journées micro-drones 2004. presentation high data rate transmission system for micro uavs lep>...

26
Journées Micro-Drones 2004. Presentation High Data Rate Transmission System for Micro UAVs LEP> SCN Fabien MULOT: Internship ONERA-SUPAERO Vincent CALMETTES: Research SUPAERO

Upload: celine-cutsforth

Post on 14-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Journées Micro-Drones 2004. Presentation

High Data Rate Transmission System for Micro UAVs

LEP> SCN

Fabien MULOT: Internship ONERA-SUPAERO

Vincent CALMETTES: Research SUPAERO

Journées Micro-Drones 2004. Presentation

Plan of the presentation

LEP> SCN

Context of the study

Video quality VS data rate trade-off

Characterisation of the micro-UAV transmission channel

Fade mitigation techniques

Future studies and developments

Journées Micro-Drones 2004. Presentation

Context of the study

Study of a high data rate transmission from a video payload onboard a micro-UAV.

LEP> SCN

a. Reflectionb. Shadowingc. Line of Sight

ba

c

Monitoring

Base station

Journées Micro-Drones 2004. Presentation

Context of the study Transmission Band

ISM band 2400 - 2483,5 MHz

Regulation

LEP> SCN

http://www.anfr.fr("Tableau National de Répartition des Bandes de Fréquences“)

Journées Micro-Drones 2004. Presentation

LEP> SCN

Objectives of the study Objectives of the study

High data rate source 640x480 pixels grey scale Camera, 8 bits JPEG coded

Image 1Mbits/s target

10-7 BER

Semi urban environment, 1Km max from the emitter to the receiver

0 - 50 Km/h speed

QPSK modulation

Shadowing and multipath resistant transmission

Context of the study

Journées Micro-Drones 2004. Presentation

Video quality VS data rate

trade-off

LEP> SCN

Video Source

Transmission Scheme

Channel

Reception Scheme

Video monitoring

Journées Micro-Drones 2004. Presentation

Video quality VS data rate trade-off

LEP> SCN

A

D

2 modes of transmission 14 i/s low quality A 3.3 i/s high quality D

Bit rate: 1.12 Mbits.s-1

302 Ko

42 Ko

10 Ko

Journées Micro-Drones 2004. Presentation

Characterisation of the

micro-UAV transmission channel

LEP> SCN

JPEG Coding

Transmission Scheme

Channel

?Reception

SchemeVideo

monitoring

1.12 Mbits.s-1

Journées Micro-Drones 2004. Presentation

Micro-UAV transmission channel

LEP> SCN

Path lossA = (1/d)N N = [3 ….5]

What is shadowing? Particular clutter (buildings dense woods) Scale of 100m 5 to 20dB

What is multipath fading? Reflections, scattering on rough surfaces Constructive and destructive interference Scale of 6.25cm at 2.4Ghz 5 to 40 dB

Journées Micro-Drones 2004. Presentation

LEP> SCN

B) Tap Delay Line ModelB) Tap Delay Line Model

Y(t)

1 2 n

1(t) 2(t) n(t)

X(t)

A) Statistic Power Delay ProfilesA) Statistic Power Delay Profiles

Statistic model

Micro-UAV transmission channel

C) channel ModelC) channel Model

Journées Micro-Drones 2004. Presentation

LEP> SCN

Channel Characterisation

Use of UMTS standard power delay profiles

Coherence bandwidth Bc: 6KHz<Bc<67KHz depending on the

profiles Frequency selective channel

Channel impulse response: 5µs

Micro-UAV transmission channel

25 kHz Coherence Bandwidth Example of a 4 MHz

occupied bandwidth for video transmission

Deep Fades

Journées Micro-Drones 2004. Presentation

LEP> SCN

Issues: Frequency selective channel Inter Symbol Interferences

Solutions: Channel coding Suited transmission techniques

Micro-UAV transmission channel

JPEG Coding

Channel

Coding

Multipath

Shadowing

Frequency Selecticve

Suited Reception

Scheme

JPEG

Decoding

1.12 Mbits.s-1

ModulationChannel Decoding

Journées Micro-Drones 2004. Presentation

Fade Mitigation Techniques

Channel coding

LEP> SCN

JPEG Coding

Channel

Coding

Multipath

Shadowing

Frequency Selctive

Suited Reception

Scheme

JPEG

Decoding

1.12 Mbits.s-1

ModulationChannel Decoding

Journées Micro-Drones 2004. Presentation

Channel Coding

LEP> SCN

Objective: Spreading and correction of the bursts of errorsObjective: Spreading and correction of the bursts of errors

ArchitectureArchitecture

Reed Solomon

(204/188)

External

Interleaver

Convvolutional Code

[177/188]

Internal

InterleaverPuncturing

Target BER: 10Target BER: 10-7-7 => SNR=3.5 dB => SNR=3.5 dB

Pe=Pr.DPe=Pr.D44/(Ge.Gr)/(Ge.Gr)

100M 500M 1Km

0 dB of shadowing 3.9.10-4mw 0.25mw 4mW

-20 dB of shadowing 3.9.10-2mw 25mW 0.4W

Journées Micro-Drones 2004. Presentation

Fade Mitigation Techniques

Transmission & Reception Techniques

LEP> SCN

JPEG Coding

Channel

Coding

Multipath

Shadowing

Frequency Selective

Suited Reception

Scheme

JPEG

Decoding

1.12 Mbits.s-1

ModulationChannel Decoding

2. Mbits.s-1

Journées Micro-Drones 2004. Presentation

QPSK + Equalization

LEP> SCN

ArchitectureArchitecture Channel codingChannel coding SSRC Roll Off = 0.4SSRC Roll Off = 0.4 EqualizerEqualizer

