john t. snow college of geosciences the university of oklahoma

20
Inquiry in the National Science Education Standards: From Structured Exercises to Guided Learning Experiences to Open Ended Research John T. Snow College of Geosciences The University of Oklahoma

Upload: zasha

Post on 14-Jan-2016

15 views

Category:

Documents


0 download

DESCRIPTION

Inquiry in the National Science Education Standards: From Structured Exercises to Guided Learning Experiences to Open Ended Research. John T. Snow College of Geosciences The University of Oklahoma. National Research Council, 1996: National Science Education Standards. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: John T. Snow College of Geosciences The University of Oklahoma

Inquiry in theNational Science Education Standards:

From Structured Exercises to Guided Learning Experiences to

Open Ended Research

John T. Snow

College of Geosciences

The University of Oklahoma

Page 2: John T. Snow College of Geosciences The University of Oklahoma

National Research Council, 1996: National ScienceEducation Standards

National, not federal

A consensus document

Reform-oriented, idealistic

Controversial inquiry based

Elevates the Earth and Space Sciences to the same level as the Physical and Life Sciences

Page 3: John T. Snow College of Geosciences The University of Oklahoma

WHY DO WE WANT STUDENTS TO LEARN SCIENCE?

• To better appreciate the natural world and the events that occur within it -- requires knowledge and understanding

• To lay foundation for careers in the designed world of a modern technological society – may influence career choices; scientific understanding necessary to appreciate “how things work” in the modern world

• To contribute in an informed manner to personal, professional, and societal decisions -- requires development of “habits of mind”, skills, and experiences applicable to the formulation and solution of problems

Page 4: John T. Snow College of Geosciences The University of Oklahoma

… knows relevant parts of the accumulated body of knowledge about the natural world (what scientists know – content “facts”, theories, models);

… understands that science is a systematic method for exploring the natural world (how scientists have come to know what they know -- processes, methods, critical thinking; appreciation of risk and uncertainty); and

… applies the knowledge and processes of science to the solution of real-world problems (using a scientific approach to solving problems; arguing from data; estimating risk in decisions due to the uncertainty; appreciates and looks for unintended consequences)

WHAT IS THE DESIRED OUTCOME OF SCIENCE EDUCATION?

A scientifically literate individual who ...

Page 5: John T. Snow College of Geosciences The University of Oklahoma

What is “Inquiry”? Hard to define precisely, multiple meanings Elements of scientific inquiry informed, structured, empirical

Stating a problem in a testable fashion Designing an experiment; collection and critical analysis of data Reasoning and drawing conclusions from the data; conclusions placed in context of what was previously known Determining and stating uncertainty …

Pedagogical inquiry scientific inquiry + … Age appropriate Structured, guided to attain specific learning objectives

Page 6: John T. Snow College of Geosciences The University of Oklahoma

Can the National Science Education Standards be Implemented without using Inquiry in the Classroom?

Yes … … but most of the reform element is lost

See “Science as Inquiry” sections in NSESK-4 (p. 121)5-8 (p. 143)9-12 (p. 173)

Page 7: John T. Snow College of Geosciences The University of Oklahoma

Using Inquiry, How Should Science Be Taught?

Shift the focus of instructional activity from teaching to student learning

Curriculum and materials lay out a sequence of guided inquiries, presenting factual material only as needed; assessment tools focus on understanding of processes Role of the instructor shifts from presentation of rote material to leading/mentoring students through a series of rediscovery experiments

Page 8: John T. Snow College of Geosciences The University of Oklahoma

““Teaching is nothing more (and Teaching is nothing more (and nothing less) than a conscious nothing less) than a conscious attempt to structure experiences so attempt to structure experiences so that desired themes emerge out of that desired themes emerge out of guided manipulation of realistic guided manipulation of realistic data in compelling situations.”data in compelling situations.”

P.J. Gersmehl, 1995

Page 9: John T. Snow College of Geosciences The University of Oklahoma

Emphasize In-depth understanding of a relative few fundamental elements (balance of “processes” with “facts” less is indeed more) Quantitative problem solving Critical thinking, reasoning from data, and evaluating of new scientific findings Decision making in a scientific context Applying understandings to new situations (assessment)

Using Inquiry, How Should Science Be Taught?

