johanw - all math explanations

Upload: chend13

Post on 02-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Johanw - All Math Explanations

    1/65

    Mathematics Formulary

    By ir. J.C.A. Wevers

  • 8/10/2019 Johanw - All Math Explanations

    2/65

    c 1999, 2008 J.C.A. Wevers Version: May 4, 2008

    Dear reader,

    This document contains 66 pages with mathematical equations intended for physicists and engineers. It is intended

    to be a short reference for anyone who often needs to look up mathematical equations.

    This document can also be obtained from the author, Johan Wevers ([email protected]).

    It can also be found on the WWW on http://www.xs4all.nl/johanw/index.html.

    This document is Copyright by J.C.A. Wevers. All rights reserved. Permission to use, copy and distribute this

    unmodified document by any means and for any purposeexcept profit purposesis hereby granted. Reproducing this

    document by any means, included, but not limited to, printing, copying existing prints, publishing by electronic or

    other means, implies full agreement to the above non-profit-use clause, unless upon explicit prior written permission

    of the author.

    The C code for the rootfinding via Newtons method and the FFT in chapter 8 are from Numerical Recipes in C,2nd Edition, ISBN 0-521-43108-5.

    The Mathematics Formulary is made with teTEX and LATEX version 2.09.

    If you prefer the notation in which vectors are typefaced in boldface, uncomment the redefinition of the \veccommand and recompile the file.

    If you find any errors or have any comments, please let me know. I am always open for suggestions and possible

    corrections to the mathematics formulary.

    Johan Wevers

  • 8/10/2019 Johanw - All Math Explanations

    3/65

    Contents

    Contents I

    1 Basics 1

    1.1 Goniometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.2 Hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.3 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    1.4 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.5 Complex numbers and quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.5.1 Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.5.2 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.6 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.6.1 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.6.2 Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.7 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.8 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.8.1 Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.8.2 Convergence and divergence of series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.8.3 Convergence and divergence of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    1.9 Products and quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.10 Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.11 P olynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.12 Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    2 Probability and statistics 9

    2.1 Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    2.2 Probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    2.3 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    2.3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    2.3.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    2.4 Regression analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    3 Calculus 12

    3.1 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    3.1.1 Arithmetic rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    3.1.2 Arc lengts, surfaces and volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.1.3 Separation of quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    3.1.4 Special functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    3.1.5 Goniometric integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    3.2 Functions with more variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    3.2.1 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    3.2.2 Taylor series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    3.2.3 Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    3.2.4 The -operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163.2.5 Integral theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    3.2.6 Multiple integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    3.2.7 Coordinate transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    3.3 Orthogonality of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    3.4 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    I

  • 8/10/2019 Johanw - All Math Explanations

    4/65

    II Mathematics Formulary door J.C.A. Wevers

    4 Differential equations 20

    4.1 Linear differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    4.1.1 First order linear DE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    4.1.2 Second order linear DE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    4.1.3 The Wronskian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    4.1.4 Power series substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    4.2 Some special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    4.2.1 Frobenius method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    4.2.2 Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    4.2.3 Legendres DE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    4.2.4 The associated Legendre equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    4.2.5 Solutions for Bessels equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    4.2.6 Properties of Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    4.2.7 Laguerres equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    4.2.8 The associated Laguerre equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    4.2.9 Hermite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244.2.10 Chebyshev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    4.2.11 Weber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    4.3 Non-linear differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    4.4 Sturm-Liouville equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    4.5 Linear partial differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    4.5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    4.5.2 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    4.5.3 Potential theory and Greens theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    5 Linear algebra 29

    5.1 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    5.2 Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295.3 Matrix calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    5.3.1 Basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    5.3.2 Matrix equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    5.4 Linear transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    5.5 Plane and line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    5.6 Coordinate transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    5.7 Eigen values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    5.8 Transformation types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    5.9 Homogeneous coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    5.10 Inner product spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    5.11 The Laplace transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    5.12 The convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375.13 Systems of linear differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    5.14 Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    5.14.1 Quadratic forms inIR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385.14.2 Quadratic surfaces inIR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    6 Complex function theory 39

    6.1 Functions of complex variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    6.2 Complex integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    6.2.1 Cauchys integral formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    6.2.2 Residue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    6.3 Analytical functions definied by series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    6.4 Laurent series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    6.5 Jordans theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

  • 8/10/2019 Johanw - All Math Explanations

    5/65

    Mathematics Formulary by J.C.A. Wevers III

    7 Tensor calculus 43

    7.1 Vectors and covectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    7.2 Tensor algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    7.3 Inner product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447.4 Tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    7.5 Symmetric and antisymmetric tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    7.6 Outer product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    7.7 The Hodge star operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    7.8 Differential operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    7.8.1 The directional derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    7.8.2 The Lie-derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    7.8.3 Christoffel symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    7.8.4 The covariant derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    7.9 Differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    7.10 Differential geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    7.10.1 Space curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487.10.2 Surfaces inIR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487.10.3 The first fundamental tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    7.10.4 The second fundamental tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    7.10.5 Geodetic curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    7.11 Riemannian geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    8 Numerical mathematics 51

    8.1 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    8.2 Floating point representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    8.3 Systems of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    8.3.1 Triangular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    8.3.2 Gauss elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    8.3.3 Pivot strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538.4 Roots of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    8.4.1 Successive substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    8.4.2 Local convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    8.4.3 Aitken extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    8.4.4 Newton iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    8.4.5 The secant method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    8.5 Polynomial interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    8.6 Definite integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    8.7 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    8.8 Differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    8.9 The fast Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

  • 8/10/2019 Johanw - All Math Explanations

    6/65

    IV Mathematics Formulary door J.C.A. Wevers

  • 8/10/2019 Johanw - All Math Explanations

    7/65

    Chapter 1

    Basics

    1.1 Goniometric functions

    For the goniometric ratios for a point p on the unit circle holds:

    cos() = xp , sin() =yp , tan() = ypxp

    sin2

    (x) + cos2

    (x) = 1andcos2

    (x) = 1 + tan2

    (x).cos(a b) = cos(a) cos(b) sin(a)sin(b) , sin(a b) = sin(a) cos(b) cos(a) sin(b)

    tan(a b) = tan(a) tan(b)1 tan(a) tan(b)

