebaseloadenergy(coveringproduction/seasonalgapsofintermittentrenewables)

– energyindependenceiflocalbiomassresourcescanreplaceimportedfossilfuels

– preservationofassets(retro-fittingoffossilfuelpowerplants)

– undergrowthremovedfromforestsandusedforBECCSreducestheriskofseverewildfires

– jobcreation(agro/forestry)andpreservation(power)– CCSretrofittedtowaste-to-energyplantsispartiallyBECCS,dependingonthebiogenicwastefraction

– similarpotentialadverseimpactsasfornature-basedsolutions,inparticularafforestation.Eg,negativeecologicalandsocialimpactfromlandusechange/monoculturetreeplantations

– growingdedicatedenergycropscompromisesfood/foddersecurityandbearsriskofdeforestation

– samegeologicalstorage-relatedrisksasforDACS(seeabove)

– undergrowthremovedfromforestscandiminishforestecosystemintegrity

Biochar Demonstration – early adoptionAvailable,butappliedtodayonlyatsmallscale

20–12091 Energyproduction0.1–5.192

0–0.0193 MediumBarrierstoupscaling:

– costofpyrolysis– constraintsonresourceavailabilityaswithBECCS– uncertaintiesinassessingthecumulativeclimateeffects(includingadverse)ofbiocharsoilamendments

MediumRiskofreversalfrom:

– slowdecay(mostlythroughmicrobialmetabolism)dependingonsoiltype,soilmanagementandenvironmentalconditions

– improvedsoilfertility(nutrientandmoistureretentioncapacity)andthuscropyields95

– reducednon-CO2GHGemissionsfromsoils– renewablepowerfrompyrolysisoffgases– wildfirepreventionlikeforBECCS– canalsobeappliedtomunicipalwaste(wastechar)toreducewastevolumeandpreventlandfillgasemissionsthathavehighglobalwarmingpotential

– growingdedicatedbiocharcropscompromisesfood/foddersecurityandrisksdeforestation

– biocharamendmentmakesthesoildarker(c.f.“terrapreta”;“blacksoil”),whichreducesalbedoandleadstofasterwarminginspring

– benefitstosoilarenotuniversal;sometimesbiocharadditionhasledtodecreasedcropyields96

80 Climeworks’Orcaplant,attheCarbfixstoragesite,Iceland(seehttps://www.carbfix.com/direct-air-capture)81 Estimateincludespubliclyavailablepricepoint(USD775/tCO2,purchasedbyStripeinMay2020)forClimeworksCDRservicesinIceland.82 LowerboundestimatebasedonInternationalEnergyAgency(IEA),2020,op.cit.UpperboundbasedonP.Smith,S.Davis,F.Creutzig,etal.,“Biophysicaland

economiclimitstonegativeCO2emissions,” Nature Climate Change, vol6,2015.83 Ibid.84 Forexample,Project VestaandGreensand.85 AdaptedfromFussetal.2018,op.cit.,andauthors’judgment86 P.Smith,S.Davis,F.Creutzigetal.2015,op.cit.87 Ibid.88 Forexample, DRAX, DPecatur, Illinois Industrial CCS facility89 P.Smith,S.Davis,F.Creutzig,etal.2015,op.cit.90 Ibid.91 AdaptedfromFussetal.2018,op.cit.andauthors’judgment;Greenhouse Gas Removal (GGR) policy options – Final Report, VividEconomics,2019.92 Between13%and47%oftheenergyinthesourcebiomassisconvertedintoausefulformsuchassyngasorbio-oil(K.CrombieandO.Mašek.“Pyrolysis

biocharsystems,balancebetweenbioenergyandcarbonsequestration.”Gcb Bioenergy,2015).ThesefactorshavebeenappliedtotheenergyproductionfromBECCSinreference89.

93 Biocharcanrequirenoadditionallandbeyondthatusedforagriculture/forestryifwastefeedstocksareused.Ifdedicatedcropsaregrown,therecanbealandfootprint.UpperboundfromP.Smith,2016,op.cit.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 21

Method Readiness62 Cost todayUSD/tCO263

Energy requirementGJ/tCO2

Land requirement ha/tCO2/yr

Scalability64 Permanence of storage74 Possible co-benefits75 Possible adverse effects76

Technological solutions

Direct air capture and storage (DACS)

PrototypeThreefront-runningcompanies(Climeworks(CH),CarbonEngineering(CA),GlobalThermostat(US))runprototypes.Laterin2021,Climeworkswillopentheworld’sfirstpre-commercialdemonstration80

600–100081 6.7-12.382 <0.00183 HighBarrierstoupscaling:

– highcost(asaconsequenceoflowtechnologyreadinessandresource/energyintensityduetophysical/thermodynamicconstraints)

– highdemandof(clean)energy– slowdevelopmentofgeologicalstorageinfrastructure,alsoduetolackofpublicacceptance(fearofleakage)

– lackofconsistentregulationandstandards

HighRiskofreversalfrom:

– leakagealongfaulty/abandonedwells

– undiscoveredcaprockdeficiencies

– slowmigrationoutofthestoragereservoirtogetherwithformationfluids

– jobcreation/preservation(foroil&gasindustrytransitioningtonewbusinessmodel;CO2-as-a-service,“reversethepump”)94

– repurposingofidleinfrastructure– scientificinsightsandinnovationspill-overbenefits

– parasiticenvironmentalimpactsfromDACsupplychain(metals,chemicals,othermaterials)andcleanenergysources(andtheirsupplychains)

– inducedseismicityduringgeologicalstorageoperation

– incaseofleakage:contaminationofgroundwaterwithdisplacedreservoirfluids,ifCO2makesitswaytosurface(eg,alongwellcasing),humanhealthriskthroughasphyxiation(CO2isheavierthanairandmayaccumulateinditches,pits,etc.)

Enhanced weathering (EC)

PrototypeEarlyapplicationsonly84

50–20085 12.586 <0.0187 MediumBarrierstoupscaling:

– fundamentalunderstandingofimpacts/effectiveness

– veryslowsequestrationrates– costoftransportofminerals

Low – highRiskofreversalfrom:

– changesinwaterchemistry(eg,drainagefromsoils,externaldisturbances,includingacidrain)

– addingcertainmineralstoleachedsoilimprovessoilfertility(nutrients,higherpH,nutrientretentioncapacity,moistureretention)andthuscropyields

– jobcreation/preservationinmining– repurposingofidleinfrastructure

– potentialheavymetalrelease– negativeecological/socialimpactofmineralextractionandtransport

– healthrisksrelatedtofine-grainmatter

Hybrid solutions

Bioenergy with carbon capture and storage (BECCS)

DemonstrationLimitednumberoffull-scaledemonstrationplants88

15–400 Energyproduction0.8-10.989

0.03–0.590 HighBarrierstoupscaling:

– costofindustrialcaptureandstorage– availability/accessibilityofbiomass(competitionwithotheruses,eg,biofuels)

– competitionforagriculturallandifbiomassstemsfromdedicatedenergycrops(ifbiomassstemsfromforests,moretonnesofCO2canbestoredperlandareawithBECCScomparedtoAF/IMF,becausetheforestbiomasscanbeharvestedseveraltimes)

– lackofconsistentregulationandstandards

HighRiskofreversalsameasforDACS(seeabove)

– biomasscansubstitutefossilfuelstoproducebaseloadenergy(coveringproduction/seasonalgapsofintermittentrenewables)

– energyindependenceiflocalbiomassresourcescanreplaceimportedfossilfuels

– preservationofassets(retro-fittingoffossilfuelpowerplants)

– undergrowthremovedfromforestsandusedforBECCSreducestheriskofseverewildfires

– jobcreation(agro/forestry)andpreservation(power)– CCSretrofittedtowaste-to-energyplantsispartiallyBECCS,dependingonthebiogenicwastefraction

– similarpotentialadverseimpactsasfornature-basedsolutions,inparticularafforestation.Eg,negativeecologicalandsocialimpactfromlandusechange/monoculturetreeplantations

– growingdedicatedenergycropscompromisesfood/foddersecurityandbearsriskofdeforestation

– samegeologicalstorage-relatedrisksasforDACS(seeabove)

– undergrowthremovedfromforestscandiminishforestecosystemintegrity

Biochar Demonstration – early adoptionAvailable,butappliedtodayonlyatsmallscale

20–12091 Energyproduction0.1–5.192

0–0.0193 MediumBarrierstoupscaling:

– costofpyrolysis– constraintsonresourceavailabilityaswithBECCS– uncertaintiesinassessingthecumulativeclimateeffects(includingadverse)ofbiocharsoilamendments

MediumRiskofreversalfrom:

– slowdecay(mostlythroughmicrobialmetabolism)dependingonsoiltype,soilmanagementandenvironmentalconditions

– improvedsoilfertility(nutrientandmoistureretentioncapacity)andthuscropyields95

– reducednon-CO2GHGemissionsfromsoils– renewablepowerfrompyrolysisoffgases– wildfirepreventionlikeforBECCS– canalsobeappliedtomunicipalwaste(wastechar)toreducewastevolumeandpreventlandfillgasemissionsthathavehighglobalwarmingpotential

– growingdedicatedbiocharcropscompromisesfood/foddersecurityandrisksdeforestation

– biocharamendmentmakesthesoildarker(c.f.“terrapreta”;“blacksoil”),whichreducesalbedoandleadstofasterwarminginspring

– benefitstosoilarenotuniversal;sometimesbiocharadditionhasledtodecreasedcropyields96

80 Climeworks’Orcaplant,attheCarbfixstoragesite,Iceland(seehttps://www.carbfix.com/direct-air-capture)81 Estimateincludespubliclyavailablepricepoint(USD775/tCO2,purchasedbyStripeinMay2020)forClimeworksCDRservicesinIceland.82 LowerboundestimatebasedonInternationalEnergyAgency(IEA),2020,op.cit.UpperboundbasedonP.Smith,S.Davis,F.Creutzig,etal.,“Biophysicaland

economiclimitstonegativeCO2emissions,” Nature Climate Change, vol6,2015.83 Ibid.84 Forexample,Project VestaandGreensand.85 AdaptedfromFussetal.2018,op.cit.,andauthors’judgment86 P.Smith,S.Davis,F.Creutzigetal.2015,op.cit.87 Ibid.88 Forexample, DRAX, DPecatur, Illinois Industrial CCS facility89 P.Smith,S.Davis,F.Creutzig,etal.2015,op.cit.90 Ibid.91 AdaptedfromFussetal.2018,op.cit.andauthors’judgment;Greenhouse Gas Removal (GGR) policy options – Final Report, VividEconomics,2019.92 Between13%and47%oftheenergyinthesourcebiomassisconvertedintoausefulformsuchassyngasorbio-oil(K.CrombieandO.Mašek.“Pyrolysis

biocharsystems,balancebetweenbioenergyandcarbonsequestration.”Gcb Bioenergy,2015).ThesefactorshavebeenappliedtotheenergyproductionfromBECCSinreference89.

93 Biocharcanrequirenoadditionallandbeyondthatusedforagriculture/forestryifwastefeedstocksareused.Ifdedicatedcropsaregrown,therecanbealandfootprint.UpperboundfromP.Smith,2016,op.cit.

94 TheRhodiumGroup(estimatesthatDACatfullscaleintheUScouldgenerate30000mostlyhigh-wagejobs:See,Capturing new jobs and new business: Growth opportunities from direct air capture scale-up,RhondiumGroup,2020.

95 Applyingbiochartoamelioratesoilsiswell-establishedbyindigenouscommunitiesintheAmazonregion(terrapreta)andinregenerativeagriculture.See“Thebrightprospectofbiochar”,Nature Climate Change vol 1,2009.

96 Biochar: is there a dark side?,ETHZürich,April2014.

22 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

Theroleofinsurance

Thetransitiontonet-zeroemissionspresentsrisksandopportunitiesforallsectorsoftheeconomy.Movingawayfromfossilfuelsandpollutingpracticesrequiresde-risking,financingandcreationofamarketforcleanalternatives.Theinsurancesectorisuniquelypositionedtooffersupportonthreefronts,by:

providingriskmanagementknowledgeandtransfersolutions,andinsurancecapacityforevolvingriskpools;

providingcapitalasaninstitutional,long-terminvestor;and stimulatingthemarketasabuyerofgreenproductsandservicestorunown

operations.

