joint with amir bozorgmagham, phanindra tallapragada , binbin...

63
Atmospheric coherent structures and aerobiological invasions Shane Ross Joint with Amir BozorgMagham, Phanindra Tallapragada, Binbin Lin, A.J. Prussin, David Schmale Virginia Tech, Department of Engineering Science and Mechanics

Upload: others

Post on 27-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Atmospheric coherent structures and aerobiological invasions!

    !

    Shane Ross!!

    Joint with Amir BozorgMagham, Phanindra Tallapragada, !Binbin Lin, A.J. Prussin, David Schmale!

    !Virginia Tech, Department of Engineering Science and Mechanics!

  • Coastal  flow  

    Invasive species riding the atmosphere!

    Hurricane  Ivan  (2004)  brought  new  crop  disease  (soybean  rust)  to  U.S.  

    Red=infected  US  regions  From  Rio  Cauca  region  of  Colombia  

    2004

  • Coastal  flow  

    Invasive species riding the atmosphere!

    Hurricane  Ivan  (2004)  brought  new  crop  disease  (soybean  rust)  to  U.S.  

    Cost of invasive organisms is!>$100 billion per year in U.S.!

    ! !

    From  Rio  Cauca  region  of  Colombia  

    2004

    Airborne  pathogen                      

  • Plant  pathogens  linked  to  water  cycle  

    What  you  grow  affects  local  microclimate  (Cindy  Morris,  INRA)    

  • •  Spore  producNon,  release,  escape  from  surface  •  Long-‐range  transport  (Nme-‐scale  hours  to  days)  •  DeposiNon,  infecNon  efficiency,  host  suscepNbility  

    Atmospheric  transport  of  microorganisms  

    e.g.,  Fusarium  fungal  spores  

    Schmale & Bergstrom [2003]!

  • •  Spore  producNon,  release,  escape  from  surface  •  Long-‐range  transport  (Nme-‐scale  hours  to  days)  •  DeposiNon,  infecNon  efficiency,  host  suscepNbility  

    Atmospheric  transport  of  microorganisms  

    e.g.,  Fusarium  fungal  spores  

    Schmale & Bergstrom [2003], Trail et al. [2005]!

  • •  Spore  producNon,  release,  escape  from  surface  •  Long-‐range  transport  (Nme-‐scale  hours  to  days)  •  DeposiNon,  infecNon  efficiency,  host  suscepNbility  

    Atmospheric  transport  of  microorganisms  

    e.g.,  Fusarium  fungal  spores  

    Schmale & Bergstrom [2003], Trail et al. [2005]!

  • •  Spore  producNon,  release,  escape  from  surface  •  Long-‐range  transport  (Nme-‐scale  hours  to  days)  •  DeposiNon,  infecNon  efficiency,  host  suscepNbility  

    Atmospheric  transport  of  microorganisms  

    e.g.,  Fusarium  fungal  spores  

    Schmale & Bergstrom [2003], Trail et al. [2005]!

     spore  ~100  µm

  • •  Spore  producNon,  release,  escape  from  surface  •  Long-‐range  transport  (Nme-‐scale  hours  to  days)  •  DeposiNon,  infecNon  efficiency,  host  suscepNbility  

    Atmospheric  transport  of  microorganisms  

    Aylor [1999]!

  • •  Spore  producNon,  release,  escape  from  surface  •  Long-‐range  transport  (Nme-‐scale  hours  to  days)  •  DeposiNon,  infecNon  efficiency,  host  suscepNbility  

    Atmospheric  transport  of  microorganisms  

    Prussin et al. [2014a,b] Plant Disease!

    Plume  follows  changing  wind  direcNon   Temporally  varying  source  strength  

    Experimentally  derived  dispersal  kernels  

  • •  Spore  producNon,  release,  escape  from  surface  •  Long-‐range  transport  (Nme-‐scale  hours  to  days)  •  DeposiNon,  infecNon  efficiency,  host  suscepNbility  

    Atmospheric  transport  of  microorganisms  

    Aylor [1999]; Prussin et al [2014]!