    Thesum formulasare:

    sin(p) + sin(q) = 2 sin( 12

    (p + q)) cos( 12

    (p q))sin(p) sin(q) = 2 cos( 1

    2(p + q)) sin( 1

    2(p q))

    cos(p) + cos(q) = 2 cos( 12 (p + q)) cos(12 (p q))

    cos(p) cos(q) = 2sin( 12 (p + q))sin( 12 (p q))

    From these equations can be derived that

    2cos2(x) = 1 + cos(2x) , 2sin2(x) = 1 cos(2x)sin( x) = sin(x) , cos( x) = cos(x)

    sin( 12 x) = cos(x) , cos( 12 x) = sin(x)Conclusions from equalities:

    sin(x) = sin(a) x= a 2k or x = ( a) 2k, kINcos(x) = cos(a) x= a 2k or x =a 2k

    tan(x) = tan(a) x= a k and x= 2 k

    The following relations exist between the inverse goniometric functions:

    arctan(x) = arcsin

    xx2 + 1

    = arccos

    1x2 + 1

    , sin(arccos(x)) =

    1 x2

    1.2 Hyperbolic functions

    The hyperbolic functions are defined by:

    sinh(x) =ex ex

    2 , cosh(x) =

    ex + ex

    2 , tanh(x) =

    sinh(x)

    cosh(x)

    From this follows thatcosh2(x) sinh2(x) = 1. Further holds:arsinh(x) = ln |x +x2 + 1| , arcosh(x) = arsinh(x2 1)

    1

  • 8/10/2019 Johanw - All Math Explanations

    8/65

    2 Mathematics Formulary by ir. J.C.A. Wevers

    1.3 Calculus

    The derivative of a function is defined as:

    df

    dx = lim

    h0

    f(x + h) f(x)h

    Derivatives obey the following algebraic rules:

    d(x y) = dx d y , d(xy) =xdy + ydx , d

    x

    y

    =

    ydx xdyy2

    For the derivative of the inverse function finv(y), defined byfinv(f(x)) = x, holds at pointP = (x, f(x)):dfinv(y)

    dy

    P

    df(x)

    dx

    P

    = 1

    Chain rule: iff=f(g(x)), then holdsdf

    dx=

    df

    dg

    dg

    dx

    Further, for the derivatives of products of functions holds:

    (f g)(n) =n

    k=0

    n

    k

    f(nk) g(k)

    For theprimitive functionF(x)holds:F(x) = f(x). An overview of derivatives and primitives is:

    y =f(x) dy/dx = f(x) f(x)dxaxn anxn1 a(n + 1)1xn+1

    1/x x2 ln |x|a 0 ax

    ax ax ln(a) ax/ ln(a)ex ex ex

    a log(x) (x ln(a))1 (x ln(x) x)/ ln(a)ln(x) 1/x x ln(x) xsin(x) cos(x) cos(x)cos(x) sin(x) sin(x)tan(x) cos2(x) ln | cos(x)|

    sin1(x) sin2(x)cos(x) ln | tan( 12

    x)|sinh(x) cosh(x) cosh(x)cosh(x) sinh(x) sinh(x)

    arcsin(x) 1/

    1 x2 x arcsin(x) + 1 x2arccos(x) 1/1 x2 x arccos(x) 1 x2arctan(x) (1 + x2)1 x arctan(x) 1

    2ln(1 + x2)

    (a + x2)1/2 x(a + x2)3/2 ln |x + a + x2|(a2 x2)1 2x(a2 + x2)2 1

    2aln |(a + x)/(a x)|

    Thecurvatureof a curve is given by: =(1 + (y)2)3/2

    |y|

    The theorem of De l Hopital: iff(a) = 0 andg(a) = 0, then is limxa

    f(x)

    g(x) = limxa

    f(x)

    g(x)

  • 8/10/2019 Johanw - All Math Explanations

    9/65

    Chapter 1: Basics 3

    1.4 Limits

    limx0

    sin(x)x

    = 1 , limx0

    ex 1x

    = 1 , limx0

    tan(x)x

    = 1 , limk0

    (1 + k)1/k = e , limx

    1 + n

    x

    x

    = en

    limx0

    xa ln(x) = 0 , limx

    lnp(x)

    xa = 0 , lim

    x0

    ln(x + a)

    x =a , lim

    x

    xp

    ax = 0 als |a|> 1.

    limx0

    a1/x 1

    = ln(a) , lim

    x0

    arcsin(x)

    x = 1 , lim

    x

    x

    x= 1

    1.5 Complex numbers and quaternions

    1.5.1 Complex numbers

    The complex numberz =a +biwitha and bIR. ais thereal part,b the imaginary partofz.|z|= a2 + b2.By definition holds: i2 =1. Every complex number can be written asz =|z| exp(i), withtan() =b/a. Thecomplex conjugateofz is defined asz = z :=a bi. Further holds:

    (a + bi)(c + di) = (ac bd) + i(ad + bc)(a + bi) + (c + di) = a + c + i(b + d)

    a + bi

    c + di =

    (ac + bd) + i(bc ad)c2 + d2

    Goniometric functions can be written as complex exponents:

    sin(x) = 1

    2i(eix eix)

    cos(x) = 1

    2(eix + eix)

    From this follows thatcos(ix) = cosh(x)andsin(ix) =i sinh(x). Further follows from this thateix = cos(x) i sin(x), so eiz = 0z. Also the theorem of De Moivre follows from this:(cos() + i sin())n = cos(n) + i sin(n).

    Products and quotients of complex numbers can be written as:

    z1

    z2 =

    |z1

    | |z2

    |(cos(1+ 2) + i sin(1+ 2))

    z1z2

    = |z1||z2| (cos(1 2) + i sin(1 2))

    The following can be derived:

    |z1+ z2| |z1| + |z2| , |z1 z2| | |z1| |z2| |

    And fromz = r exp(i) follows:ln(z) = ln(r) + i,ln(z) = ln(z) 2ni.