Togiveapracticalexample,aninsurancecompanycandriveenergytransitionbyprovidingrisktransfersolutionssuchasperformanceguaranteestosolarPVplants,byinvestingingreenbonds,theproceedsofwhichareusedtofinancewindfarms,andbysourcing100%ofitsownpowerconsumptionfromrenewablesources.97Inaddition,insurerscandemonstrateleadershipinmitigatingclimatechangewithtransparencyinreportingonallemissionsources(own-operationandindirectemissionsfrominsuranceofferingsandinvestments);bycommittingtonet-zeroemissionstrategieswithseparatetargetsforcarbonreductionsandremoval;andbyadvocatingforclimateactionandsharingofbestpractices.AnexampleforsuchactionistheUN-convenedNet-ZeroInsuranceAllianceannouncedinApril2021,committingfounding(includingSwissRe)andfuturesignatoriestoachieveanet-zerounderwritingportfolioby2050.98Thefollowingexploreshowthere/insuranceindustrycanengageincarbonremovalalongthethreemaintransitionlevers:asrisktakerandinvestorin,andasbuyerofgreenproductsandservices.

Understandingandinsuringcarbonremovalrisks

Re/insurersconductassessmenttoselectinsurablerisks,proposesuitablepricingthereof,andprovideriskmanagementadvicetoinsureds.99Theyalsodiversifyselectedrisksbasedonlinesofbusiness,geographyandtime.Thesesameriskmanagementactivitiesapplytounderstandingandinsuringofcarbonremovalrisks.

Already insurable risks:Manyelementsofthecarbonremovalvaluechainarefamiliartoinsurersthroughexistingactivities,technologiesandproductsinothersectorvaluechains.TheprivateinsurancemarkethaslongbeenunderwritingasuiteofassociatedrisksthroughProperty&Casualtylinesofbusiness,including:

Propertytraditional(includespropertyvalueandbusinessinterruptioninsurance).Themaincoversareforfire,explosion,maliciousdamage,strike,civilcommotionandnaturalperil(eg,flood,windstorm,hailandearthquake)risks.

Casualtytraditionallines – Generalthird-partyandproductliability – Employer’sliability – Motor – Professionalliability – Environmentalliability

97 AllthreeexamplesarerealengagementspursuedbySwissRe.SeeSustainability Report 2019.98 UN-convened Net-Zero Insurance Alliance,21April2021.99 Therearefourgeneralcriteriathatinsuranceproductsneedtoconformto:1)randomnessoftheperil

(ie,no-oneshouldbeabletoforeseetheexacttimeofoccurrenceofanadverseeventthathastobeaccidentalandindependentofthewilloftheinsured);2)quantificationofthefrequencyandseverityoftheperil(insurerscanmodelfortheprobabilityofoccurrenceandestimatetheimpacttothevalueatriskincaseofoccurrenceofanadverseevent);3)affordability(theinsurancepremiummustbeaffordablefortheinsuredandadequatelycoverthefinancialriskcarriedbytheinsurer);and4)reciprocityormutuality(insuranceportfoliosmustbesufficientlydiversetoavoidsystemicrisk).SeeG.Heal,H.Kunreuther,Environmental Assets & Liabilities: Dealing with catastrophic risks,TheWhartonSchool,November2008,andP.Brahinetal.,The essential guide to reinsurance.SwissRe,2015.

Theinsurancesectorcansupportscalingupofthecarbonremovalindustry.

…asarisktaker,investorandbuyer,andwithtransparentreportingandplanningofandadvocatingforclimateaction.

Carbonremovalcanprofitfromre/insurersriskassessmentandmanagementcapabilities.

Manyelementsofthecarbonremovalvaluechainarealreadyinsurable.Someopportunitiesarenovelornon-existing.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 23

Specialtylines(traditionalandnon-traditional) – Marine – Engineering – Agriculture(forestry,crop) – Politicalrisk – Cyber – Credit&Surety

Takerenewableenergyasanexampleofinsurablerisksthatcantransfertothecarbonremovalvaluechain.Adeveloperofanoffshorewindfarm,forinstance,wouldgotothetraditionalinsurancemarketandseekmulti-linecoversacrossprojectphases:planningliabilityduringthedevelopmentphase;cargoall-risksanddelayinstart-upduringthetransportphase;erectionall-risk,advancelossofprofitandprojectliabilityproductsduringtheconstructionphase;andoperationalall-risk,businessinterruptionandpublic-andproduct-liabilitycovers,aswellasenvironmentalliabilityduringtheoperationalphase.ThroughCredit&Suretyinsurance,thedeveloperandlendersmayseektoprotecttheircontractedservicesandfinancialinterests.

Figure4showsthecarbonremovalvaluechain,withasimplifiedlinkageofthefourmainstages:CO2capturefromair,processing,transport,andstorage.Asindicated,eachstagepresentskeyinsuranceopportunities,accompaniedbyanon-exhaustivelistofrelatedindustrieswithriskpoolsthatunderwritersarealreadyfamiliarwith.Thepre-existingunderstandingcanspurfurtherdevelopmentofinsuranceofferingsforspecificstagesofthecarbonremovalvaluechain.

Multi-lineinsuranceofferingsforrenewablesisanexamplefortheinsurabilityoftechnology.

Theinsuranceopportunitiesalongthecarbonremovalvaluechainaremanifold.

Key:

Marine and cargo

Currently non-existing, uninsurable, or new risks

Political risk insurance

Property business interruption Credit & surety

Property damage Casualty (incl. short-term environmental liability)

Agriculture (incl. forestry)

Engineering Long-term storage liability • storage reversal risk• loss of carbon certificates/price risk

Adapted or novel covers

Mature insurance covers

Flux

Main insurance opportunities

• Examples of industries related to that activity, and industries within the activitie’s value chain

Activity

Nature-based

Technological

Long-lived products

Biomass

Timber, biochar, etc.• Agriculture• Forestry

• Marine• Road & rail • Construction

• Agriculture

• Agriculture, forestry• Natural assets

CO₂

CO₂

CO₂

• Mining & quarrying• CCS for point sources• Oil & gas (off- & onshore, EOR)

• Construction • Chemicals• Concrete aggregates/curing• Plastics, synfuels and other short-lived products (CCU) • Chemicals

• Point source capture (CCS)• Oil & gas (refining)• Blue hydrogen• Cement, steel, aluminum• Renewables

• Marine• Road & rail

• Pipeline• Marine

Planting, land management

Harvesting,burning, conversion

In buildings, soils,materials

In forests, soils, wetlands

Direct air capture

Conversion In buildings,materials

Utilization & storage

Utilization & storage

Conservation

In saline aquifers,mineralisation Geological storage

Capture Processing Transport Storage

• Pulp & Paper• Power & heat• Point source capture (CCS)

Figure 5 Insuranceopportunitiesandrelatedindustriesalongthecarbonremovalvaluechain

Source:SwissRe

24 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The role of insurance

Amulti-lineofferingforadirectaircaptureprojectwouldlooklargelysimilartotheexposurescoveredintheoffshorewindfarmexample.Therisksduringplanning,transport,constructionandoperationareknownandalsoinsurable.ZurichInsurance,forinstance,iscurrently“spear-headingataskforcetoconceptualiseaninsuranceproducttocoverthephysicalandlegalrisksassociatedwithCCS.”100ThefirststepistopackageexistingP&CproductsforCCSpilotanddemonstrationprojectsintheUK.101Thiswillyieldlearningsforthecarbonremovalinsurancemorebroadly,givensignificantoverlapbetweentheCCSandcarbonremovalvaluechains(eg,BECCS,andDACS).

Still present challenges to insurability: Alltold,withcarbonremovalprocessesstillinearlystagesofdevelopment,thestructuringandpricingofinsuranceofferingsfortheindustrywillremainchallengingforsometime.Moreprojects,performancedataandlosshistoryareneededforinsurerstobuildcrediblelossexpectations.TheSleipnerVestfieldinNorwayisanexampleofhowtogenerateandunderstandperformancedataforakeyelementofcarbonremoval,namelygeologicalCO2storage.Since1996,some19milliontonnesofCO2havebeeninjectedintotheSleipnerreservoir,atarateof0.85milliontonnesperyear.Inameta-analysisofmorethan150scientificpapers,Furreetal.examinedtheextensivemonitoringprogrammecarriedoutattheSleipnerstoragesite,concludingthattheCO2injectedattheSleipnersitehasremainedcontainedsincethestartofoperations.102Thestudyalsostressedtheimportanceofcase-specific,risk-basedmonitoringdesign(noone-size-fits-all)103andhow,overtime,thedatafeedbackenabledimprovementofreservoirmodelstorenderbetter,long-termpredictionsandthusriskknowledge.

Otherthanlackoflosshistory,anotherchallengetotheinsurabilityofcarbonremovalisthecomplexityandinterdependencyofthevaluechainsinvolved,especiallyforhybridandtechnologicalsolutions.Underperformanceorfailureofoneofthechainlinks(eg,afaultycompressorunit,ashortageintransportcapacity,asafetyshutdownofaninjectionpump,etc)willcauseinterruptionsup-anddownstream.Thesemayleadtogeneralunderperformanceand,intheworstcase,tostrandedassets.104Suchchainintegrationriskshintatliabilityissuesduringtheoperationalphase,whichwillrequirespecialattention.Furthermore,theliabilityquestiondoesnotstopwiththeendof“operations”,forexampleonceaforestisfullygrown,orCO2injectionintoageologicalreservoiriscomplete.Unlikeawindfarmthatcanbedecommissionedanddismantledatitsendoflife,aproperlyregulatedcarbonremovalprojecthaslongtailobligations:oncetheCO2iscapturedfromtheatmosphereandthestoreiscreated,itmustbekeptsafelyandpermanentlystored.Regulatorsusuallyputinplacefinancialsecurityobligationstoensurethatoperatorssetasidethemeanstoobservestorageintegrityforaslongasrequiredasdeemednecessaryinagivenjurisdiction.

Still uninsurable risks: Carbonremovalsolutionscomewithvaryingdegreesofriskofstoragereversal.Awildfiredestroyinganafforestationproject,thenewownerofafarmabandoningcarbonsequesteringland-usepractices,andageologicalstoragereservoirleakingthroughanold,insufficientlypluggedwell,arejustsomeexamples.Fortheclimatesystemtostabilise,temporarystorageisnotanoption.Norisitforefficientfunctioningofamarketincarbonremovalcertificates,thecurrentmeansofmonetisingcarbonremoval.Atsomepoint,lawmakersmayalsomandatecarbonremovalforprovidersorconsumersofcarbon-intensivegoodsandservices.Thus,intheeventofstoragereversal,contingencyplansandfinancialsecuritiesthatallowforthetimelydeploymentofremedialmeasurestostopandundoanyemissionfromthestoremustbeinplace.Insurancecouldbeoneinstrumentofsuchfinancialsecurity.

100F.Streidl,K.Sheppard,Sustainability in Energy Insurance,Zurich,December2020.101 PersonalcommunicationwithK.SheppardofZurichUKEnergyteam,March2021.102A.Furreetal.,“20yearsofmonitoringCO2-injectionatSleipner”, Energy Procedia, vol114,2017.103Monitoringencompassesacombinationofvariousgeophysicalmethodsanddownholesensorsto

followandpredictthemovementoftheCO2plume(conformancemonitoring),toconfirmthattheCO2stayswithinthestoragereservoir(containmentmonitoring),and–shouldleakageoccur–toassesstheeffectofremedialmeasures(contingencymonitoring).

104W.Goldthorpe,L.Avignon,M.Repmann,J.Schwieger,Enabling a Low-Carbon Economy via Hydrogen and CCS,Elegancy,2018.

Insurersaredesigningmulti-lineofferingsforCCS.Thesewillyieldlearningsforcarbonremoval.

Morecarbonremovalprojectsareneededtosolidifytheriskknowledgeandprovidefeasibleinsuranceofferings.

Alsochallengingtheinsurabilityofcarbonremovalarethemanyprocessinterdependenciesandlongtimeframes.