  • •  Spore  producNon,  release,  escape  from  surface  •  Long-‐range  transport  (Nme-‐scale  hours  to  days)  •  DeposiNon,  infecNon  efficiency,  host  suscepNbility  

    Atmospheric  transport  of  microorganisms  

    Aylor [1999]!

    DeposiNon  paXerns  can  be  patchy  

  • Aerial sampling drones:!40 m – 400 m altitude!

    (David Schmale’s group)!

    Samples collected over 10-30 minute intervals at constant elevation (e.g., 400m) above ground level!

  • Collect  spores,  idenNfy  species  

  • Fluctuations in fungal spore concentration

    0 10 20 30 40 50 60 70 80 90 1000

    4

    8

    12

    16

    Sample number

    Spore

    conce

    ntr

    atio

    n (

    spore

    s/m

    3)

    Concentration of Fusarium spores (number/m3) for samples from 100 flights conducted

    between August 2006 and March 2010.

    iii

    A  Nme  series  at  a  single  sampling  locaNon.  Total  spore  concentraNon  (all  species).  

  • Sources  are  unknown  

    If  sources  were  known,  could  model  plume    

  • Sources  are  unknown  We  are  sampling  from  many  sources  

  • Sources  are  unknown  

    We  are  sampling  a  superposiNon  of  plumes  from  various  distant  sources  (e.g.,  diseased  fields)    Spores  are  airborne  long  enough  to  be  mixed  a  bit  by  atmospheric  transport  structures  

    We  are  sampling  from  many  sources  

  • Sources  are  unknown  

    We  are  sampling  a  superposiNon  of  plumes  from  various  distant  sources  (e.g.,  diseased  fields)    Spores  are  airborne  long  enough  to  be  mixed  a  bit  by  atmospheric  transport  structures  

    We  are  sampling  from  many  sources  

    e.g.,  can  imagine  ‘invisible’  smoke  plumes  

  • Sources  are  unknown  

    We  are  sampling  a  superposiNon  of  plumes  from  various  distant  sources  (e.g.,  diseased  fields)    Spores  are  airborne  long  enough  to  be  mixed  a  bit  by  atmospheric  transport  structures  

    We  are  sampling  from  many  sources  

    e.g.,  can  imagine  ‘invisible’  smoke  plumes  

  • Sources  are  unknown  

    We  are  sampling  a  superposiNon  of  plumes  from  various  distant  sources  (e.g.,  diseased  fields)    Spores  are  airborne  long  enough  to  be  mixed  a  bit  by  atmospheric  transport  structures  

    We  are  sampling  from  many  sources  

    A  B  

    Sample  here  

    C  D  

    e.g.,  can  imagine  ‘invisible’  smoke  plumes  

  • Sources  are  unknown  

    e.g.,  can  imagine  ‘invisible’  smoke  plumes  

    We  are  sampling  a  superposiNon  of  plumes  from  various  distant  sources  (e.g.,  diseased  fields)    Spores  are  airborne  long  enough  to  be  mixed  a  bit  by  atmospheric  transport  structures  

    We  are  sampling  from  many  sources  

    A  

    A  

    B  B  

    Sample  here  

    C  C  

    D  

    D  

    Pop.  structure  

    Time  

  • Fluctuations in fungal spore concentration

    0 10 20 30 40 50 60 70 80 90 1000

    4

    8

    12

    16

    Sample number

    Spore

    conce

    ntr

    atio

    n (

    spore

    s/m

    3)

    Concentration of Fusarium spores (number/m3) for samples from 100 flights conducted

    between August 2006 and March 2010.

    iii

  • Fluctuations in fungal spore concentration

    0 10 20 30 40 50 60 70 80 90 1000

    4

    8

    12

    16

    Sample number

    Spore

    conce

    ntr

    atio

    n (

    spore

    s/m

    3)

    Concentration of Fusarium spores (number/m3) for samples from 100 flights conducted

    between August 2006 and March 2010.