    1.5.2 Quaternions

    Quaternions are defined as: z = a +bi+cj + dk, witha, b, c, d

    IRand i2 = j2 = k2 =

    1. The products ofi,j,k with each other are given byij =ji = k,jk=kj =i andki =ik= j .

  • 8/10/2019 Johanw - All Math Explanations

    10/65

    4 Mathematics Formulary by ir. J.C.A. Wevers

    1.6 Geometry

    1.6.1 Triangles

    The sine rule is:

    a

    sin() =

    b

    sin()=

    c

    sin()

    Here, is the angle opposite to a, is opposite to b and opposite to c. The cosine rule is:a2 =b2+c22bc cos().For each triangle holds: + + = 180.

    Further holds:

    tan( 12 ( + ))

    tan( 12 ( ))=

    a + b

    a b

    The surface of a triangle is given by 12 ab sin() = 12 aha =

    s(s a)(s b)(s c)withha the perpendicular onaands= 1

    2(a + b + c).

    1.6.2 Curves

    Cycloid: if a circle with radiusa rolls along a straight line, the trajectory of a point on this circle has the followingparameter equation:

    x= a(t + sin(t)) , y= a(1 + cos(t))

    Epicycloid: if a small circle with radius a rolls along a big circle with radius R, the trajectory of a point on the smallcircle has the following parameter equation:

    x= a sin

    R+ a

    a t

    + (R+ a)sin(t) , y= a cos

    R+ a

    a t

    + (R+ a) cos(t)

    Hypocycloid: if a small circle with radius a rolls inside a big circle with radius R, the trajectory of a point on thesmall circle has the following parameter equation:

    x= a sin

    R a

    a t

    + (R a) sin(t) , y =a cos

    R a

    a t

    + (R a) cos(t)

    A hypocycloid with a = R is called a cardioid. It has the following parameterequation in polar coordinates:r= 2a[1 cos()].

    1.7 Vectors

    Theinner productis defined by:a b=i

    aibi =|a | |b | cos()

    where is the angle between aand b. Theexternal productis inIR3 defined by:

    a b= aybz azbyazbx axbz

    axby aybx

    =

    ex ey ezax ay azbx by bz

    Further holds:|a b |=|a | |b | sin(), and a (b c ) = (a c )b (a b )c.

  • 8/10/2019 Johanw - All Math Explanations

    11/65

    Chapter 1: Basics 5

    1.8 Series

    1.8.1 Expansion

    The Binomium of Newton is:

    (a + b)n =

    nk=0

    n

    k

    ankbk

    where

    n

    k

    :=

    n!

    k!(n k)! .

    By subtracting the seriesn

    k=0

    rk andrn

    k=0

    rk one finds:

    n

    k=0rk =

    1 rn+11

    r

    and for |r|< 1 this gives thegeometric series:k=0

    rk = 1

    1 r .

    Thearithmetic seriesis given by:

    Nn=0

    (a + nV) =a(N+ 1) + 12

    N(N+ 1)V.

    The expansion of a function around the pointa is given by the Taylor series:

    f(x) = f(a) + (x a)f(a) +(x a)2

    2 f(a) + +(x a)

    n

    n! f(n)(a) + R

    where the remainder is given by:

    Rn(h) = (1 )nhnn!

    f(n+1)(h)

    and is subject to:mhn+1

    (n + 1)!Rn(h) Mh

    n+1

    (n + 1)!

    From this one can deduce that

    (1 x) =n=0

    n

    xn

    One can derive that:

    n=11

    n2 =

    2

    6 ,

    n=11

    n4 =

    4

    90 ,

    n=11

    n6 =

    6

    945

    nk=1

    k2 = 16

    n(n + 1)(2n + 1),n=1

    (1)n+1n2

    =2

    12 ,

    n=1

    (1)n+1n

    = ln(2)

    n=1

    1

    4n2 1= 12 ,

    n=1

    1

    (2n 1)2 = 2

    8 ,

    n=1

    1

    (2n 1)4 = 4

    96 ,

    n=1

    (1)n+1(2n 1)3 =

    3

    32

    1.8.2 Convergence and divergence of series

    Ifn

    |un| converges,n

    un also converges.

    If limn

    un= 0 thenn un is divergent.An alternating series of which the absolute values of the terms drop monotonously to 0 is convergent (Leibniz).

  • 8/10/2019 Johanw - All Math Explanations

    12/65

    6 Mathematics Formulary by ir. J.C.A. Wevers

    Ifp

    f(x)dx 0

    nthen isn

    un

    convergentifn

    ln(un

    + 1) is convergent.

    Ifun = cnxn the radius of convergenceof

    n

    un is given by: 1

    = lim

    n

    n

    |cn|= limn

    cn+1cn.

    The series

    n=1

    1

    npis convergent ifp >1 and divergent ifp1.

    If: limn

    unvn

    =p, than the following is true: ifp >0 thann

    un andn

    vnare both divergent or both convergent, if

    p= 0holds: ifn

    vn is convergent, thann

    un is also convergent.

    IfL is defined by: L= limnn|nn|, or by: L= limn un+1un , then is n un divergent ifL >1 and convergent if

    L < 1.

    1.8.3 Convergence and divergence of functions

    f(x)is continuous inx = a only if the upper - and lower limit are equal: limxa

    f(x) = limxa

    f(x). This is written as:

    f(a) =f(a+).

    Iff(x)is continuous inaand:limxa

    f(x) = limxa

    f(x),thanf(x)is differentiable inx = a.

    We define:fW := sup(|f(x)| |x W), and limx

    fn(x) = f(x). Than holds:{fn} is uniform convergent iflimn

    fn f= 0, or:( >0)(N)(nN)fn f< .

    Weierstrass test: if unWis convergent, than un is uniform convergent.