Storagereversalisthemainnewriskinherenttocarbonremoval.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 25

Theinsuranceindustryisstrugglingwithlong-termliabilitiesrelatedtocarbonstorage.Privateinsurersarenotwillingtotakeverylongdurationtailrisksduetouncertaintiesinlossprediction.ThishasbeenclearfromtheearlydaysofcarbonstorageinthecontextofCCS,originallyconceivedinthe2000sasameanstodecarbonisefossilfuel-firedpowerplants.The“un-insurabilityofsomeliabilities”relatedtogeologicalCO2storagehasalwaysbeenconsidereda“materialbarrier”tothedeploymentofCCStechnologies.105In2008/2009,ZurichInsurancewasthefirstandtodateonlyinsurertoofferaliabilitycoverforCCS,tailoredtotheUSmarket.Thereisverylittlepublicinformationaboutthatproduct.106Fiveyearslaterin2014,long-termliabilitiesrelatedtoCO2storagewereagainidentifiedas“notinsurable”,accordingtotheinsuranceplanforthePeterheadCCSprojectproposalundertheUKCCSCommercialisationProgramme,summarizedinTable3.107

105Managing Liabilities of European Carbon Capture and Storage,ClimateWise,2012.106PersonalcommunicationwithK.SheppardofZurichUKEnergyteam,March2021.107 Peterhead CCS Project: Insurance plan,Shell,2014;basedonStage 1 Design Phase Risk and

Insurance Report,March2014.SeealsoI.Havercroftetal.,Lessonsandperceptions.Adopting a commercial approach to CCS liability,GlobalCCSInstitute,2019.

Todate,theinsuranceindustryhasshownlittleappetitetocoverstoragereversalrisk.

Table 3 InsuranceplanforthePeterheadCCSprojectproposal

Source:Peterhead CCS Project: Insurance plan,Shell,2014;basedonStage 1 Design Phase Risk and Insurance Report,Marsh,2014.

Risk Design and construction

Operations Closure and de-commissioning

Post-closure

Liability

3rd party liability Y Y Y Y

Seepage & pollution from reservoir N N N N

Automobile liability Y Y Y Y

Employer’s liability Y Y Y Y

Professional liability (N) (N) (N) (N)

Sub-surface liabilities N N N N

Physical damage

Damage to the works (construction all risk) Y n/a Y n/a

Damage to existing assets Y Y Y Y

Loss of well control Y Y Y Y

Automobile physical damage (N) (N) (N) (N)

Transit/cargo Y Y Y n/a

Other

Loss of carbon credits N N N N

Business interruption due to physical damage n/a Y n/a n/a

26 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The role of insurance

The role of carbon certificatesAlsolistedasuninsurableinTable3arecarboncertificates(“lossofcarboncredits”).Asaforementioned,inthecontextofcarbonremoval,acarboncertificateistheattestationthat1tonneofCO2hasbeenremovedfromtheatmosphereandstoredpermanently.Voluntarybuyersofcarbonremovalcertificatesusethemtobalancetheirresidualemissionsinlinewithanet-zeroclaim(net-zeroflight,personalfootprint,ownoperations,city,etc).Inthecaseofstoragereversal,thecarbonremovalcertificates–andwiththemtheclimateclaimstheyhadsupported–areannulled.Thevalueatriskisgivenbythecostofreplacingthelostcertificatesatcurrentmarketprices.Duetomarketvolatility,thereplacementcertificatescouldsellatamuchhigherpricethanwhatwasoriginallypaid.108Asaremedy,thebuyercouldaskthesellertoprotectthevalidityofthecertificatesthroughsomesortofproductliabilityinsurance,wheretheproducttobecoveredisthenegativeemissionservice(intheformofthecertificates)offeredbytheseller.Buyersmayalsodecidetotenderandpurchasesuchacertificateinsuranceontheirowntobettercontrolandoptimallyprotecttheintegrityoftheirnet-zeroclaim.

Interestforinsuranceofferingsrelatedtoremovalcertificatesmaysoonbeamplifiedbytheemergenceofnewcompliancemarketsforcarbonremoval.There,regulatorswillrequireemitterstobalancetheiremissionsbypurchasingremovalcertificates.Toensurecomplianceandavoidfines,regulatedemittersmaythenalsostarttolookforinsuredcertificatesorcertificateinsurance.Also,publicsectorbuyerswilllikelyaddtothisnewdemandforinsurance.TheParisAgreementArticle6forcooperativemechanismswillallowonecountrytosellemissionreductionornegativeemissionservicestoanother.ThecorrespondingcertificatesarecalledInternationallyTransferredMitigationOutcomes(ITMOs).109Asinternationalclimatenegotiationsabouttherulebookforsuchtransfersareongoing,firsttransactionsarebeingpiloted.110PilottransactionsusuallytakeplaceviabilateralagreementsbetweenadevelopedcountryasbuyerandadevelopingcountryassellerofITMOs.Inthesecases,theinsurancetakerwouldtypicallybethebuyingcountry.

Tackling the long-term liability challenges of carbon storage: Toenableliabilityinsurancesolutionsforstoragereversalevents,long-termenvironmental,propertyandhealthimpactsmustbeclarified.Insurersneedtobeabletobuildreliableexpectationsaboutworst-caselossscenarios.Operational,managerialandregulatoryresponsibilitiesfordamagemustbeclear,inlinewiththeestablishmentofclearcause-effectanalytics.Thedifferentiationofstoragereversalintogradualandabrupt,thetypeofvalueatriskthroughreversal,andtheunderlyingtypeofcarbonremovalsolutionwilldeterminethetypeofinsurancecoverneeded.Thiscouldbeenvironmentalorproductliability.Insurancesolutionsofferedbytheprivatesectorwouldlikelybelimitedtoshorter-termsandwithdiverseexclusionclauses.

Coveringlong-termliabilitieswouldlikelybelefttopublicsectorsolutions,possiblyinpartnershipwiththeprivatesector.

108Bothvoluntaryandcompliancecarbonmarketshaveseensignificantpricefluctuationsinthepast.Forinstance,anemissionallowanceunitundertheworld’slargestcompliancecarbonmarket,theEUemissiontradingscheme,wentfrom~EUR4to~EUR40inonly3yearsfrom2018to2021.Seeeex,accessed23April2021

109Paris Agreement, UnitedNationsFrameworkConventiononClimateChange(UNFCCC),2015.110 S.Greiner,etal.,Article 6 Piloting: State of Play and Stakeholder Experiences,ClimateFinance

Innovators,December2020.

Insurancecouldplayarolewhencarboncertificatesneedtobereplaceduponstoragereversal.

Theemergenceofacompliancecarbonmarketforremovalcertificatesmaydrivedemandforsuchinsuranceofferings.

Thereisstillsomewaytogotoimproveriskknowledgeofstoragereversal.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 27

TheinsuranceofITMOtransactionsorotherfuturecompliancecarbonremovalmarketswouldopenthedoortopublic-privateinsurancepartnership.Thiswouldrequireadialoguewiththeregulatoronthequestionofsuitablerisksharingmodelsforcarbonremoval,inparticulartheinsurabilityoflong-termstorageliabilities.Someconsiderationsandmodelsdescribedinopenliteratureare:

Enhanced Oil Recovery (EOR) as comparative: CO2-EORmeansinjectingliquifiedCO2intomatureoilfieldstomobiliseandextractmoreoil.AttheendoftheEORoperation,theinjectedCO2remainsstoredinthedepletedoilreservoir.EORhasbeenpracticedinNorthAmericasincethe1970s.111ArecentstudyfeaturingexpertinterviewsonquestionsaboutCCSliabilitiesfoundrespondentsfromtheinsuranceindustryassumingthatanaloguescanbedrawnbetweenEORandCCS.112Thestudy,however,remainsunclearwhetherthisassumptionalsoappliestothelong-termliabilityofCO2storage(ie,thepartoftheCCSvaluechainmostrelevantinthecontextofcarbonremoval),orjustthebetter-understoodCO2capture,transportandinjectionphases.EORpresentsthelongest-standingrecordofpracticalexperiencewithundergroundCO2injectionforcommercialreasons,yieldingcorrespondinglosshistory.Furthermore,dedicatedCO2storagebenefitsfromtechnicalaswellaspolicyexperienceundertheUSoilandgasregulatoryframework.113

Carbon allowance reimbursement insurance (CARI):In2012,theClimateWiseinsuranceindustrygroupconceptualisedtheCARIpolicytoinsureoperatorsagainstthelossofcarboncertificatesundertheEUEmissionTradingScheme.114TheCARIpolicyislimitedtotheinjectionphaseonly,aspost-closure,long-termstorageliabilitiesareconsidereduninsurable.Policytermsforeseeyearlyrenewal,anumberofexclusions115andadeductible.Insurerandinsuredagreeup-frontontheexpectedmaximumamountofCO2storedaswellasonthepricepercertificateatwhichthepolicywouldindemnifytheinsureduponstoragereversal.Acknowledgingpricevolatilityinthecertificatesmarket,thesuggestionistolimittheliabilitytoapricecap,eitherfixedorbasedonthemovingaveragecertificatepricefromthepreviousfewyears.ClimateWisealsoaddressedsomechallengesthatwouldcomewithaCARI-typeinsurancecover:theannualrenewabilitythatcreatescostandthereforeinvestmentuncertainty,aggregationriskwithliabilitiesalreadycoveredoreventsaffectingseveraloperationssimultaneously,aswellashindranceduetolackofinsurancecapacity,triggerdefinition(proximatecauseversusaregulatorydecisiononthequantumofloss),andlossquantification.Todate,theCARIpolicymodelhasnotbeenoperationalisednorputintopractice.

111 SeeEnhanced Oil Recovery,OfficeofFossilEnergy,accessed23April2021.112 Havercroft,Ianetal.,2019,op.cit.113 V.Nunez-Lopez,E.Moskal, Potential of CO2-EOR for Near-Term Decarbonization, FrontiersinClimate,

27September2019.114 ThecertificatesundertheEUEmissionTradingScheme(EUETS)arecalledEmissionAllowanceUnits

(EUA).TheyallowanemitterundertheETStorelease1tonneofCO2totheatmosphere.AllemissionscoveredundertheETSarecappedandallemittersreceiveacertainamountofEUAsaccordingtoindustrybenchmarks.EUAscanthenbetradedamongemitters.Ifoneemitterreducesemissions(eg,acementplantthroughtheinstallationofaCCSfacility)itcansellthesurplusEUAstoanothercementplantthatdidnotimplementemissionreductionmeasuresitself.

115 ExclusionstoCARIpay-outs:defectsindesign,plan,specification,materialsorworkmanship;normalwearandtear,gradualdeteriorationornormalcorrosion;earthquake(canbeincluded,butcouldgiverisetoaggregationriskdependingonlocation);normalsetting,normalshrinkageornormalexpansioninlandand/orcaprock.Source:ClimateWise,2012.

Openliteratureprovidesjustafewhintsonhowtotacklethelong-ermstorageliabilityissue,amongtheseusingEORasexample,andpublic-sectorunderwriting.

28 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The role of insurance

Public-sector underwriting for risk sharing:Aslongasthereislimitedtonoexperiencewithlong-termCO2storage,theprivatesectorwillconsidertherelatedrisksas“unquantifiable”andshyawayfromfullexposure.Risksharingwithgovernmentswillplayanimportantroleovertheshorttomid-term.116Governmentsorresponsiblepublicauthoritiesmay:

– acceptliabilitycaps,includingonthemaximumcostforthereplacementoflostcarboncertificates;117

– fosterand/oradministerariskpoolingapproachliketheNuclearRiskInsurersLimited(NRI);118

– establishastand-aloneagency(a“deliverycompany”)tomanagethefull-chainrisksoftechnologydeployment;119andultimately

– acceptthetransferofliabilityfromtheoperatortothepublicsectorafteraclearlydefinedperiodpostinjectioncompletion.120

Byputtinginplacerobustregulationswithadiligentapproachtopermittingandreporting,governmentswillbeabletomanagetheirownexposuretorisksacquiredthroughsharingandtransfermodels.121

Buffer pools:Moststandardsfornature-basedsolutionshaveappliedbufferpoolstoaddresstheriskthatanemissionreductionorcarbonremovaloutcomeisreversedasaresultofadamagingeventtotheunderlyingnaturalasset(eg,fromawildfire,mismanagement,illegaldeforestation,policychanges,etc).Theideaisthatprojectssubjecttoknownnon-permanencerisksareassessedaccordingtocertaincriteriatodeterminehowmanyofthecertificatesissuedbytheseprojectscannotbesold,butinsteadneedtobedirectedintoabufferpool.122Fromthere,shouldastoragereversaleventtakeplace,replacementcertificatescanbereleased.TheStateofCalifornia’sLowCarbonFuelStandard(LCFS)appliesthebuffer-poolprincipalalsototechnologicalremovalslikeDACS.123Projectoperatorsneedtocontributeupto17%ofthecarboncertificatesgeneratedtoaso-called“BufferAccount”.Theassessmentofthebuffercontributionisdeterminedbyonsiteriskassessment,includingofwellintegrityandsiterisks.124Table4showstheguidetoaCCSproject’sriskratingthatdetermineshowmuchincertificatevaluetheprojectneedstocontributetotheLCFSbufferpool.Ifleakagefromstoragereservoiroccursduringthefirst50yearspostinjection,replacementcertificatesneedtobedrawnfromthecontributionstotheBufferAccountfromthatveryproject.Duringthenext50years,contributionsmadebyallpartiestotheBufferAccountcouldbeusedtoreplacelostcertificates.After100years,thepost-injectionmonitoringobligationends.