    iii

    1 2 3 4 5 6 7 8 9 10 110

    5

    10

    15

    20

    25

    30

    35

    40

    Flights F147−F157

    num

    ber o

    f spo

    res

    Fusarium spores collected, broken down by species (normalized to 15 minute sample flights)

    F. lateritiumF. equiseti−likeF. oxysporumF. graminearumF. sporotrichioidesF. fujikuroiF. equisetiF. babinda−like

    Considering  all  fungal  spores:  can  break  down  by  species  later  -‐>      

  • Fluctuations in fungal spore concentration

    0 10 20 30 40 50 60 70 80 90 1000

    4

    8

    12

    16

    Sample number

    Spore

    conce

    ntr

    atio

    n (

    spore

    s/m

    3)

    Concentration of Fusarium spores (number/m3) for samples from 100 flights conducted

    between August 2006 and March 2010.

    iii

    Spore  impact  on  Petri  dishes  is  an  inhomogenous  Poisson  process  with  slowly  varying  intensity  

    Lin et al. [2012] Aerobiologia!

  • Fluctuations in fungal spore concentration

    0 10 20 30 40 50 60 70 80 90 1000

    4

    8

    12

    16

    Sample number

    Spore

    conce

    ntr

    atio

    n (

    spore

    s/m

    3)

    Concentration of Fusarium spores (number/m3) for samples from 100 flights conducted

    between August 2006 and March 2010.

    iii

    Spore  impact  on  Petri  dishes  is  an  inhomogenous  Poisson  process  with  slowly  varying  intensity  

    SomeNmes  significant  variability  over  short  Nmescales,  unexplained  by  Poisson  staNsNcs  

    Lin et al. [2012] Aerobiologia!

  • Punctuated changes in fungal spore concentration

    0 10 20 30 40 50 60 70 80 90 1000

    4

    8

    12

    16

    Sample number

    Sp

    ore

    co

    nce

    ntr

    atio

    n (

    spo

    res/

    m3)

    17:00 18:00 19:00 20:00 21:000

    4

    8

    12

    16

    16 Sep 2006

    00:00 12:00 00:00 12:00 00:00 12:000

    4

    8

    12

    30 Apr 2007 1 May 2007 2 May 2007

    Concentration of Fusarium spores (number/m3) for samples from 100 flights conducted

    between August 2006 and March 2010.

    vi

  • A classic punctuated change

    Time

    Spore

    conce

    ntr

    atio

    n (

    spore

    s/m

    3)

    00:00 12:00 00:00 12:00 00:00 12:000

    4

    8

    12

    30 Apr 2007 1 May 2007 2 May 2007

    Time series of concentration {(t0, C0), . . . , (tN�1, CN�1)}

    vii

  • A classic punctuated change

    Time

    Spore

    conce

    ntr

    atio

    n (

    spore

    s/m

    3)

    00:00 12:00 00:00 12:00 00:00 12:000

    4

    8

    12

    30 Apr 2007 1 May 2007 2 May 2007

    Time series of concentration {(t0, C0), . . . , (tN�1, CN�1)}

    vii

    Define  punctuated  change  as  low  probability  events  (assuming  Poisson  process),  e.g.,  changes  which  have  probability    <  1%  

  • Coastal  flow  

    Detected concentrationof Fusarium at sampling location

    time

    Punctuated  changes:    How  to  understand  cloud  edges?  

  • Coastal  flow  

    Detected concentrationof Fusarium at sampling location

    time

    Punctuated  changes:    How  to  understand  cloud  edges?  

    Sampling location

  • Coastal  flow  

    Detected concentrationof Fusarium at sampling location

    time

    Punctuated  changes:    How  to  understand  cloud  edges?  

    Sampling location

  • Coastal  flow  

    Detected concentrationof Fusarium at sampling location

    time

    Punctuated  changes:    How  to  understand  cloud  edges?  

    Sampling location

  • Coastal  flow  

    LCS, repelling (orange) and attracting (blue)!