    We defineS(x) =

    n=N

    un(x)andF(y) =

    ba

    f(x, y)dx:= F. Than it can be proved that:

    Theorem For Demands onW Than holds onW

    rows fncontinuous, fis continuous{fn} uniform convergent

    C series S(x)uniform convergent, Sis continuous

    un continuousintegral fis continuous F is continuousrows fncan be integrated, fn can be integrated,

    {fn} uniform convergent

    f(x)dx= limn

    fndx

    I series S(x)is uniform convergent, Scan be integrated,

    Sdx =

    undxun can be integrated

    integral fis continuous

    F dy=

    f(x, y)dxdy

    rows {fn} C1; {fn} unif.conv f =(x)D series unC1;

    un conv;

    un u.c. S

    (x) =

    un(x)

    integral f/ycontinuous Fy =

    fy(x, y)dx

  • 8/10/2019 Johanw - All Math Explanations

    13/65

    Chapter 1: Basics 7

    1.9 Products and quotients

    Fora, b, c, d

    IRholds:

    Thedistributive property:(a + b)(c + d) =ac + ad + bc + bdTheassociative property:a(bc) = b(ac) = c(ab)anda(b + c) = ab + acThecommutative property:a + b= b + a,ab = ba.

    Further holds:

    a2n b2na b =a

    2n1 a2n2b + a2n3b2 b2n1 , a2n+1 b2n+1

    a + b =

    nk=0

    a2nkb2k

    (a b)(a2 ab + b2) = a3 b3 , (a + b)(a b) = a2 + b2 , a3 b3a + b

    =a2 ba + b2

    1.10 LogarithmsDefinition: a log(x) =bab =x. For logarithms with basee one writesln(x).Rules:log(xn) = n log(x),log(a) + log(b) = log(ab),log(a) log(b) = log(a/b).

    1.11 Polynomials

    Equations of the typen

    k=0

    akxk = 0

    haven roots which may be equal to each other. Each polynomial p(z)of ordern1 has at least one root in C. Ifallak IRholds: whenx = p withpCa root, thanp is also a root. Polynomials up to and including order 4have a general analytical solution, for polynomials with order 5 there does not exist a general analytical solution.Fora, b, cIRanda= 0holds: the 2nd order equationax2 + bx + c= 0has the general solution:

    x=b b2 4ac

    2a

    Fora, b, c, d IR and a= 0 holds: the 3rd order equation ax3 +bx2 +cx + d = 0 has the general analyticalsolution:

    x1 = K3ac b2

    9a2K b

    3a

    x2= x3 =

    K

    2 +

    3ac b218a2K

    b3a

    + i3

    2

    K+

    3ac b29a2K

    withK=

    9abc 27da2 2b3

    54a3 +

    3

    4ac3 c2b2 18abcd + 27a2d2 + 4db318a2

    1/3

    1.12 Primes

    Aprimeis a number INthat can only be divided by itself and 1. There are an infinite number of primes. Proof:suppose that the collection of primes P would be finite, than construct the number q = 1 +

    pP

    p, than holds

    q= 1(p)and soQcannot be written as a product of primes from P. This is a contradiction.

  • 8/10/2019 Johanw - All Math Explanations

    14/65

    8 Mathematics Formulary by ir. J.C.A. Wevers

    If(x)is the number of primes x, than holds:

    limx

    (x)

    x/ ln(x) = 1 and

    limx

    (x)

    x2

    dtln(t)

    = 1

    For eachN2 there is a prime betweenNand2N.The numbersFk := 2

    k + 1withkINare calledFermat numbers. Many Fermat numbers are prime.The numbersMk := 2k 1 are called Mersenne numbers. They occur when one searches forperfect numbers,which are numbers n IN which are the sum of their different dividers, for example 6 = 1 + 2 + 3. Thereare 23 Mersenne numbers fork < 12000which are prime: fork {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521,607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213}.To check if a given number n is prime one can use a sieve method. The first known sieve method was developed byEratosthenes. A faster method for large numbers are the 4 Fermat tests, who dont prove that a number is prime but

    give a large probability.

    1. Take the first 4 primes:b ={2, 3, 5, 7},2. Takew(b) =bn1 modn, for eachb,

    3. Ifw = 1for eachb, thenn is probably prime. For each other value ofw,n is certainly not prime.

  • 8/10/2019 Johanw - All Math Explanations

    15/65

    Chapter 2

    Probability and statistics

    2.1 Combinations

    The number of possiblecombinationsofk elements fromn elements is given byn

    k

    =

    n!

    k!(n k)!The number ofpermutationsofp fromn is given by

    n!

    (n p)! =p!

    n

    p

    The number of different ways to classifyni elements inigroups, when the total number of elements is N, is

    N!i

    ni!

    2.2 Probability theory

    The probabilityP(A)that an eventAoccurs is defined by:

    P(A) = n(A)

    n(U)

    wheren(A)is the number of events whenA occurs andn(U)the total number of events.

    The probabilityP(A) that A does notoccur is: P(A) = 1P(A). The probabilityP(AB) that A andB both occur is given by: P(AB) = P(A) + P(B)P(AB). IfA andB are independent, than holds:P(A B) = P(A) P(B).The probabilityP(A|B)thatAoccurs, given the fact thatB occurs, is:

    P(A|B) = P(A B)P(B)

    2.3 Statistics

    2.3.1 General

    The average or mean valuex of a collection of values is: x =i xi/n. The standard deviation x in thedistribution ofx is given by:

    x =

    ni=1

    (xi x)2

    n

    When samples are being used the sample variance s is given bys2 = nn 1 2.

    9

  • 8/10/2019 Johanw - All Math Explanations

    16/65

    10 Mathematics Formulary by ir. J.C.A. Wevers

    Thecovariancexy ofx andy is given by::

    xy =

    ni=1(xi x)(yi y)

    n 1Thecorrelation coefficientrxy ofx andy than becomes:rxy =xy/xy.