116 W.Goldthorpe,L.Avignon,M.Repmann,J.Schwieger,2018,op.cit.117 Carbon capture and storage: the second competition for government support, NationalAuditOffice,

January2017.118 OtherexamplesincludetheOilInsuranceLimited(OIL),OffshorePollutionLiabilityAgreement(OPOL),

SeeW.Goldthorpe,L.Avignon,M.Repmann,J.Schwieger,2018,op.cit119 R.Oxburgh,Lowest Cost Decarbonisation for the UK. The critical role of CCS,ReporttotheSecretary

ofStateofBusiness,EnergyandIndustrialStrategyformtheParliamentaryAdvisoryGrouponCCS,2016.

120 IntheEUandAustralia,thepost-closuretimelimitfortransferof(partial)liabilitiesis20years.121 W.Goldthorpe,L.Avignon,M.Repmann,J.Schwieger,2018,op.cit.122 SeeVerifiedCarbonStandard,2019.AFOLU Non-Permanence Risk Tool.VerifiedCarbonStandard,

2019,accessed23April2021.123 SeeCalifornia Air Resources Board,accessed21April2021.124 “AppendixG.DeterminationofaCCSProject’sRiskRatingforDeterminingitsContributiontotheLCFS

BufferAccount”,inCarbon Capture and Sequestration Protocol under the Low Carbon Fuel Standard, CaliforniaAirResourcesBoard,6March2018.

Regulationcanhelpgovernmentsmanagetheirexposures.

Table 4 GuidetoaCCSproject’sriskratingfordeterminingitscontributiontotheLCFSBufferAccount

Source: Carbon Capture and Sequestration Protocol under the Low Carbon Fuel Standard,CaliforniaAirResourcesBoard,6March2018.SeeAppendixG.DeterminationofaCCSProject’sRiskRatingforDeterminingitsContributiontotheLCFSBufferAccount

Risk type Risk category Risk rating contribution

Financial Lowfinancialrisk:CCSprojectoperatorsdemonstratetheircompanyhasaMoody’sratingofAorbetter;oranequivalentratingfromStandard&Poor’sandFitch

0%

Mediumfinancialrisk:CCSprojectoperatorsthatdemonstratetheircompanyhasaaMoody’sratingofBorbetter;oranequivalentratingfromStandard&Poor’sandFitch

1%

Highfinancialrisk:CCSprojectoperatorscannotmakeoneofthetwodemonstrationsabove 2%

Social Lowsocialrisk:CCSprojectslocatedincountriesorregionsrankedamongthetop20thpercentilebasedontheWorldJusticeProjectRuleofLawIndex

0%

Mediumsocialrisk:CCSprojectslocatedincountriesorregionsrankedamongthetop20thand50thpercentilebasedontheWorldJusticeProjectRuleofLawIndex

1%

Highsocialrisk:CCSprojectslocatedincountriesorregionsthatarenotranked,orrankedbelowthe50thpercentilebasedontheWorldJusticeProjectRuleofLawIndex

3%

Management Lowmanagementrisk:demonstratedsurfacefacilityaccesscontrol,(eg,injectionsiteisfencedandwellprotected)

1%

Highermanagementrisk:poorornosurfacefacilityaccesscontrol(eg,injectionsiteisopen,ornotfencedorprotected)

2%

Site Lowsiterisk:selectedsitehasmorethantwogoodqualityconfininglayersabovethesequestrationzone,andadissipationintervalbelowthesequestrationzone

1%

Highersiterisk:sitemeetstheminimumselectioncriteria,butdoesnotmeettheabovesitecriteria 2%

Well integrity Lowwellintegrityrisk:allwellsfortheCCSprojectmeetUSEnvironmentalProtectionAgency(EPA)classVIwellorequivalentrequirements

1%

Higherwellintegrityrisk:theCCSprojecthaswellsthatdonotmeetUSEPAclassVIwellorequivalentrequirements

3%

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 29

Public-sector underwriting for risk sharing:Aslongasthereislimitedtonoexperiencewithlong-termCO2storage,theprivatesectorwillconsidertherelatedrisksas“unquantifiable”andshyawayfromfullexposure.Risksharingwithgovernmentswillplayanimportantroleovertheshorttomid-term.116Governmentsorresponsiblepublicauthoritiesmay:

– acceptliabilitycaps,includingonthemaximumcostforthereplacementoflostcarboncertificates;117

– fosterand/oradministerariskpoolingapproachliketheNuclearRiskInsurersLimited(NRI);118

– establishastand-aloneagency(a“deliverycompany”)tomanagethefull-chainrisksoftechnologydeployment;119andultimately

– acceptthetransferofliabilityfromtheoperatortothepublicsectorafteraclearlydefinedperiodpostinjectioncompletion.120

Byputtinginplacerobustregulationswithadiligentapproachtopermittingandreporting,governmentswillbeabletomanagetheirownexposuretorisksacquiredthroughsharingandtransfermodels.121

Buffer pools:Moststandardsfornature-basedsolutionshaveappliedbufferpoolstoaddresstheriskthatanemissionreductionorcarbonremovaloutcomeisreversedasaresultofadamagingeventtotheunderlyingnaturalasset(eg,fromawildfire,mismanagement,illegaldeforestation,policychanges,etc).Theideaisthatprojectssubjecttoknownnon-permanencerisksareassessedaccordingtocertaincriteriatodeterminehowmanyofthecertificatesissuedbytheseprojectscannotbesold,butinsteadneedtobedirectedintoabufferpool.122Fromthere,shouldastoragereversaleventtakeplace,replacementcertificatescanbereleased.TheStateofCalifornia’sLowCarbonFuelStandard(LCFS)appliesthebuffer-poolprincipalalsototechnologicalremovalslikeDACS.123Projectoperatorsneedtocontributeupto17%ofthecarboncertificatesgeneratedtoaso-called“BufferAccount”.Theassessmentofthebuffercontributionisdeterminedbyonsiteriskassessment,includingofwellintegrityandsiterisks.124Table4showstheguidetoaCCSproject’sriskratingthatdetermineshowmuchincertificatevaluetheprojectneedstocontributetotheLCFSbufferpool.Ifleakagefromstoragereservoiroccursduringthefirst50yearspostinjection,replacementcertificatesneedtobedrawnfromthecontributionstotheBufferAccountfromthatveryproject.Duringthenext50years,contributionsmadebyallpartiestotheBufferAccountcouldbeusedtoreplacelostcertificates.After100years,thepost-injectionmonitoringobligationends.

116 W.Goldthorpe,L.Avignon,M.Repmann,J.Schwieger,2018,op.cit.117 Carbon capture and storage: the second competition for government support, NationalAuditOffice,

January2017.118 OtherexamplesincludetheOilInsuranceLimited(OIL),OffshorePollutionLiabilityAgreement(OPOL),

SeeW.Goldthorpe,L.Avignon,M.Repmann,J.Schwieger,2018,op.cit119 R.Oxburgh,Lowest Cost Decarbonisation for the UK. The critical role of CCS,ReporttotheSecretary

ofStateofBusiness,EnergyandIndustrialStrategyformtheParliamentaryAdvisoryGrouponCCS,2016.

120 IntheEUandAustralia,thepost-closuretimelimitfortransferof(partial)liabilitiesis20years.121 W.Goldthorpe,L.Avignon,M.Repmann,J.Schwieger,2018,op.cit.122 SeeVerifiedCarbonStandard,2019.AFOLU Non-Permanence Risk Tool.VerifiedCarbonStandard,

2019,accessed23April2021.123 SeeCalifornia Air Resources Board,accessed21April2021.124 “AppendixG.DeterminationofaCCSProject’sRiskRatingforDeterminingitsContributiontotheLCFS

BufferAccount”,inCarbon Capture and Sequestration Protocol under the Low Carbon Fuel Standard, CaliforniaAirResourcesBoard,6March2018.

Regulationcanhelpgovernmentsmanagetheirexposures.

Table 4 GuidetoaCCSproject’sriskratingfordeterminingitscontributiontotheLCFSBufferAccount

Source: Carbon Capture and Sequestration Protocol under the Low Carbon Fuel Standard,CaliforniaAirResourcesBoard,6March2018.SeeAppendixG.DeterminationofaCCSProject’sRiskRatingforDeterminingitsContributiontotheLCFSBufferAccount

Risk type Risk category Risk rating contribution

Financial Lowfinancialrisk:CCSprojectoperatorsdemonstratetheircompanyhasaMoody’sratingofAorbetter;oranequivalentratingfromStandard&Poor’sandFitch

0%

Mediumfinancialrisk:CCSprojectoperatorsthatdemonstratetheircompanyhasaaMoody’sratingofBorbetter;oranequivalentratingfromStandard&Poor’sandFitch

1%

Highfinancialrisk:CCSprojectoperatorscannotmakeoneofthetwodemonstrationsabove 2%

Social Lowsocialrisk:CCSprojectslocatedincountriesorregionsrankedamongthetop20thpercentilebasedontheWorldJusticeProjectRuleofLawIndex

0%

Mediumsocialrisk:CCSprojectslocatedincountriesorregionsrankedamongthetop20thand50thpercentilebasedontheWorldJusticeProjectRuleofLawIndex

1%

Highsocialrisk:CCSprojectslocatedincountriesorregionsthatarenotranked,orrankedbelowthe50thpercentilebasedontheWorldJusticeProjectRuleofLawIndex

3%

Management Lowmanagementrisk:demonstratedsurfacefacilityaccesscontrol,(eg,injectionsiteisfencedandwellprotected)

1%

Highermanagementrisk:poorornosurfacefacilityaccesscontrol(eg,injectionsiteisopen,ornotfencedorprotected)

2%

Site Lowsiterisk:selectedsitehasmorethantwogoodqualityconfininglayersabovethesequestrationzone,andadissipationintervalbelowthesequestrationzone

1%

Highersiterisk:sitemeetstheminimumselectioncriteria,butdoesnotmeettheabovesitecriteria 2%

Well integrity Lowwellintegrityrisk:allwellsfortheCCSprojectmeetUSEnvironmentalProtectionAgency(EPA)classVIwellorequivalentrequirements

1%

Higherwellintegrityrisk:theCCSprojecthaswellsthatdonotmeetUSEPAclassVIwellorequivalentrequirements

3%

30 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The role of insurance

Investingincarbonremovalsolutions

Carbonremovalsolutions,inparticularinfrastructure-heavytechnologicalandhybridsolutions,typicallyrequiresubstantialcapitalupfront,along-terminvestmenthorizon,orboth.Theavailabilityofspecialisedriskknowledgeandinherentneedtoinvestearnedpremiumsoverlongperiodsoftimetomatchassetsandliabilitiesmakesre/insurerswell-positionedaspartnersforthecarbonremovalindustry.However,mostindustrysolutionsarestillimmature,under-deployedandsomeunder-developed,makingexistingcarbonremovalopportunitieshigh-riskinvestments.Assuch,insurersneedtoholdsignificantlevelsofcapitalagainstsuchinvestments,notleasttoalignwithprudentialandsolvencyrules.

Currently,flagshipcarbonremovalprojectsaremostlygovernment-funded,125,126and/oraresupportedbymajorindustrialplayers,inparticularfromtheoilandgassector.127,128Governmentandlargeindustryaremoreabletotakeontheinvestmentriskinherentinnewtechnologies,whichinclude:129

Technicalandphysicalrisks,accentuatedbyimmaturityoftechnologies/lackofperformancedataanduncertaintiesaboutthequalityandavailabilityofnaturalresources(eg,theperformanceofanaturalcarbonsinkorgeologicalstoragereservoir,especiallyunderclimatechangeconsiderationswhichalterthebio-physicalcontext).