    !Atmospheric Superhighway,!

    a skeleton of large-scale horizontal transport!

    !!

    Relevant for large-scale spatiotemporal patterns!

    of pollution but also !biological agents!

    !!

    orange = repelling LCSs, blue = attracting LCSs!

    Atmospheric transport network!

  • Mesoscale  to  synopNc  scale  moNon  •  Consider  first  2D  moNon,  then  fully  3D  •  Quasi-‐2D  moNon  (isobaric)  over  Nmescales  of  interest,  <  12-‐24  hrs,  given  by  fungal  spore  viability  

    700 mb

    800 mb

    900 mb

    Using  wind  fields  from    NOAA  

  • Curtain-like partitions moving over landscape!

  • IdenNfy  coherent  structures  •  Coherent  atmospheric  filaments  or  vorNces  mix  liXle  with  surroundings,  analogous  to  ocean  eddies  

    •  Temporarily  isolated  sub-‐systems  

  • Volumes of differing spore composition !partitioned by LCS!

    Our  unmanned  aerial  vehicles  (UAVs)  are  usually  sampling  one  side  or  the  other  

  • Example: Filament bounded by repelling LCSB

    (d)

    (a) (b) (c)

    100 km 100 km 100 km

    Time

    Spore

    conce

    ntr

    atio

    n (

    spore

    s/m

    3)

    00:00 12:00 00:00 12:00 00:00 12:000

    4

    8

    12

    30 Apr 2007 1 May 2007 2 May 2007

    12:00 UTC 1 May 2007 15:00 UTC 1 May 2007 18:00 UTC 1 May 2007xxv

    Filament with high pathogen values ‘sandwiched’ by LCS!

  • Example: Filament bounded by repelling LCSB

    (d)

    (a) (b) (c)

    100 km 100 km 100 km

    Time

    Spore

    conce

    ntr

    atio

    n (

    spore

    s/m

    3)

    00:00 12:00 00:00 12:00 00:00 12:000

    4

    8

    12

    30 Apr 2007 1 May 2007 2 May 2007

    12:00 UTC 1 May 2007 15:00 UTC 1 May 2007 18:00 UTC 1 May 2007xxv

    (a)

    (b)

    (c)

    Filament with high pathogen values ‘sandwiched’ by LCS!

  • Example: Filament bounded by repelling LCSB

    Sampling

    location

    (d) (e) (f)

    (a) (b) (c)

    100 km 100 km 100 km

    12:00 UTC 1 May 2007 15:00 UTC 1 May 2007 18:00 UTC 1 May 2007xxiv

    Filament with high pathogen values ‘sandwiched’ by LCS!

  •    

     •  Punctuated  change  was  associated  with  a  LCS  passage  >70%  of  the  Nme    

    •  Airborne  biological  agent  concentraNons  can  provide  a  proxy  for  measuring  Lagrangian  transport  structure  

  • Sampling  on  either  side  of  a  LCS  

    •  If  seeking  geographically  diverse  samples,  sample  on  other  side  of  a  passing  LCS    

  • Sampling  on  either  side  of  a  LCS  

    Back  trajectories  with  aXracNng  LCS  

    Red:  sample  :me:  1315  UTC  Blue:  sample  :me:  1415  UTC  

    Red:  sample  :me:  1315  UTC  Blue:  sample  :me:  1415  UTC  Green:  sample  :me  1515  UTC  

    Back-‐trajectories  shown  Movie  is  showing  Nme  

    backwards  

  • ProbabilisNc  source  regions  (considering  sub-‐grid  scale  turbulence)  

    Sampling  :mes:  1)  9:15  am  (leG  cloud),  2)  10:15  am  (right  cloud),  Sept  29,  2010  

    Sampling  on  either  side  of  a  LCS  

  • •  Sampling  point:  Virginia  Tech  campus  •  Sampling  :mes:  8AM  –  8AM,  Sep  29  &  30,  2010  •  Integra:on  :me:  -‐  24  h.  