    The standard deviation in a variablef(x, y)resulting from errors inx andy is:

    2f(x,y)=

    f

    xx

    2+

    f

    yy

    2+

    f

    x

    f

    yxy

    2.3.2 Distributions

    1. The Binomial distribution is the distribution describing a sampling with replacement. The probability for

    success isp. The probabilityP fork successes inn trials is then given by:

    P(x= k) =

    n

    k

    pk(1 p)nk

    The standard deviation is given byx =

    np(1 p)and the expectation value is = np.2. The Hypergeometric distributionis the distribution describing a sampling without replacement in which the

    order is irrelevant. The probability fork successes in a trial withApossible successes andB possible failuresis then given by:

    P(x= k) =

    A

    k

    B

    n k

    A + B

    n

    The expectation value is given by = nA/(A + B).

    3. The Poisson distribution is a limiting case of the binomial distribution when p 0, n and alsonp= is constant.

    P(x) = xe

    x!

    This distribution is normalized to

    x=0

    P(x) = 1.

    4. The Normal distributionis a limiting case of the binomial distribution for continuous variables:

    P(x) = 1

    2exp

    1

    2

    x x

    2

    5. The Uniform distributionoccurs when a random number x is taken from the setaxb and is given by:

    P(x) = 1

    b a if axb

    P(x) = 0 in all other cases

    x= 12 (b a)and2 = (b a)2

    12 .

  • 8/10/2019 Johanw - All Math Explanations

    17/65

    Chapter 2: Probability and statistics 11

    6. The Gamma distributionis given by:

    P(x) = x1ex/()

    if 0

    y

    with >0 and >0. The distribution has the following properties:x= ,2 =2.7. The Beta distributionis given by:

    P(x) =

    x1(1 x)1(, )

    if 0x1

    P(x) = 0 everywhere else

    and has the following properties:x= +

    ,2 =

    ( + )2( + + 1).

    ForP(2

    )holds: = V /2and= 2.8. The Weibull distributionis given by:

    P(x) =

    x1ex

    if 0x >0

    P(x) = 0 in all other cases

    The average is x= 1/(( + 1))9. For atwo-dimensional distributionholds:

    P1(x1) =

    P(x1, x2)dx2 , P2(x2) =

    P(x1, x2)dx1

    with

    (g(x1, x2)) =

    g(x1, x2)P(x1, x2)dx1dx2=

    x1

    x2

    g P

    2.4 Regression analyses

    When there exists a relation between the quantitiesx and y of the formy =ax +b and there is a measured setxiwith relatedyi, the following relation holds for aandb withx= (x1, x2,...,xn)and e= (1, 1,..., 1):

    y ax be< x, e >

    From this follows that the inner products are 0:

    (y, x ) a(x, x ) b(e, x ) = 0(y, e ) a(x, e ) b(e, e ) = 0

    with(x, x ) =i

    x2i ,(x, y ) =i

    xiyi,(x, e ) =i

    xi and (e, e ) =n.a andbfollow from this.

    A similar method works for higher order polynomial fits: for a second order fit holds:

    y a x2 bx ce< x2, x, e >

    with x2 = (x21,...,x2n).

    Thecorrelation coefficientr is a measure for the quality of a fit. In case of linear regression it is given by:

    r= n

    xy

    x

    y

    (n

    x2

    ( x)2)(n y2 ( y)2)

  • 8/10/2019 Johanw - All Math Explanations

    18/65

    Chapter 3

    Calculus

    3.1 Integrals

    3.1.1 Arithmetic rules

    The primitive functionF(x)off(x)obeys the rule F(x) =f(x). WithF(x)the primitive off(x) holds for thedefinite integral

    ba

    f(x)dx= F(b) F(a)

    Ifu = f(x)holds:b

    a

    g(f(x))df(x) =

    f(b)f(a)

    g(u)du

    Partial integration: withF andG the primitives offandg holds: f(x) g(x)dx= f(x)G(x)

    G(x)

    df(x)

    dx dx

    A derivative can be brought under the intergral sign (see section 1.8.3 for the required conditions):

    d

    dy

    x=h(y)x=g(y)

    f(x, y)dx

    =

    x=h(y)x=g(y)

    f(x, y)

    y dx f(g(y), y) dg(y)

    dy + f(h(y), y)

    dh(y)

    dy

    3.1.2 Arc lengts, surfaces and volumes

    The arc length of a curvey(x)is given by:

    =

    1 +

    dy(x)

    dx

    2dx

    The arc length of a parameter curveF(x(t))is:

    =

    F ds=

    F(x(t))|x(t)|dt

    with

    t=dx

    ds =

    x(t)

    |x(t)| , |t |= 1

    (v, t)ds=

    (v, t(t))dt=

    (v1dx + v2dy+ v3dz)

    The surfaceAof a solid of revolution is:

    A= 2

    y

    1 +dy(x)

    dx2

    dx

    12

  • 8/10/2019 Johanw - All Math Explanations

    19/65

    Chapter 3: Calculus 13

    The volumeVof a solid of revolution is:

    V =

    f2(x)dx

    3.1.3 Separation of quotients

    Every rational function P(x)/Q(x) where P and Q are polynomials can be written as a linear combination offunctions of the type(x a)k withkZZ, and of functions of the type

    px + q

    ((x a)2 + b2)nwithb >0 andnIN. So:

    p(x)

    (x a)n =n

    k=1

    Ak(x a)k ,

    p(x)

    ((x b)2 + c2)n =n

    k=1

    Akx + B

    ((x b)2 + c2)k

    Recurrent relation: forn

    = 0 holds:

    dx

    (x2 + 1)n+1 =

    1

    2n

    x

    (x2 + 1)n+

    2n 12n

    dx

    (x2 + 1)n

    3.1.4 Special functions

    Elliptic functions

    Elliptic functions can be written as a power series as follows:1 k2 sin2(x) = 1

    n=1

    (2n 1)!!(2n)!!(2n 1) k

    2n sin2n(x)

    11 k2 sin2(x) = 1 +

    n=1

    (2n

    1)!!

    (2n)!! k2n

    sin2n

    (x)

    withn!! =n(n 2)!!.