Marketandcommercialrisks:highupfrontcosts,longinvestmenthorizons/paybackperiods,investorunfamiliaritywiththenewtechnology,andcomplexityofinfrastructureinvestments.

Politicalandsocialrisks,suchastheneedtorelyonpublicfinancial/institutionalsupport,thelong-terminvestmenthorizon(muchlongerthanelectoralpolicycycles),and(potential)socialresistancetothenewtechnologies.

Projectdevelopersneedtoassesstheserisksandhowtomanagethem.Iftheyaretoattractinvestors,theyalsoneedabusinesscasethatconvincinglyforecastsacceptablecashflows.Finally,arobustinvestmentenvironmentisrequired.Tothisend,thethreemostcommonpolicyasksare:130

forpolicymakerstoputapriceoncarbonthatpaysforreducingandremovingemissions(includingintheformoftaxbenefits);

provisionofseedmoney,forinstanceintheformofgrantsorguaranteestofirst-in-kindandearlyadopterprojects;and

fairallocationofrisksacrossthepublicandprivatesectors,accordingtowherecomparativeriskmanagementadvantageslie.

Insummary,toacceleratethedeploymentofcarbonremovalanditspopularityamonginvestors,governmentsandpolicymakersneedsetinplacemoresupportandregulatorybacking.

125 £5m boost to scale up ground-breaking carbon capture pilot at Drax,drax,27June2019.126 Funding for Longship and Northern Lights approved,NorwegianGovernment,15December2020.127 The New York Times,7April2019,op.cit.128 “ShelllaunchesUSD300mforestplantooffsetcarbonemissions”,Financial Times,8April2019.129 Risk Gaps: A Map of Risk Mitigation Instruments for Clean Investments.ClimatePolicyInitiative,

January2013.130 Special Report on Carbon Capture Utilisation and Storage – Energy Technology Perspectives,IEA,

2020.

Carbonremovalsolutionsarehigh-riskinvestments.

Thepublicsectorandlargeindustrialplayersarecurrentlythemaininvestors.

Policyasksforarobustinvestmentenvironmentarecarbonpricing,subsidies,public/privaterisksharing.

Morepublicsectorsupportisneededtoattractprivatesectorinvestors.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 31

Thepublicsectorandalsoprivateinstitutions/groupshavelaunchedseveralinitiativesandguidelinesonnet-zeroambitions.Someremainsilentoncarbonremoval.Inignoringthepotentialupside,131,132theycanalsomisshighlightingthattobeabletoclaimafullynet-zero(asopposedtoalow-carbon)portfolio,investorswillinevitablyhavetofundnegativeemissionstobalanceanyresidualemissionsfromotherassetsintheportfolio.133Otherinitiativesandguidelinesareessentiallybearishintheiroutlook,134seeing“forestrestorationastheearliestfeasibleinvestmentopportunity,”andBECCSandDACSnotinvestiblebefore2030and2040,respectively(thoughtheprivatesectorhasstartedinvestinginDACS135).Othersseemorepromise.Forexample,initsrecentlypublishedInaugural2025TargetSettingProtocol,theUN-convenedNet-ZeroAssetOwnerAlliance,clearlydefines“investmentsineconomicactivities[…]sequesteringcarbondioxidealreadyintheatmosphere”as“ClimateSolutionInvestments”.136ThestandardasksAlliancememberstoreportontheirinvested/committedvalueincarbondioxideremovalinvestments.

Givenitsstillimmaturity,investors–re/insurersincluded–havenotyethadmuchopportunitytoexplorethecarbonremovalsectorasanewassetclass.Thisiswiththeexceptionofnature-basedsolutions,inparticularforestry.137

Outlook on nature-based solutions as investment opportunitiesAccordingtoTobin-delaPuenteandMitchell,twothirdsofcountriesareconsideringnaturalclimatesolutionsaspartofnationally-determinedcontributionstomitigateclimatechangeundertheParisAgreement.138Yet,naturalclimatesolutionscurrentlyreceiveonlyabout6%oftotalpublicfundingonclimate,139suggestingalargeprotectiongap.Openliteraturedoesnotyetprovidelong-terminvestmentestimates.Usingrevenuefiguresasaproxyforinvestmentsize,VividEconomicsestimatesthatreforestationprojectscouldgenerateuptoUSD190billioninrevenueby2050.140Short-termestimatesexist:Deutzetal.assesscurrentglobalprivateandpublic-privateannualinvestmentvolumeinnaturalclimatesolutionstobebetweenUSD0.8–1.4billion,andthatthiscouldincreasetoanestimatedUSD25–40billionperyearby2030.141Theseestimatesincludethetransactionvolumeofcarbonavoidancecertificatesfromnaturalclimatesolutionstradedonthevoluntarymarket.Thismarketreachedanall-timehighin2019andhascontinuedtogrow,despitetheeconomicdownturnundertheCOVID-19pandemic.142Lately,buyersareexplicitlysolicitingcarbonremovalasopposedtotheconventionally-boughtcarbonavoidancecertificates.143,144Thisisyetanotherindicatorofagrowingnumberofnature-basedsolutionprojectsthatwillsoonbeonthelookoutforfinance.

131 Net Zero Investment framework for Consultation, InstitutionalInvestorsGrouponClimateChange,2020.132 “TheOxfordMartinPrinciplesforClimate-ConsciousInvestments”inNet Zero Carbon Investment

Initiative,OxfordMartinSchool,2018.133 Thereexistsnotrulyzero-carbonassettoday.Forexample,evenrenewablescomewithresidual

emissions(thealuminiumandsteelintherotorsofawindfarm,thebunkerfuelfromthecargoshipthatbroughtthesolarPVpanelsfromChinatoEurope,etc).

134 An investor guide to negative emission technologies and the importance of land use.VividEconomics,InevitablePolicyResponse,2020.

135 bloomberg.com,2June2020; The New York Times, 7April2019,op.cit.136 Inaugural 2025 Target Setting Protocol, UN-Convened Net-Zero Asset Owner Alliance. Monitoring

Reporting and Verification Track.PRI,UNEPFI,2021.137 VividEconomics,InevitablePolicyResponse,2020,op.cit.138 Theterm“naturalclimatesolutions”lumpstogetheractivitiesthateitheravoidemissionsfromlandscapes

andwetlandsthroughconservation,orremoveemissionsthroughthenature-basedsolutions.139 J.Tobin-delaPuente,A.W.Mitchell,The Little Book of Investing in Nature, GlobalCanopy,2021.140VividEconomics,InevitablePolicyResponse,2020,op.cit.141 A.Deutz,G.M.Heal,R.Niu,ESwansonE.Townshendetal.,Financing Nature: Closing the biodiversity

financing gap,ThePaulsonInstitute,TheNatureConservancy,theCornellAtkinsonCenterforSustainability,2020.

142 “Carbonoffsetmarketprogressesduringcoronavirus”,Financial Times,29September2020.143Foranexplanationofthedifferencebetweenthesetwotypesofcarboncertificates,see“Focus:Moving

fromcarbonoffsetstocarbonremoval”,inSustainability Report 2019,SwissRe.144Forexample,stripe.com18May2020;shopify.com15September2020;Microsoft2021,op.cit.

and“ShopifyPurchasesMoreDirectAirCapture(DAC)CarbonRemovalThanAnyOtherCompany”,shopify.com,9March2021.

Investorinitiativesandguidelinesarestillmostlybearishontheneedforandpotentialofcarbonremoval.

Otherthaninforestryprojects,investmentsincarbonremovalprojectsremainscarce.

Nature-basedsolutionsareprojectedtogeneratesubstantialrevenuesinthenextdecades,alsoinviewofanexpectedsurgeincarbonmarketvolume.

32 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The role of insurance

Carbonremovalcertificatescanalsobeusedtostructurenewprojectfinancemechanisms.Along-termcontractcalledaCarbonRemovalPurchaseAgreement(CRPA)betweenacarbonremovalprojectdeveloperandcertificatebuyercanbeusedassecurity.Thelongerthecontracttermandhigherthecreditratingofthebuyer,themorevaluablethesecurity(ie,thecheaperthecapitalcostforthedeveloper).RevenuesfromcertificatesalesundertheCRPAcanbearrangedtoflowdirectlytothefinancingparty.ThismimicstheEmissionReductionPurchaseAgreement(ERPA)backedfinancemodel.145Financierswithaneedforcertificates(eg,tocompensatetheirunavoidedoperationalemissionssubjecttoanet-zerocommitment)mayalsotake(partsof)theproject’scertificatesdirectlyontotheirbook,inexchangeforacorrespondingreductionintheinterestrate.Someofthesetypesoffinancingmechanismsareexplainedinmoredetailinexistingliterature.146

Anotherfinancingmeanscouldbecarbonremoval-typebonds,asanewsub-classofgreenbonds.Thesecouldbedebtinstrumentstoaggregateapipelineofprojectsofvarioustypeandsize.Theywouldofferanewopportunitytodiversifyprojectriskandrendersmallerprojectsinvestibleforabroaderarrayofinstitutions,includinginsurers.

Indevelopedmarkets,traditionalfinancingmechanisms(projectfinance,publicfunding)willremainstrongdriversforcarbonremovalprojects.Indevelopingmarkets,itisusuallymoredifficulttoattractcapital.Currentlyblendedfinance–themixingofpublic(eg,guarantees)andprivate(eg,equity)finance–isaclearsignaltoinfrastructureinvestorstoactundersolidumbrellasandratingsfrommultilateralinstitutions,becauseitsupportsthede-riskingofprojectsthatareotherwisenotinterestingforinvestors.TheNet-ZeroAssetOwnerAlliancecallsonassetmanagerstosupportblendedfinance,becauseitallows“publicfinanciersandotherdonorstouseasmallamountoftheirownresourcesasafirst-losstomobilizelargeamountofprivatecapital”.147TheUNEnvironmentProgramme’sFinanceInitiativeproposesblendedfinanceasatooltospursustainabledevelopmentprojectsinthefieldofbluecarbon.148Thismaysetaprecedentthatcouldbeusedtofurtherexpandthecarbonremovalinvestmentspace,especiallyasmanynature-basedsolutionopportunitiesarelocatedinemergingmarkets.

Altogether,theabove-listedtrendsandmodelsindicateampleinvestmentopportunitiesinnaturalassetsthatusevegetationorsoilsascarbonsinks.VividEconomicsconcludesthat“NegativeEmissionTechnologiesarethenextinvestmentfrontierandoffertrilliondollarupsideopportunities”.149Capitalmarketsarefamiliarwithinvestinginforestsasnaturalassetsand/orfortimber.Forestryinsurance,forexample,againststormsisaknownfieldinunderwritingaswell.150Otherpartsofthenature-basedsolutionspace(eg,oceans)arelessexplored.Nevertheless,progressisbeingmadetobetterunderstand,classifyandstandardisetheclimateservicesprovidedbyallnature-basedsolutions.151Forexample,remotesensingincombinationwithmachinelearningcapabilitiescanreducetheneedforfrequentfieldsamplingofsoilsandvegetationtoassessandmonitorthecarbonstockofnaturalassets.152Thisreducesmanagementfeesandimprovesriskmanagementcapabilitiesthroughmoreaccuratedataandmorefrequentreporting–alsoaddingtotheriskknowledgerequiredforeffectiveunderwriting.

145 AnERPAisalong-term(usually3–15years)offtakeagreementforconventionalcarbonavoidancecertificates,usuallyatpredefinedvolumeandprice.ForERPA-backedfinance,seeW.Goldthorpeetal.2018,op.cit)

146VividEconomics,InevitablePolicyResponse,2020,op.cit.147 Net-zero asset owner alliance calls on asset managers to support blended finance,UNEnvironment

Programme(UNEP),16February2021.148UNEnvironmentProgrammeFinanceInitiative,2020.A Blue Path to Recovery: The Power of Finance to

Rebuild Ocean Health,UNEP,2020.149VividEconomics,InevitablePolicyResponse,2020,op.cit.150Forest Insurance: A largely untapped potential. SwissRe,2015.151 G.Somarakis,S.Stagakis,N.Chrysoulakis, ThinkNature Nature-Based Solutions Handbook,2019.152 See,forexample,Aspiring Universe, Pachama, andSiliviaterrra.CurrentlyongoingistheSustaintech

Xcelerator supportedby–amongothers–TheWorldBank,seekingtofostersolutionstoincreasetrustinnature-basedsolutions(eg,monitoringandverificationtechnologiesincludingremotesensingwithAIandlatestmodellingadvances,technologiestosupportgroundsamplingetc).