    Backward  trajectory  of  par:cles,  :me  delay  =  1h  

    Sampling  biological  agents  at  a  fixed  locaNon  

    Sourceline  of  sampled  points  

    Strain  along  this  curve  related  to  FTLE  

    made  of  iniNal  points  from  sequenNally  sampled  pathlines  

  • SequenNal  release  (or  capture)  from  a  fixed  locaNon  

  • SequenNal  release  (or  capture)  from  a  fixed  locaNon  

  • Distance  between  the  ini:al  posi:on  of  the  sampled  par:cles    

    Sourceline  of  sampled  points  FTLE  for  T  =  -‐24  hr  

    Distance  between  adjacent  points  along  sourceline  

    FTLE  Nme  series  at  one  fixed  locaNon  

    SequenNal  release  (or  capture)  from  a  fixed  locaNon  

  • ForecasNng  atmospheric  LCS  Wind  field  errors  are  not  small  or  localized  in  Nme  

    BozorgMagham, Ross, Schmale [2013] Physica D!

  • ForecasNng  atmospheric  LCS  

    Ensemble  average   Standard  deviaNon  

    Using  an  ensemble  forecasNng  approach    -‐  Global  scale  (low  res.)  model    -‐  ensemble  of  15  members  

    BozorgMagham, Ross [2013]!

  • ForecasNng  atmospheric  LCS  

    Can  correctly  forecast  within  2  hours  60%  of  the  Nme  

    ForecasNng  an  LCS  passage  Nme    

    BozorgMagham, Ross [2013]!

  • Turbulence  and  source  regions  PracNcal  applicaNon:  early  warning  systems      LCS  or  other  transport  analysis  methods  could  help  inform  farmers  regarding  possible  zones  of  disease  spread  

  • Turbulence  and  source  regions  Likely  dispersal  pathways  or  persistent  barriers  

  • Kellogg, Griffin [2006]!

    Lagrangian  ‘bridges’  connecNng  distant  ecosystems  

    Aerobiology  and  the  global  transport  of  desert  dust  

    NOAA simulation!

  • Final  thoughts:  coherence/transport  in  aerobiology    •  Could  provide  insight  to  spaNotemporal  data  and        models  

    •  Future:    •  3D  •  Can  LCS  inform  beXer  management  pracNces    (e.g.,  fungicide  spraying?)  

    •  Map  of  global  connecNvity    •  Effect  of  climate  change  

    transport layers

    ground layer

  • The End

    For papers, movies, etc., visit:www.shaneross.com

    Main Papers:• BozorgMagham, Ross, Schmale [2013] Real-time prediction of atmospheric Lagrangian

    coherent structures based on forecast data: An application and error analysis. PhysicaD 258, 47-60.

    • Lin, BozorgMagham, Ross, Schmale [2013] Small fluctuations in the recovery of fusariaacross consecutive sampling intervals with unmanned aircraft 100 m above groundlevel. Aerobiologia 29(1), 45-54.

    • BozorgMagham, Ross [2013] Atmospheric Lagrangian coherent structures consideringunresolved turbulence and forecast uncertainty, submitted.

    • Prussin, Marr, Schmale, Ross [2013] Experimental validation of a long-distance trans-port model for plant pathogens: Application to Fusarium graminearum. Agriculturaland Forest Meteorology, accepted.

    • Tallapragada, Ross, Schmale [2011] Lagrangian coherent structures are associated withfluctuations in airborne microbial populations. Chaos 21, 033122.

    • Lekien & Ross [2010] The computation of finite-time Lyapunov exponents on unstruc-tured meshes and for non-Euclidean manifolds. Chaos 20, 017505.

    xlv

    Sponsors: NSF DEB-0919088!!NSF CMMI-1100263!! ! !!Thank  You  

  • Extra Slides

  • 5 acres of winter wheat

    Inoculum preparation

    Field inoculation

    Field  experiments:  tracking  movement  of  plant  pathogen  from  a  controlled  source  