    The Gamma function

    The gamma function(y)is defined by:

    (y) =

    0

    exxy1dx

    One can derive that(y+ 1) = y(y) = y!. This is a way to define faculties for non-integers. Further one canderive that

    (n + 12

    ) = 2n

    (2n 1)!! and (n)(y) =

    0

    exxy1 lnn(x)dx

    The Beta function

    The betafunction(p, q)is defined by:

    (p, q) =

    10

    xp1(1 x)q1dx

    withp andq >0. The beta and gamma functions are related by the following equation:

    (p, q) =

    (p)(q)

    (p + q)

  • 8/10/2019 Johanw - All Math Explanations

    20/65

    14 Mathematics Formulary by ir. J.C.A. Wevers

    The Delta function

    The delta function(x)is an infinitely thin peak function with surface 1. It can be defined by:

    (x) = lim0

    P(, x) with P(, x) =

    0 for |x|>

    1

    2 when |x|<

    Some properties are:

    (x)dx= 1 ,

    F(x)(x)dx= F(0)

    3.1.5 Goniometric integrals

    When solving goniometric integrals it can be useful to change variables. The following holds if one defines

    tan( 12 x) := t:

    dx= 2dt

    1 + t2 , cos(x) =

    1 t21 + t2

    , sin(x) = 2t

    1 + t2

    Each integral of the type

    R(x,

    ax2 + bx + c)dx can be converted into one of the types that were treated insection 3.1.3. After this conversion one can substitute in the integrals of the type:

    R(x,

    x2 + 1)dx : x= tan(), dx= d

    cos() of

    x2 + 1 =t + x R(x,

    1 x2)dx : x= sin(), dx= cos()d of

    1 x2 = 1 tx

    R(x,x2 1)dx : x= 1

    cos()

    , dx= sin()

    cos2

    ()

    d of x2 1 =x tThese definite integrals are easily solved:

    /20

    cosn(x)sinm(x)dx= (n 1)!!(m 1)!!

    (m + n)!!

    /2 whenm andn are both even1 in all other cases

    Some important integrals are:

    0

    xdx

    eax + 1=

    2

    12a2 ,

    x2dx

    (ex + 1)2 =

    2

    3 ,

    0

    x3dx

    ex + 1=

    4

    15

    3.2 Functions with more variables

    3.2.1 Derivatives

    Thepartial derivativewith respect toxof a functionf(x, y)is defined by:f

    x

    x0

    = limh0

    f(x0+ h, y0) f(x0, y0)h

    Thedirectional derivativein the direction of is defined by:

    f

    = limr0

    f(x0

    + r cos(), y0

    + r sin())

    f(x0

    , y0

    )

    r = (f, (sin , cos )) =f

    v

    |v|

  • 8/10/2019 Johanw - All Math Explanations

    21/65

    Chapter 3: Calculus 15

    When one changes to coordinatesf(x(u, v), y(u, v))holds:

    f

    u =

    f

    x

    x

    u +

    f

    y

    y

    u

    Ifx(t)andy(t)depend only on one parametert holds:

    f

    t =

    f

    x

    dx

    dt +

    f

    y

    dy

    dt

    Thetotal differentialdfof a function of 3 variables is given by:

    df= f

    xdx +

    f

    ydy+

    f

    zdz

    So df

    dx =

    f

    x+

    f

    y

    dy

    dx+

    f

    z

    dz

    dx

    Thetangentin pointx0at the surfacef(x, y) = 0is given by the equation fx(x0)(x x0) + fy(x0)(y y0) = 0.Thetangent planeinx0 is given by: fx(x0)(x x0) + fy(x0)(y y0) = z f(x0).

    3.2.2 Taylor series

    A function of two variables can be expanded as follows in a Taylor series:

    f(x0+ h, y0+ k) =

    np=0

    1p!

    h

    p

    xp + k

    p

    yp

    f(x0, y0) + R(n)

    withR(n)the residual error and

    h

    p

    xp+ k

    p

    yp

    f(a, b) =

    pm=0

    p

    m

    hmkpm

    pf(a, b)

    xmypm

    3.2.3 Extrema

    Whenfis continuous on a compact boundary Vthere exists a global maximum and a global minumum for f on

    this boundary. A boundary is called compact if it is limited and closed.

    Possible extrema off(x, y)on a boundaryVIR2 are:

    1. Points onV wheref(x, y)is not differentiable,

    2. Points wheref = 0,

    3. If the boundaryV is given by(x, y) = 0, than all points where f(x, y) + (x, y) = 0are possible forextrema. This is the multiplicator method of Lagrange, is called a multiplicator.

    The same as inIR2 holds inIR3 when the area to be searched is constrained by a compact V, andVis defined by1(x,y,z) = 0and 2(x,y,z) = 0 for extrema off(x,y,z)for points (1) and (2). Point (3) is rewritten as follows:

    possible extrema are points where f(x,y,z) + 1 1(x,y,z) + 2 2(x,y,z) = 0.

  • 8/10/2019 Johanw - All Math Explanations

    22/65

    16 Mathematics Formulary by ir. J.C.A. Wevers

    3.2.4 The -operatorIn cartesian coordinates(x,y,z)holds:

    = x

    ex+

    yey+

    zez

    gradf = f

    xex+

    f

    yey+

    f

    zez

    div a = ax

    x +

    ayy

    +az

    z

    curl a =

    azy

    ayz

    ex+

    axz

    azx

    ey+

    ayx

    axy

    ez

    2f = 2f

    x2+

    2f

    y 2 +

    2f

    z 2

    In cylindrical coordinates(r,,z)holds:

    = r

    er+1

    r

    e+

    zez

    gradf = f

    rer+

    1

    r

    f

    e+

    f

    zez

    div a = ar

    r +

    arr

    +1

    r

    a

    + az

    z

    curl a =

    1

    r

    az

    az

    er+

    arz

    azr

    e+

    ar

    +a

    r 1

    r

    ar

    ez

    2f =

    2f

    r 2 +

    1

    r

    f

    r +

    1

    r22f

    2+

    2f

    z 2

    In spherical coordinates(r,,)holds:

    = r

    er+1

    r

    e+

    1

    r sin

    e

    gradf = f

    rer+

    1

    r

    f

    e+

    1

    r sin

    f

    e

    div a = ar

    r +

    2arr

    +1

    r

    a

    + ar tan

    + 1

    r sin

    a

    curl a =

    1

    r

    a

    + ar tan

    1r sin

    a

    er+

    1

    r sin

    ar

    ar

    ar

    e+

    ar + a

    r 1r ar

    e

    2f = 2f

    r2 +

    2

    r

    f

    r +

    1

    r22f

    2 +

    1

    r2 tan

    f

    +

    1

    r2 sin2

    2f

    2

    General orthonormal curvilinear coordinates(u,v,w)can be derived from cartesian coordinates by the transforma-tionx= x(u,v,w). The unit vectors are given by:

    eu= 1

    h1

    x

    u, ev =

    1

    h2

    x

    v , ew =

    1

    h3

    x

    w

    where the termshi give normalization to length 1. The differential operators are than given by:

    gradf = 1h1fu e

    u+ 1h2fv e

    v+ 1h3fw e

    w

  • 8/10/2019 Johanw - All Math Explanations

    23/65

    Chapter 3: Calculus 17

    div a = 1

    h1h2h3

    u(h2h3au) +

    v(h3h1av) +

    w(h1h2aw)

    curl a = 1

    h2h3(h3aw)

    v (h2av)

    w

    eu+ 1

    h3h1(h1au)

    w (h3aw)

    u

    ev+

    1

    h1h2

    (h2av)

    u (h1au)

    v

    ew

    2f = 1h1h2h3

    u

    h2h3

    h1

    f

    u

    +

    v

    h3h1

    h2

    f

    v

    +

    w

    h1h2

    h3

    f

    w

    Some properties of the -operator are:

    div(v) =divv+ grad v curl(v) =curlv+ (grad) v curl grad= 0div(u v) = v (curlu) u (curlv) curl curlv= grad divv 2v div curlv= 0div grad=2 2v(2v1, 2v2, 2v3)

    Here, v is an arbitrary vectorfield and an arbitrary scalar field.

    3.2.5 Integral theorems

    Some important integral theorems are:

    Gauss:

    (v n)d2A=

    (divv )d3V

    Stokes for a scalar field:

    ( et)ds=

    (n grad)d2A

    Stokes for a vector field: (v et)ds= (curlv n)d2A

    this gives:

    (curlv n)d2A= 0

    Ostrogradsky:

    (n v )d2A=

    (curlv )d3A

    (n )d2A=

    (grad)d3V

    Here the orientable surface

    d2Ais bounded by the Jordan curves(t).

    3.2.6 Multiple integrals

    LetA be a closed curve given by f(x, y) = 0, than the surfaceAinside the curve inIR2 is given by

    A=

    d2A=

    dxdy

    Let the surfaceA be defined by the function z = f(x, y). The volumeV bounded byA and thexy plane is thangiven by:

    V =

    f(x, y)dxdy

    The volume inside a closed surface defined byz = f(x, y)is given by:

    V =

    d3

    V =

    f(x, y)dxdy =

    dxdydz

  • 8/10/2019 Johanw - All Math Explanations

    24/65

    18 Mathematics Formulary by ir. J.C.A. Wevers

    3.2.7 Coordinate transformations

    The expressionsd2A and d3Vtransform as follows when one changes coordinates to u = (u,v,w) through the

    transformationx(u,v,w):

    V =

    f(x,y,z)dxdydz=

    f(x(u))

    xu dudvdw

    InIR2 holds:x

    u =

    xu xvyu yv

    Let the surfaceAbe defined byz = F(x, y) =X(u, v). Than the volume bounded by the xy plane andFis givenby:

    S

    f(x)d2A=

    G

    f(x(u))

    X

    u X

    v

    dudv=

    G

    f(x,y,F(x, y))

    1 + xF2 + yF2dxdy

    3.3 Orthogonality of functions

    The inner product of two functionsf(x)andg(x)on the interval[a, b]is given by:

    (f, g) =

    ba

    f(x)g(x)dx

    or, when using a weight functionp(x), by:

    (f, g) =

    b

    a

    p(x)f(x)g(x)dx

    Thenorm f follows from:f2 = (f, f). A set functionsfi is orthonormalif(fi, fj) =ij .Each functionf(x)can be written as a sum of orthogonal functions:

    f(x) =

    i=0

    cigi(x)

    and

    c2i f2. Let the setgi be orthogonal, than it follows:

    ci = f, gi(gi, gi)

    3.4 Fourier series

    Each function can be written as a sum of independent base functions. When one chooses the orthogonal basis

    (cos(nx), sin(nx))we have a Fourier series.

    A periodical functionf(x)with period2Lcan be written as:

    f(x) = a0+n=1

    ancos

    nxL

    + bnsin

    nxL

    Due to the orthogonality follows for the coefficients:

    a0= 1

    2L

    L

    L

    f(t)d t , an = 1

    L

    L

    L

    f(t)cosntL d t , bn = 1

    L

    L

    L

    f(t)sinntL dt

  • 8/10/2019 Johanw - All Math Explanations

    25/65

    Chapter 3: Calculus 19

    A Fourier series can also be written as a sum of complex exponents:

    f(x) =

    n=

    cneinx

    with

    cn = 1

    2

    f(x)einxdx

    TheFourier transformof a functionf(x)gives the transformed function f():

    f() = 1

    2

    f(x)eixdx

    The inverse transformation is given by:

    1

    2

    f(x+) + f(x)

    =

    12

    f()eixd

    wheref(x+)andf(x)are defined by the lower - and upper limit:

    f(a) = limxa

    f(x) , f(a+) = limxa

    f(x)

    For continuous functions is 12[f(x

    +) + f(x)] =f(x).

  • 8/10/2019 Johanw - All Math Explanations

    26/65

    Chapter 4

    Differential equations

    4.1 Linear differential equations

    4.1.1 First order linear DE

    The general solution of a linear differential equation is given by yA = yH+ yP, whereyH is the solution of thehomogeneous equationandyPis aparticular solution.