Long-termpurchasingagreementsofcarboncertificatescansupportprojectfinance.

Carbon-removalbondscouldhelpmakesmallerprojectsalsoinvestible.

Blendedfinanceisanotherkeytool,particularlyinemergingmarkets.

Advancementsintheunderstandingandmonitoringofthesolutionswillcontinuetoimprovetheattractivenessofnature-basedsolutionsasanassetclass.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 33

Outlook on technological and hybrid solutions as investment opportunitiesRobust,bottom-upestimatesoftheinvestmentneedsforthefullBECCSandDACCSvaluechainsarenotyetavailable.Reasonsincludeuncertaintiesaboutfuturecost,timingandextentofdeployment,ordifficultiesinappropriatingsharedinfrastructurelikepipelines,storageinfrastructureetc.Usingagainrevenueestimatesasaproxyforinvestmentsize,thesefiguresareinthetriple-digitbillions.TheUSNationalAcademyofSciences,EngineeringandMedicinestipulatesthat5billiontonnesofnegativeemissionperyearfromtechnologicalremovalsolutionscouldgenerateanannualrevenueofUSD500billion.153VividEconomicsarrivesatafigureofUSD625billionperyearby2050.154

TakingCCSasaproxyforBECCSorDACCS(ie,referenceofscaleforinvestmentsinthattypeofinfrastructure),onecanappreciatehowlargeinvestmentsintechnologicalcarbonremovalinfrastructureultimatelycouldbe.TheEnergyTransitionCommissionestimatesaninvestmentneedofUSD160–190billionperyearforCCSoverthenext30years(cumulativelyUSD4.8–5.6trillion)tomitigate6–10billiontonnesofCO2emissionsoverthatperiodfrompower,hydrogenproductionandheavyindustry.155Since2010,globallyUSD15billionhasbeeninvestedinto16large-scaleCCSprojects.156Another16bigprojectsinadvancedplanningstagetodayamounttoanotherUSD27billionofinvestments.157Privatesectorcontributionshavecomemostlyfromoil&gasmajors.Duringthesameperiod,startupsseekingtocommercialiseCO2utilisationrouteshaveraisednearlyUSD1billioninprivatesectorinvestment.158Thehandfulofdirectaircapture(DAC)firmsaroundtodayhaveraisedsomeUSD200millioninprivatecapital,andanotherUSD200millioninpublicresearchanddevelopmentgrants.159ThesearemuchsmallernumbersthanthelevelofcapitalthathasalreadygoneintolargeCCS,butarenonethelessnotableforatechnologylong-consideredeconomicallyunviable.

Governmentspendingontechnologicalcarbonremovalsolutionsisontherise,too.In2019,theUSCongressallocatedUSD60milliontowardscarbonremoval.160Ayearlater,USD447millionofthesecondstimulusbillwasearmarkedforcarbonremovalR&Dby2025,startingwithUSD175millionin2021.161TheEUInnovationFundtosupportlow-carbontechnologyisvaluedatEUR10billion.162Belowaretwoexamplesofgovernment-backedflagshipprojects,theBritishAcornprojectandtheNorwegianLongshipproject(see Acorn and Northern Lights: two flagship CCUS projects).OriginallyconceivedaspureCCUSprojectstodecarboniseindustry,botharenowpartneringwithaircaptureandbioenergycompanies,demonstratingthebroaderinvestmentpotentialofferedbythecarbonremovalvaluechain.

153Negative Emissions Technologies and Reliable Sequestration – A Research Agenda,TheNationalAcademiesofScienceEngineeringMedicine,2019.

154VividEconomics,InevitablePolicyResponse,2020,op.cit.155 Making Mission Possible – Delivering a net-zero economy,TheEnergyTransition,2020.156 IEA,2020,op.cit.157 “StoredCarboncouldmorphintoinvestmentgold”,Reuters,20October2020.158Putting CO2 to use,IEA,2019.159 Authors’estimate,informedbyIEA’sfiguresofUSD180millioninprivatecapitalandUSD170millionin

publicfundsraisedsince2019(IEA,2020,op.cit.)160US Government Allocates $60 Million to develop Carbon Removal Technology,WorldResources

Institute,2019.161 “BusinessesAimtoPullGreenhouseGasesfromtheAir:It’saGamble”,The New York Times,

18January2021.162 See“InnovationFund”inClimate Action,EuropeanCommission.

EstimatessuggestannualrevenuesoftechnologicalremovalswillbebetweenUSD500-625billionby2050.

CurrentinvestmentsinCCS(foremissionmitigation)areatUSD42billion.

Governmentbackingfortechnologicalcarbonremovalisincreasing…

34 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The role of insurance

Thefinancingrequiredfortechnologicalsolutionsismuchgreaterthanfornature-basedsolutions.Todate,themainfinancingconcernforfullchainBECCS,DACSandCCUSistosecurethenextR&Dgrantfromgovernment.Projectscurrentlyunderwayareheavilysubsidisedfirst-of-kindfacilities.Thereisalongwaytogobeforetheybecomeareadilyinvestibleassetclassfortheprivatesector.Thatsaid,“ifgovernmentsmakethefirstmove,awallofgreenfinancecouldfollow.”163Foritspart,theoilandgassectorhasbeeninvestingintheseprojectsfromthetimethatCCSbecameatopic,butmuchmoreisneededtoembracetheinevitabletransitionfromfossil-fuelproviderstostorageserviceproviders.Furtheruptakeofcarbon-removalinfrastructureinvestmentcouldspurbanks,insurersandotherstofollowsuit.

Acorn and Northern Lights: two flagship CCUS projectsInspring2020,theUKgovernmentannouncedaGBP-800-millioninfrastructurefund,subsequentlytoppeduptoGBP1billion,tosupportdevelopmentofuptofourindustrialCCUSclusters.164ThisalignswiththeUK’sgoaltobecomeaworldleaderincarbonstoragetechnologies,withatargettostore10milliontonnesofCO2by2030.165

InSeptemberlastyear,PaleBlueDotEnergyandCarbonEngineeringCanadaannouncedajointproject.166PaleBlueDotisanenergyconsultancythatleadstheUKAcornprojectinEasternScotland.AcornisaflagshipoftheUK’sCCUSprogramme,withaplantocaptureinfirstphase340000tonnesofCO2fromtheSt.Fergusgas-firedpowerplantandlatertoalsoconnecttoahydrogenproductionfacility.TheCO2willbecompressedandsentthroughanexistingnaturalgaspipelinetoageologicalstoragesite100kmoffshore.167Withcontinuedgovernmentandprivatesectorsupport(Chrysaor,ShellandTotalareprojectpartners),theprojectcouldbecommissionedin2024.InvestmentneedsareestimatedatUSD270–550million.168CarbonEngineeringisoneoftheleadingDACcompaniesfromBritishColumbiainCanada.CarbonEngineeringwillinstallaDACfacilitythatconnectstotheAcorntransportandstorageinfrastructure.TheDACfacilityisexpectedtogolivearoundtwoyearsaftertheAcornprojectgoesonline.

AfurtherexamplewhereCCUSmeetsDACSisNorway’sfull-scaleCCSprojectLongship.Inphase1,theprojecttargetsthecaptureof0.7and1.1milliontonnesofCO2peryearfromacementandawaste-to-energyplantnearOslo.NorthernLights,ajointventurebetweenEuropeanoilmajorsEqinor,ShellandTotal,willtakedeliveryoftheconcentratedliquifiedCO2fromthetwocaptureplantsandshipitintailor-madevesselstoBergen.Thereitwillbeunloadedandtransportedinaseafloor-mountedpipelinetoaCO2storagesite2600metersunderground.InPhase2,capacityofthetransportandstoragewillbeincreasedto5milliontonnesofCO2peryear.PartsoftheinfrastructureforPhase2havealreadybeenbuilt.

163Reuters,20October2020,op.cit.164UK Government Set to Fund Four CCS Hubs and Clusters,GlobalCCSInstitute,18November2020.165 “PMoutlineshisTenPointPlanforaGreenIndustrialRevolutionfor25000jobs”,www.gov.uk,

18November2020.166Pale Blue Dot Energy and Carbon Engineering create partnership to deploy Direct Air Capture in the

UK,PaleBlueDot,17September2020.167 SeeAcorn168D16 Full Chain Development Plan and Budget,Acorn,May2018.

…butmorepublicsectorbackingcouldcatalysemoreegreenfinance.

TheUKgovernmenthaspledgedGBP1billionininvestmentforCCUS.

TheAcornprojectappliesCCUStoahydrogenproductionfacility.AcollaborationwithaDACfirmwillmakeAcornanegativeemissionspilot.

TheaimofNorway’sLongshipprojectistocreatecapacitytotransportandstoreupto5milliontonnesofCO2peryear.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 35

InvestmentfortheLongshipPhase1pilotisUSD2.1billion.169TwothirdsisbeingfundedbytheNorwegiangovernment,andtheremainderbythecaptureoperatorsandNorthernLightsjointventure.CostsarecurrentlyestimatedatmorethatUSD100pertonneCO2stored.170NorthernLightsforeseesUSD400millioninannualrevenuefromitsCO2storageservicebusinessduringthewholePhase2(thatadds4milliontonnesofCO2peryearinstoragecapacity).ThetotalstoragecapacityoftheNorthernLightsinjectionsiteisestimatedat100milliontonnes,meaningthattheinjectionwellcouldbeoperatedfullcapacityfor20yearsbeforeexpansionisneeded.TheStorageAtlasoftheNorwegianContinentalShelfconcludesthatstoragecapacityalongtheNorwegianWestcoastissufficientlylargethatitcouldstoremorethan80billiontonnesofCO2.171Thisisequivalentto1000yearsofNorway’sowncurrentannualCO2emissions,or20yearsofalloftheEU27currentannualemissions.Thesenumbersdemonstratethatcarbonmanagement,or“CO2-as-a-service”couldquicklyturnintoabusiness,cateringanewexportindustry.172

Inviewofthegrowinginterestinnegativeemissions,theNorthernLightsjointventurehasalsostartedtolookintosourcesofbiogenicorair-capturedCO2.StockholmExergiplanstocaptureCO2fromitsbiomassfuelleddistrictheatandpowerplantVärtaverket,andshipittotheNorthernLightsinjectionfacility.173InMarch2021,NorthernLightsannouncedapartnershipwithSwissair-capturepioneerClimeworkstoexploreaDACSprojectinNorway.174

Buyingcarbonremovalservices

Toachievenetzeroemissionsby2050orideallyearlier,companiesshouldconsidertheirsustainabilitystrategyandbusinessmodels.Theyfirsthavetotacklethoseemissionsforwhichtheyaredirectlyresponsible,inotherwordsemissionsfromownoperations.Arobustnet-zerostrategyforoperationalemissionsbuildsonseparatetargetsfor:1)stringentemissionreductions;and2)balancinganyemissionsthatcannotbeavoidedbyanequivalentamountofnegativeemissionsthroughcarbonremoval.Thestrategyshouldprioritisetheformer.Companiesshouldseektoreduceemissionsasfastandasmuchaspossibleinordertominimizetheneedforpotentiallyveryexpensivenegativeemissions.Settingaseparatetargetwithinterimmilestonesforcarbonremovalisimportanttoalleviatethefree-riderproblem:ifallfirmsweretowaituntil2049beforeremovingunavoidableemissionsinanticipationoffallingpricesincarbonremovaltechnology,therewouldbeashortfallinknow-how,capacityandaffordabilityofremovalservicesin2050.Sinceearly2020,dozensofbanksandinsurershavecommittedtonet-zeroemissionsintheirownoperations.175Achievingnet-zerowillbeeasierforthefinancialindustrywithhighernetincomepertonneofoperationalemissionsthanproductionindustriessuchasmining,cementortextiles.Largebanksandinsurers,forexample,havecomparativelylittleinthewayofdirectemissions,andampleresourcestodealwiththem.Customer-facingindustriesalsotendtohavelargerfinancialmeans.176

169Funding for Longship and Northern Lights approved,Norwegiangovernment,13December2020.170 Reuters,20October2020,op.cit.171 SeeNorwegianPetroleumDirectoratewebsite,accessed24February2021.172 Reuters,20October2020,op.cit.173 Stockholm plans world’s first carbon-negative district heating,Recharge,28January2020.174 Climeworks and Northern Lights to jointly explore direct air capture and CO2 storage in Norway

NorthernLights,9March2021.175 Accelerating Net Zero – Exploring Cities, Regions, and Companies’ Pledges to Decarbonise,Data

DrivenEnviroLab,NewClimateInstitute,September2020.176 Net-Zero Challenge: The supply chain opportunity,WorldEconomicForumincollaborationwithBoston

ConsultingGroup,January2021.