    Dozens of samplers

    Pathogen deposited decreases with distance

  • 12 Jul 2003 13:57 AR AR192-PY41-08.tex AR192-PY41-08.sgm LaTeX2e(2002/01/18) P1: GJB/GCE10.1146/annurev.phyto.41.121902.102839

    Annu. Rev. Phytopathol. 2003. 41:155–76doi: 10.1146/annurev.phyto.41.121902.102839

    Copyright c� 2003 by Annual Reviews. All rights reservedFirst published online as a Review in Advance on April 16, 2003

    THE THREAT OF PLANT PATHOGENS ASWEAPONS AGAINST U.S. CROPS

    L.V.Madden1 andM. Wheelis21Department of Plant Pathology, Ohio State University, Wooster, Ohio 44691;email: [email protected] of Microbiology, University of California, Davis, California 95616;email: [email protected]

    Key Words agricultural vulnerability, biological weapons, bioterrorism, cropbiosecurity, plant disease invasion, plant disease persistence and spread, risk analysis

    ■ Abstract The U.S. National Research Council (NRC) concluded in 2002 thatU.S. agriculture is vulnerable to attack and that the country has inadequate plans fordealing with agricultural bioterrorism. This article addresses the vulnerability of U.S.crops to attack from biological weapons by reviewing the costs and impact of plantdiseases on crops, pointing out the difficulty in preventing deliberate introduction ofpathogens and discovering new disease outbreaks quickly, and discussing why a plantpathogen might be chosen as a biological weapon. To put the threat into context, a briefhistorical review of anti-crop biological weapons programs is given. The argument ismade that the country can become much better prepared to counter bioterrorism bydeveloping a list of likely anti-crop threat agents, or categories of agents, that is basedon a formal risk analysis; making structural changes to the plant protection system,such as expanding diagnostic laboratories, networking the laboratories in a nationalsystem, and educating first responders; and by increasing our understanding of themolecular biology and epidemiology of threat agents, which could lead to improveddisease control, faster andmore sensitive diagnosticmethods, andpredictions of diseaseinvasion, persistence, and spread following pathogen introduction.

    INTRODUCTION

    Using [biological weapons] to attack livestock, crops, or ecosystems offersan adversary the means to wage a potentially subtle yet devastating form ofwarfare, one which would impact the political, social, and economic sectorsof a society. . .

    Kadlec (42)

    TheUnited States is vulnerable to bioterrorismdirected against agriculture . . .The nation has inadequate plans to deal with agricultural bioterrorism.

    NRC report on Countering Agricultural Bioterrorism (60)

    0066-4286/03/0901-0155$14.00 155

    Ann

    u. R

    ev. P

    hyto

    path

    ol. 2

    003.

    41:1

    55-1

    76. D

    ownl

    oade

    d fr

    om w

    ww

    .ann

    ualre

    view

    s.org

    by V

    irgin

    ia T

    ech

    Uni

    vers

    ity o

    n 04

    /12/

    12. F

    or p

    erso

    nal u

    se o

    nly.

    Food supply concerns, bioterrorism!

  • Microbes  ride  in  clouds,  catalyze  rain  

  • Coastal  flow  

    Yields  autocorrelaNon  Nmescale  of  about  6  –  9  hours  >>  10  min  sample  intervals  

    Auto-‐correlaNon  vs.  Nme-‐lag      

    Can  be  interpreted  as  microbial  ‘clouds’      with  coherence  scales  of  20  -‐  100  km  

  • Future  and  ongoing  work  •  Airborne  collecNons  may  encode  recent  atmospheric  mixing  events  

     

     

    1 2 3 4 5 6 7 8 9 10 110

    5

    10

    15

    20

    25

    30

    35

    40

    Flights F147−F157

    num

    ber o

    f spo

    res

    Fusarium spores collected, broken down by species (normalized to 15 minute sample flights)

    F. lateritiumF. equiseti−likeF. oxysporumF. graminearumF. sporotrichioidesF. fujikuroiF. equisetiF. babinda−like

     •  Consider  geodesic  theory  to  find  KAM-‐like  boundaries  which  can  transport  microbes