Page 10: John T. Snow College of Geosciences The University of Oklahoma

Less is More““The test of a successful education is The test of a successful education is not the amount of knowledge that a not the amount of knowledge that a pupil takes away from a school, but his pupil takes away from a school, but his appetite to know and his capacity to appetite to know and his capacity to learn. If the school sends out children learn. If the school sends out children with the desire for knowledge and some with the desire for knowledge and some idea of how to acquire and use it, it will idea of how to acquire and use it, it will have done its work.”have done its work.”

Richard Livingstone, 1941Richard Livingstone, 1941

Page 11: John T. Snow College of Geosciences The University of Oklahoma

Impediments to Using Inquiry in TeachingLack of understanding/acceptance of

Less is More Time

Cannot approach “inquiry” as enrichment Curricula and supporting materials Teacher Preparation Traditional focus on grade-level, fact-based learning

Current national desire is to produce well-paid technicians, not scholars, scientists, or artists

Page 12: John T. Snow College of Geosciences The University of Oklahoma

Illustrative Examples from the NSES - Vignettes

Science Olympiad (p. 39)Musical Instruments (p. 47)The Insect and the Spider (p. 80)Weather (p. 130)Weather Instruments (p. 136)Pendulums (p. 148)Funny Water (p. 130)The Egg Drop (p. 162)Fossils (p. 182)Photosynthesis (p. 194)The Solar System (p. 215)

See also: Analysis of Scientific Inquiry (p. 202)

Page 13: John T. Snow College of Geosciences The University of Oklahoma

Further ExamplesYoung students (K – 4): structured exercises – collecting and classifying rocks, leaves, insects around a stream

Orient on hands-on work (collect both quantitative and qualitative data)

Middle School (5 – 8): guided learning experience – investigating a stream and it’s watershed

Emphasize interpretation and application of visual materials (maps, imagery, plots) – reasoning from dataCapstone ESS experience at grade 8?

High School (9 – 12): open-ended research project – stream water chemistry and relationship to underlying geology and land use in the watershed

Establish relevance of scientific knowledge and way of thinking to the lives of the students, now and in the future

Capstone ESS experience at grade 12?; possibility of building on physics, chemistry, biology

Page 14: John T. Snow College of Geosciences The University of Oklahoma

The Challenge

Devising inquiry based curricula and materials that in the available time communicate the essential content and skills required to meet the demands of standardized testing while providing valid research experiences

Page 15: John T. Snow College of Geosciences The University of Oklahoma

A Few Words About TechnologyUse technology to complement, supplement, and extend rather than simply replicate

Use technology only where it enhances student learning in the classroom, laboratory, and field Ingest, assimilation, analysis, and display of large spatial and/or temporal data sets Imagery to document events Interactive modeling of the Earth System

“systems thinking” problem solving“what if games” policy, strategy

Page 16: John T. Snow College of Geosciences The University of Oklahoma

A Few Recommendations Classroom, laboratory, and field activities should encourage active inquiry, and illuminate societal issues and the connections between scientific and non-scientific disciplines Place principles and problem-solving methods in the context of the local environment (rural, urban, …) Ensure that curriculum materials reflect the diversity of the population, locally, nationally, and globally

Page 17: John T. Snow College of Geosciences The University of Oklahoma

John T. Snow ([email protected])http://geosciences.ou.eduCollege of Geosciences

The University of OklahomaSarkeys Energy Center, Suite 710

100 E. Boyd StreetNorman, Oklahoma 73019 USA

Telephone: 405-325-3101FAX: 405-325-3148

Page 18: John T. Snow College of Geosciences The University of Oklahoma
Page 19: John T. Snow College of Geosciences The University of Oklahoma

• Formation, continuous co-evolution over deep time, present day structure

• Processing of energy through the system and recycling of material within the system

• Interactions and interconnections between geosphere, atmosphere, hydrosphere, and the biota

• Humanity as a element of the System

Key Concepts in the Earth and Space Sciences:

The Challenge: develop age-appropriate inquiry based exercises that foster in students an understanding of the components, evolution, and functioning of the Earth System

Page 20: John T. Snow College of Geosciences The University of Oklahoma

Charge to Material Developers and Curriculum Builders

Use Earth System Science as a unifying framework to demonstrate the interrelationships between all components of the Earth System and humankind Implement “best practices” to educate all constituencies, including groups currently under represented in science