ThestoragecapacityattheLongshipsitecouldcover20yearsofEU27emissions.

Possibilitiestoexpandtheprojecttoincludebiogenicorair-capturedCO2arebeingexplored.

Beyondreducingemissions,thefinancialindustryisinprimepositiontoactasearlybuyerofremovalservices.

36 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The role of insurance

Themostmaterialdirectemissionsourcesofaninsurerarebusinesstravel,datacentres,officespaceandcommuting.Net-zerotargetsmusttriggerseriousactions:177leantravelpolicies,100%renewablepowerincludingfordatacentres,andgreenbuildings,toppedbythesettingofaninternalpriceoncarbonthatpresentsachallenge.TheUNGlobalCompactcallsonfirmstosetaminimuminternalcarbonpriceofUSD100pertonneofemissions.178Untilnow,companieshavecompensatedunavoidedemissionsthroughconventionalcarbonavoidancecertificates(carbonoffsets).Throughthese,anemitterpaysthirdpartiestoavoidanequivalentamountofemissionstothosetheemitteritselfcannotavoid,asillustratedinFigure6.ThistypeofCO2compensationqualifiesfortheclaim“climateneutral”operations.Itdoesnotmeettherequirementsforanet-zerotarget,wherebyanemitterhastobuyacertificatefromacarbonremovalproject,provingthatunavoidedemissionshavebeenbalancedthroughanequivalentamountofnegativeemissions.

Themarketforconventionalcarbonoffsetsisfullyestablished,withpricespertonneofCO2typicallyrangingfromlessthanUSD1toamaximumUSD20.Amarketforcarbonremovalcertificateshasyettobeestablished.Firstmarketplaceinitiativeshaveemerged,butthefewexperiencesoflargerremovalservicepurchasesbycorporatesincludedanarduoustendering,selectionandcontractingprocess(eg,Stripe,179Shopify,180andMicrosoft181).Essentially,removalslackinternationalstandardisation,aredifficulttofind,andtheirpricecanbesignificantlyhigherthanthatforcarbonoffsets.PricesrangefromUSD5–10pertonneofCO2forsomealreadyexistingprojectsinthenature-basedsolutionsspace,toseveralhundredsofUSDpertonneforlessdeveloped,technologicalsolutions.Theworld’sfirstcertificatesforDACSinIcelandarecurrentlyavailableoverthecounterformorethanUSD1000pertonneofCO2,182andwholesaleforaroundUSD700–800.183Inthisenvironment,businessinstinctistofavourthecheapernature-basedsolutions,inparticularcertificatesfromforestprojects.Overthelongrun,however,nature-basedsolutionsalonemaynotbesufficienttoachievethegoaloflimitingglobalwarmingtowellbelow2°C(see Why companies should support more than forests below).

177 A.Pineda,A.Chang,etal.Foundations for science-based net-zero target setting in the corporate sector – V1.0.ScienceBasedTargetInitiative,DataDrivenEnviroLab,NewClimateInstitute,2020.

178 Put a price on carbon, UNGlobalCompact,accessed28February2021.179 stripe.com,18May2020,op.cit.180shopify.com15September2020,op.cit.181 Microsoft2021,op.cit.182 SeeClimeworks webshop, accessed28February2021.183stripe.com, 18May2020,op.cit.

Todate,purchasingcarbonoffsetshasbeenthestatusquoofcompensatingoperationalemissions.

1 tonne of CO2

emittedby us

+ =1 tonne of CO2

emittedelsewhere

2 tonnes of CO2

emitted

Reduce Reduce and offsetClaim: “climate neutral”

1 tonne of CO2

emittedby us

+ =1 tonne of CO2

avoidedelsewhere

1 tonne of CO2emitted

Reduce and removeClaim: “net-zero”

1 tonne of CO2

emittedby us

+

=1 tonneof CO2

removed

net-zero CO2

Figure 6 Strategiestomanageoperationalemissionsandresultingclaims

Source:SwissRe

Higherpricesforcarboncertificatesfromtechnologicalsolutionsdrivesbusinessestowardsnature-basedsolutions.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 37

Why companies should support more than forestsCurrently,mostimplementationplansbehindcorporatenet-zeropledgesfavourcheaperandmoreaccessiblenature-basedsolutioncertificates.Forestprojectsdominatecorporatepurchasesofcarbonremovalsservices,followedbysoilcarbonsequestrationandbluecarboninitiatives,inparticularmangroves.184Sustainablyrunforestprojectsarekeytosolvingtheclimateissue,andcomewithawealthofco-benefits.However,newforestsconflictwithotherland-useneedslikefarmingorecosystemconservation.Theirupperlimitremovalpotentialfallsshortoftheamountofnegativeemissionsthatsciencepredictswillbenecessarytohitthe1.5°Cglobalwarmingtarget:asalreadystated,the1.5°Climitrequirescumulativelyupto1000billiontonnesofnegativeemissionby2100,equivalenttoaroundayearlyneedof10–20billiontonnesthroughoutthesecondhalfofthecentury.

Minxetal.reviewedestimatesfortheremovalpotentialofforestprojectsandfoundthatexistingandnewforestswillcumulativelybeabletostore135billiontonnesofCO2bytheendofthecentury.185Theyearlypotentialwasassessedat0.5–3.6billiontonnes,withacaveatthatsuchratescouldonlybesustainedinthemid-term(until~2050),andonlyifnootherland-usebasedcarbonremovalsolutionsruninparallel.Thisisdueto“bio-physicalandsocio-economiclimits”and“rapidsinksaturation”.186Suchshortcomingsunderlinethatcorporatesshould–inparalleltoinvestinginnature-basedsolutions–startsupportingthedevelopmentandscalingoflessmature,moreexpensivebutmorescalabletechnologicalsolutions.

Asecondissueiswhattypeofremovalsshouldbalancewhatsourcesofresidualemissions.Iftoday’sclimatepioneersputalltheirCO2compensationmoneyexclusivelyintoforestprojects,theywouldessentiallybuyupallreadilyavailableland.Then,aslandbecomesscarce,priceswillriseandcarbonremoval–onaverage–willbecomemoreexpensiveforall,includingforlessdevelopedmarketsandforindustrieswithhard-to-abatefootprints.

Ifinsteadcompaniessignaltheirwillingnesstopaythefirst-moverpriceofmorescalableand/butmoreexpensivehybridandtechnologicalsolutions,themarketwilltranslatethatsignalintosupply.Theimmaturehybridandtechnologicalsolutionswillstarttoscale,andpriceswillcomedown.Thisway,theaveragecarbonremovalcertificateswillbecomecheaperforall–hopefullyontimeforwhentheworldneedsthematthegigatonne-scale.

Theonlywaytogrowthecarbonremovalindustrytotherequiredscaleisbycreatingdemand:voluntarybuyerswhoactnowandcanaffordthefirst-moverprice,and/orlawmakersenforcingcompliancemarketsattherightpricepointglobally.Thelatterseemslessrealisticthantheformer.Thequestionishowwell-resourcedprivatesectorinstitutionslikebanksandinsurersthatareabletofundthefullportfolioofcarbonremovalsolutions,canengageandcreatedemandinthemostimpactfulmanner.Inmostcases,buyersofcarbonremovalservicesrequireanattestationoftheirengagementintheformofcertificates.187Inmostcases,buyersofcarbonremovalservicesrequireanattestationoftheirengagementintheformofcertificates.188Therearethreesourcingoptionsforcarbonremovalcertificates.

184SwissRekeepsitsowndatabaseofcorporatenet-zeropledges,alessdetailedpublicdatabaseispublishedbytheAmerican UniversityofWashingtonDC,accessed28February2021.

185J.Minx,etal.,2018,op.cit.186S.Fuss,etal.,2018,op.cit.187 Otherthanthrough-purchasingremovalcertificates,companiescouldalsorealisenegativeemissions

insidetheirvaluechain(=“insetting”:Eg,achocolatemanufacturersponsorstheswitchtoagroforestryandabiocharplantfortheircacaofarmers),wheretheymayormaynotregistertheiractionunderastandardthatissuescertificates.Furthermore,somestakeholdersadvocateforcontributionalclaims,wherecompaniesbecomeclimatefinancierswithoutinsistingonatonne-by-tonneaccounting,butsomeotherformsofpaymentandreportingterms.

188Otherthanthrough-purchasingremovalcertificates,companiescouldalsorealisenegativeemissionsinsidetheirvaluechain(=“insetting”:Eg,achocolatemanufacturersponsorstheswitchtoagroforestryandabiocharplantfortheircacaofarmers),wheretheymayormaynotregistertheiractionunderastandardthatissuescertificates.Furthermore,somestakeholdersadvocateforcontributionalclaims,wherecompaniesbecomeclimatefinancierswithoutinsistingonatonne-by-tonneaccounting,butsomeotherformsofpaymentandreportingterms.

Nature-basedsolutions,inparticularforestprojects,areimportant…

…butfallshortindeliveringtheamountofnegativeemissionsrequiredtomeetthe1.5°Cglobaltemperaturerisetarget.

Aheavyfocusonnature-basedsolutionsnowwillinevitablydriveupthepriceandwillmakeitharderfortheworldasawholetoreachnet-zeroby2050.

Payinghigherpricesnowforhybridandtechnologicalsolutionswillseepricesdecreaseinthefuturewhentheworldneedsthematscale.

Buyersofcarbonremovalservicescanchoosefromthreesourcingoptionsforremovalcertificates.

38 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

The role of insurance

Thesecomewithdecreasinglevelsofcommitmentandthusimpact,butalsowithdecreasinglevelofbuyer-vendorinteraction,andthuslesstransactionaleffort:

Carbon Removal Purchasing Agreements (CRPA)arelong-termofftakeagreementswithbespokevolumeandpriceoverseveralyears.TheyarelikeanERPAforcarbonoffsets,orapowerpurchaseagreement(PPA)forgreenelectricity.Thetransactionaleffortishigh,butstandardcontractswhereonlytheconfirmationandschedulehavetobenegotiatedarelikelyatsomepointintime.TheCRPAguaranteesfuturerevenuetothecarbonremovalserviceprovider,whichrenderstheunderlyingprojectbankable.Therefore,theCRPAbringsnewremovalprojectsonline,makingitanimpactfulsourcingoption.

Carbon removal purchasing facility (CRPF): ACRPFmatchestheaggregateddemandofseveralbuyerswiththeaggregatedsupplyfromaprojectpipelineaccordingtopre-definedparticipationrulesandprojectcriteria.189Forthebuyer,thetransactionaleffortislowerthanforCRPAsbecausethefacilityismanagedbyatrusteethatadministersallcontracts,andbuildstheprojectpipeline(sourcing,duediligence,contracting,registrationunderastandardifnecessary,verificationoversight).Thetrusteeispaidfortheseeffortsdirectlyfromthefacility.ThestrengthofaCRPFasamarketcatalystisthatthetrusteecanusefundsfromthefacilitytocreatetheprojectpipelineandprovidelimitedfinancialsupportuntiltheprojectcanstartissuingcertificates.Afterthatpoint,furtherpaymentsaresubjecttothedeliveryofcertificates.Inotherwords,thefacilitycantosomelimitedextentprovideup-frontfinance,aheadofthebulkresult-basedpayments.Thisallowsrealisationofprojectswithpromising,butless-proventechnologiesthatwouldotherwisestruggletosecureup-frontfinancefromtraditionallenders.

One-off purchases (over-the-counter): Buyerswhodonotwanttocommitlong-termcancovertheircertificatesdemandyear-by-yearthroughone-offpurchasesover-the-counter,viabrokers/intermediaries,orthrough(Dutch)auctions.Intheabsenceofestablishedmarketstructuresormarketplaceinitiatives,companiesmayorganisetheirowntenderprocesstodirectlysolicitoffersfromcarbonremovalproviders.Whilethetransactionaleffortsarelimitedforone-offpurchases(withtheexceptionofowntenders),theyarealsonotthemostimpactful.Themarketriskremainswiththesellerwhomayhavedifficultytoscaleproductionintheabsenceofabankablecontract.Also,certificatessourcedinthismannerstemfromexistingprojects,someofwhichcanbequiteold(asinthecaseofforestprojects).Buyerswhosegoalistobringnew,additionalremovalprojectsonlineshouldconsiderothersourcingoptions.