BandwidthBandwidth: 1.5 Mhz: 1.5 Mhz

JPEG source coding

Coding+Puncturing

SRRCFiltering

QPSK Mapping

SRRCFiltering

Adaptive filteringDemapping

Decoding+ deinterleaving

JPEG decoding

Training sequence generator

Channel

Journées Micro-Drones 2004. Presentation

QPSK + Equalization

LEP> SCN

EqualizationEqualization LMS algorithmLMS algorithm

Channel impulse response <= 1symbolChannel impulse response <= 1symbol

MLSE using a Viterbi algorithmMLSE using a Viterbi algorithm Several SymbolsSeveral Symbols MMk k ComplexityComplexity 1024 state trellis1024 state trellis

JPEG Coding

Channel

Coding

Multipath

ShadowingMLSE

1024 states

JPEG

Decoding

1.12 Mbits.s-1

QPSKChannel Decoding

2. Mbits.s-1 0.8 Msymb.s-1

QPSK1.5 Mhz

Journées Micro-Drones 2004. Presentation

OFDM

LEP> SCN

Advantage: Advantage: Transmission of high data rate Transmission of high data rate

while keeping a non frequency while keeping a non frequency selective channel.selective channel.

Bandwidth efficientBandwidth efficient

ArchitectureArchitecture Channel coding Channel coding mandatorymandatory OFDM Symbol duration =50 µs OFDM Symbol duration =50 µs 10 times the channel impulse 10 times the channel impulse

responseresponse

S1(k)..Sn(k)

S/P00

IFFT

CPSymbolmapping

P/S

2N points padding

Channel

Guard Interval Insertion

Coding

OFDM emitter

Frequency

Journées Micro-Drones 2004. Presentation

OFDM

LEP> SCN

Taking into accountTaking into account The symbol duration 50µsThe symbol duration 50µs the length of the cyclic prefixthe length of the cyclic prefix The data rate after codingThe data rate after coding The insertion of training symbols The insertion of training symbols

for equalizationfor equalization 64 points FFT64 points FFT Bandwidth: 1.3MhzBandwidth: 1.3Mhz

JPEG Coding

Channel

Coding

Multipath

Shadowing JPEG

Decoding

1.12 Mbits.s-1

QPSK Channel Decoding

2. Mbits.s-1 0.8 Msymb.s-1

QPSK1.3 Mhz

OFDM 64pts IFFT

20 Ksymb

OFDM 64 pts FFT

Journées Micro-Drones 2004. Presentation

DSSS + Rake

LEP> SCN

Advantages of Direct Sequence Advantages of Direct Sequence Spread Spectrum: Spread Spectrum:

Rake uses time diversity Resistant to noise and

interference

ArchitectureArchitecture OVSF spreading codesOVSF spreading codes

PN scrambling sequencePN scrambling sequence

Rake receiverRake receiver

Power

Frequency

Noise

Spread signal

Power

Frequency

Narrow Band Information signal After Despreading

Spread Noise

IQ Scrambling code

Up sampling

SRRCFiltering

QPSKMapping

IQ Spreading code

Coding

Journées Micro-Drones 2004. Presentation

∫dt

∫dt 2

1

∫dt

∫dt

IQ demapper

3

4

Path Search

Descramble Despread

Integrate and Dump

Channel estimation

y(t-1)

y(t-2)

y(t-3)

y(t-4)

y(t)

g*(t-1)

g*(t-2)

g*(t-3)

g*(t-4)

MRC

DSSS + Rake

LEP> SCN

Rake Receiver ArchitectureRake Receiver Architecture

Journées Micro-Drones 2004. Presentation

DSSS + Rake

LEP> SCN

JPEG Coding

Channel

Coding

Multipath

Shadowing JPEG Decoding

1.12 Mbits.s-1

QPSK Channel Decoding

2. Mbits.s-1 0.8 Msymb.s-1

QPSK

72.6 Mhz

DSSS

51.2 Msymb.s-1

Rake

Journées Micro-Drones 2004. Presentation

Future studies and developments

LEP> SCN

Journées Micro-Drones 2004. Presentation

Future studies and developments

LEP> SCNLEP> SCN

Evaluation of a system Evaluation of a system based on existing based on existing commercial technologies:commercial technologies:

WI-FI [802.11b] WI-FI [802.11b] DSSSDSSS 1 to 11 Mbps1 to 11 Mbps

WI-FI [802.11g] WI-FI [802.11g] OFDMOFDM 1 to 54 Mbps1 to 54 Mbps

Baseband Processor

Transceiver External PA

ATHEROS

5523

ATHEROS

5112

FPGA

Baseband Processor

Transceiver

ATHEROS

5523

ATHEROS

5112

USB 2.0Interface

ATHEROS AR5005uX

? FEC ?

Journées Micro-Drones 2004. Presentation

LEP> SCNLEP> SCN

Thank you

Questions ?

Journées Micro-Drones 2004. Presentation

Analog VS Digital

Digital CameraDigital Camera

JPEG processing to deduce the bandwidthJPEG processing to deduce the bandwidth

Onboard storage of the data is possibleOnboard storage of the data is possible

Digital signals are more resistant against multipath distortionsDigital signals are more resistant against multipath distortions I.e Use of COFDMI.e Use of COFDM

Already existing technologies working in the ISM bandAlready existing technologies working in the ISM band

Dynamically reconfigurable system parametersDynamically reconfigurable system parameters

No need to adjust to tune the transmitter boardNo need to adjust to tune the transmitter board

Analog transmission requires more powerAnalog transmission requires more power