Withtransactionaleffortcomeschancefordirectengagementwithacounterparty.Today,giventheimmaturityofthemarket,thelimitednumberofcounterpartiescanautomaticallybeconsideredtheworld’sleadingcarbonremovalserviceproviders.Ifaninsurerdemonstrateswillingnesstotakerisksbyenteringalong-termofftakeagreement,thatfirmmaybeperceivedasacrediblepartnerforotherrisks,andasaninvestorofchoice.Tothisend,buyingremovalstocompensateoperationalemissionscanalsobeadooropenertonewinsurancebusinessopportunities.

Thescienceisclear:carbonremovalisanecessityfornet-zero,ontopofmassiveemissionreductionefforts.Beyond2050,theworldmustbeabletotacklehistoricemissionsandremainnet-negative.Thescaleoftheproblemisdaunting:by2050,anewindustrymusthavecapacitytoremovethesameamountofemissionsfromtheatmosphereascomingfromhumanity’suseofoilandgastoday.

189Thesinglevolumesofeachbuyerareusuallysmall,andtheycannotenterCRPAswithsufficientlylarge(andthuseconomical)projectsontheirown.Alternatively,theaggregationservestosharetheburdenofthefirst-moverprice,wherebuyers–forcostcontrolreasons–onlywanttocommitsmallervolumesonaparticularsetofremovalsolutionscoveredbythefacility.

Directengagementwithsuppliersviapurchaseagreementscanopendoorsforinsurerstonewbusinessopportunities.

Toreachnet-zero,massiveemissionreductionsandcarbonremovalatthegigatonnescaleareneeded.

Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions 39

Conclusion

Thecarbonremovalindustryisinitsinfancyandneedstodevelopquickly.Existingbarriersstandinginthewayofmarketgrowthneedtobeovercome.Eachstageofthevaluechainfaceschallenges.Supply-siderestrictionssuchascost,lackofknowledgeandresistancetochangemayslowlyprogress,butthetechnologicallearningcurvemayhelpalleviatetheseissuesassolutionsbecomemorematureandefficient.Addingtothedifficultyingettingwhatisstillalow-volumeindustryupandrunningisanundefinedandunregulatedmarketplaceandlackofuniformstandards.

Demand

• practical constraints – cost (first-mover price), lack of market intelligence

• lack of regulatory requirements (mandates)

• net-zero commitments on the rise (financial), but commitments to carbon removal is far behind the actual need

• uncertainties on permanence• perceived risk of mitigation deterrence

Marketplace

• lack of standards• lack of regulation of international

transfers of removal outcomes• small volumes/no fungibility

Supply

• practical constraints – cost, lack of knowhow, resistance to change

• lack of economic incentive• conflict of use – food & feed,

water, conservation, infrastructure, subsurface use, …

• uncertainties on permanence

Source:SwissRe

Aparticularhindrancetoscaling-upisthefirst-moverproblem.Todaythemostscalablecarbonremovalsolutionsarealsothemostexpensive.First-moverswillbearthehighcostofgettingtheindustrytocriticalmass,whilefree-ridersremainonthesidelineswaitingforpricestofall.Further,thereisnobusinesscasewithoutcarbonpricing.Thescale-upofcarbonremovalreliesontheexistenceofstringentclimatepolicies,currentlyabsentinmostjurisdictions.

Suchissuesaretypicalofanuntappedmarketonthecuspofexplosivegrowth.Theprivatesectorcanleverageandacceleratethedeploymentofthecarbonremovalindustry.Figure8illustrateshowthosewiththefundstodosocouldrealisemeaningfulgainsbysteppingintode-riskcarbonremovalservices,financedevelopersandprojects,andcreatedemandthroughpurchasingcarbonremovalcertificatestobalancetheirownoperationalfootprint.Theinsuranceindustryiswell-positionedonallthreefronts.Re/insurers’riskknowledgeandtransfercapabilities,pairedwiththeirlong-terminvestmenthorizonandahighnetincomepertonneofoperationalemissions,makeforidealcarbonremovalprojectpartners.

De-risk• Take market risk through

long-term offtake agreements• Take other exposures, incl.

property, engineering and novel storage reversal covers

Finance• Invest in suppliers• Project finance • Other contributions

Buy• Realize carbon removals inside

own value chain (insetting)• Buy carbon removal certificates

from external providers

Source:SwissRe

Theindustryneedstogrowquickly,andthemanybarriersalongthecarbonremovalvaluechainneedbeovercome.

Figure 7 Selectedbarrierstogrowthinthecarbonremovalvaluechain

Thoseableandwillingtopaythehighfirst-moverprice,andstringentsupportpolicies,arevitalforsectordevelopment.

Theinsuranceindustrycanfacilitategrowthofcarbonremovalviade-risking,financingandbuying.

Figure 8 Howinsurerscancontribute

40 Swiss Re Institute Theinsurancerationaleforcarbonremovalsolutions

Conclusion

Forinsurers,mostcarbonremovalsolutionshaveclearlinkstodifferentlinesofbusiness.Forexample,soilcarbonsequestrationandbiocharlinkdirectlytothefutureofagribusiness;afforestationbuildsamarketfornewinsuranceproductstoreplaceinefficientstoragereversalsafeguardsfromfiresanddisasters;bluecarbonproductsnaturallyfitwithintherealmofdisasterinsurancewhilealsodecreasingfuturecostsfromflooding;andgeologicalCO2storageopensupnewopportunitiestocovertheriskofleakageorinducedseismicityviaearthquakeinsurance.Forclassicalengineeringcoversandwell-establishedforestcovers,thecaseforinsurabilityismuchclearerthanforliabilityquestions.

Ingeneral,theinsurabilityofcarbonremoval,inparticularthestorageliabilities,stronglydependsonarobustlegalandregulatoryframeworkthatgovernsfinancialsecurityobligationsandeventuallythetransferofliabilitiestothepublicsector.190Currently,thisisyettobedevelopedformostcarbonremovalsolutions.Eventhestandardbodiesofthevoluntarycarbonmarket(Verra,GoldStandard,ACR,etc)havenotyetcomeupwithmethodologiesforalltypesofremovals–inparticularthetechnologicalsolutions–thatwouldaddressquestionsabouttheriskofstoragereversal.Altogether,aninsurancemarketforcarbonremovalsolutionshasnotyettakenoff.Oftenvoicedistheneedfortheinsuranceindustrytoparticipateproactivelyinthedialoguebetweenregulatorsandprojectdevelopers,orstandardbodiesandprojectdevelopers.Thecallistobringintheriskassessmentperspective,andclarityastounderwhichconditionstheprivateinsuranceindustrycanengagemoreactivelyincarbonremovalasarisktaker.

Theassetmanagement,investorsideofinsurancefacesbarrierstoenteringthecarbonremovalmarket.Thisisduetothestillimmaturityofthemarket,andthelackofinsuranceofferingsandinstitutionalsupportthatwouldalleviatesomeoftheinvestmentrisks.Itisunlikelythatanypotentialinsurerorotherinvestorwouldgointocarbonremovalalone.Instead,investorslookforopportunitiesforsidecarinvestments,forinstancealongsidetheoil&gasmajorsalreadyinvestinginthetransitiontonet-zero.Thiscouldsmoothinitialfearsaboutthematurityofthemarket.Ultimately,thegrowingmomentumofshareholderpressure,tighteningclimatepolicies,investors’ownnet-zerocommitments,andrapidlyimprovingtechnologyofcarbonremovalsolutions,willattractinvestors.Thequestionis“howsoon?”

Asabuyerofcarbonremovalservices,insurershavethepossibilitytohelpcreateamarketthatwillopenavenuestonewbusinessrelatedtotheupcomingcarbonremovalriskpoolsandassetclasses.Tothisend,theircarbonremovalpurchasingstrategiesneedtolookaheadandvaluequalityandimpactoverleast-costoptions.

Insurersthattaketheriskandengageearlyincarbonremovalmayfindinvestmentswell-rewarded.Atfirst,theymayincreasetheirunderstandingofthenewcarbonremovalrisklandscapebyofferingstandardproductsfortheeasy-to-coverexposures,byinvestingatasmallscale,andbyenteringlong-termofftakeagreementswithselectcarbonremovalproviders.Then,asthemarketmaturesandtheriskknowledgeconsolidates,liabilitycoversforcarbonremovalservices–currentlyconsidereduninsurablebymany–mayalsobecomestandardbusiness.Atthatpoint,thefront-runnersamonginsurerswillprofitfromtheon-the-groundexperiencealreadygathered.Theywillbeseenascredibleinsurancepartnersandinvestorsofchoice.Eventually,oncethecarbonremovalmarketreachesitsperceivedtrillion-dollarstatus,therewillbeawholelottoinsureandtoinvestin.

190Thisisnotdissimilartotheinsurabilityofnuclearwasterepositories,wheretheregulatordefinesthelevelandperiodoffinancialsecurities,aswellasthemonitoringandverificationobligations,beforeacceptingthepassingofanyremainingliabilitiesfromtheoperatortothepublicsectorinformofasuitablegovernmentalbody.

Thereareclearlinksbetweencarbonremovalandinsurancebusinesscases.

Expertscallontheinsuranceindustrytogetinvolvedinimprovingthebankabilityofcarbonremovalprojects.

Investmentsside-by-sidewithbiggerplayerscanlowerthebarriersforassetmanagement.

Impactfulpurchasesofcarbonremovalservicesmayenablefurtherbusiness.

Earlyengagementofinsurersinthecarbonremovalmarketwillreapaseriesofbenefitsasthemarketdevelops.

Published by:

SwissReInstituteSwissReManagementLtdP.O.Box8022ZurichSwitzerland

[email protected]

AuthorsDrMischaRepmannDrOliverSchelskeDaraColijnSamendraPrasad

TheauthorswouldliketothankJanGuddalforhisworkonTable2ofthereport.TheauthorsalsowouldliketothankClaudiaBolli,MartinFehr,MarcGermeau,CherieGray,JimmyKeime,ThomasKocher,ElaineO’Brien,GillianRutherford,PhilippServatiusandLasseWallquistfortheirfeedbackandcommentsonthereport.

EditorPaulRonke

ManagingeditorDrChristophNabholzChiefResearchOfficer

Theeditorialdeadlineforthisstudywas24March2021.

Theinternetversionmaycontainslightlyupdatedinformation.

Graphicdesignandproduction:CorporateRealEstate&Services/MediaProduction,Zurich

©2021SwissReinsuranceCompanyLtdAllrightsreserved.

Theentirecontentofthissigmaeditionissubjecttocopyrightwithallrightsreserved.Theinformationinthissigmamaybeusedforprivateorinternalpurposes,providedthatanycopyrightorotherproprietarynoticesarenotremoved.Electronicreuseoftheinformationpublishedinsigmaisprohibited.

ReproductioninwholeorinpartoruseforanypublicpurposeispermittedonlywiththepriorwrittenapprovalofSwissReandifthesourcereference“Theinsurancerationaleforcarbonremovalsolutions”isindicated.Courtesycopiesareappreciated.

Althoughalltheinformationusedinthissigmawastakenfromreliablesources,SwissRedoesnotacceptanyresponsibilityfortheaccuracyorcomprehensivenessoftheinformationgivenorforwardlookingstatementsmade.Theinformationprovidedandforward-lookingstatementsmadeareforinformationalpurposesonlyandinnowayconstituteorshouldbetakentoreflectSwissRe’sposition,inparticularinrelationtoanyongoingorfuturedispute.InnoeventshallSwissRebeliableforanylossordamagearisinginconnectionwiththeuseofthisinformationandreadersarecautionednottoplaceunduerelianceonforward-lookingstatements.SwissReundertakesnoobligationtopubliclyreviseorupdateanyforward-lookingstatements,whetherasaresultofnewinformation,futureeventsorotherwise.

Orderno:1507780_21_EN

SwissReManagementLtd.SwissReInstituteMythenquai50/60P.O.Box8022ZurichSwitzerland

Telephone+41432852551Fax+41432820075institute.swissre.com