    A first order differential equation is given by: y(x) +a(x)y(x) = b(x). Its homogeneous equation is y (x) +a(x)y(x) = 0.

    The solution of the homogeneous equation is given by

    yH= k exp

    a(x)dx

    Suppose thata(x) = a =constant.

    Substitution ofexp(x)in the homogeneous equation leads to the characteristic equation + a= 0 =a.Supposeb(x) = exp(x). Than one can distinguish two cases:

    1. =

    : a particular solution is:yP= exp(x)

    2. = : a particular solution is: yP= x exp(x)

    When a DE is solved byvariation of parameters one writes: yP(x) = yH(x)f(x), and than one solvesf(x)fromthis.

    4.1.2 Second order linear DE

    A differential equation of the second order with constant coefficients is given by: y (x) +ay(x) +by(x) =c(x).Ifc(x) =c =constant there exists a particular solution yP = c/b.

    Substitution ofy = exp(x)leads to the characteristic equation 2 + a + b= 0.

    There are now 2 possibilities:

    1. 1=2: thanyH = exp(1x) + exp(2x).2. 1= 2= : thanyH= ( + x) exp(x).

    Ifc(x) =p(x) exp(x)wherep(x)is a polynomial there are 3 possibilities:

    1. 1, 2=:yP= q(x)exp(x).2. 1= , 2=:yP= xq(x) exp(x).3. 1= 2= :yP= x2q(x)exp(x).

    whereq(x)is a polynomial of the same order as p(x).

    When:y (x) + 2y(x) = f(x)andy(0) =y (0) = 0 follows:y(x) =

    x0

    f(x)sin((x t))dt.

    20

  • 8/10/2019 Johanw - All Math Explanations

    27/65

    Chapter 4: Differential equations 21

    4.1.3 The Wronskian

    We start with the LDEy(x) +p(x)y(x) + q(x)y(x) = 0and the two initial conditionsy(x0) = K0and y(x0) =

    K1. Whenp(x)andq(x)are continuous on the open interval Ithere exists a unique solutiony(x)on this interval.

    The general solution can than be written as y(x) = c1y1(x) + c2y2(x)andy1and y2 are linear independent. Theseare alsoall solutions of the LDE.

    TheWronskianis defined by:

    W(y1, y2) =

    y1 y2y1 y2 =y1y2 y2y1

    y1 and y2are linear independent if and only if on the interval Iwhen x0Iso that holds:W(y1(x0), y2(x0)) = 0.

    4.1.4 Power series substitution

    When a seriesy =

    anxn is substituted in the LDE with constant coefficientsy (x) +py(x) +qy(x) = 0this

    leads to: n

    n(n 1)anxn2 +pnanxn1 + qanxn

    = 0

    Setting coefficients for equal powers ofxequal gives:

    (n + 2)(n + 1)an+2+p(n + 1)an+1+ qan = 0

    This gives a general relation between the coefficients. Special cases aren= 0, 1, 2.

    4.2 Some special cases

    4.2.1 Frobenius method

    Given the LDE

    d2y(x)

    dx2 +

    b(x)

    x

    dy(x)

    dx +

    c(x)

    x2 y(x) = 0

    withb(x)andc(x)analytical atx = 0. This LDE has at least one solution of the form

    yi(x) =xri

    n=0

    anxn with i= 1, 2

    withr real or complex and chosen so thata0= 0. When one expandsb(x)andc(x)asb(x) =b0+ b1x + b2x2 + ...andc(x) = c0+ c1x + c2x

    2 + ..., it follows forr:

    r2 + (b0 1)r+ c0= 0

    There are now 3 possibilities:

    1. r1= r2: thany(x) = y1(x) ln |x| + y2(x).

    2. r1 r2IN: thany(x) = ky1(x) ln |x| + y2(x).

    3. r1 r2=ZZ: thany(x) = y1(x) + y2(x).

  • 8/10/2019 Johanw - All Math Explanations

    28/65

    22 Mathematics Formulary by ir. J.C.A. Wevers

    4.2.2 Euler

    Given the LDE

    x2 d

    2

    y(x)dx2 + ax dy(x)dx + by(x) = 0

    Substitution ofy(x) =xr gives an equation for r:r 2 + (a 1)r+ b= 0. From this one gets two solutionsr1 andr2. There are now 2 possibilities:

    1. r1=r2: thany(x) = C1xr1 + C2xr2 .2. r1= r2= r: thany(x) = (C1ln(x) + C2)x

    r .

    4.2.3 Legendres DE

    Given the LDE

    (1 x2) d2y(x)

    dx2 2x dy(x)

    dx + n(n 1)y(x) = 0

    The solutions of this equation are given byy(x) = aPn(x) +by2(x) where the Legendre polynomialsP(x) aredefined by:

    Pn(x) = dn

    dxn

    (1 x2)n

    2nn!

    For these holds:Pn2 = 2/(2n + 1).

    4.2.4 The associated Legendre equation

    This equation follows from the-dependent part of the wave equation 2 = 0by substitution of= cos(). Than follows:

    (1 2

    )

    d

    d

    (1 2

    )

    dP()

    d

    + [C(1 2

    ) m2

    ]P() = 0

    Regular solutions exists only ifC= l(l+ 1). They are of the form:

    P|m|l () = (1 2)m/2

    d|m|P0()

    d|m| =

    (1 2)|m|/22ll!

    d|m|+l

    d|m|+l(2 1)l

    For |m|> lis P|m|l () = 0. Some properties ofP0l ()zijn:1

    1

    P0l ()P0l()d=

    2

    2l+ 1ll ,

    l=0

    P0l ()tl =

    11 2t + t2

    This polynomial can be written as:

    P0l () = 1

    0

    (+

    2 1cos())ld

    4.2.5 Solutions for Bessels equation

    Given the LDE

    x2d2y(x)

    dx2 + x

    dy(x)

    dx + (x2 2)y(x) = 0

    also calledBessels equation, and the Bessel functions of the first kind

    J(x) =x

    m=0

    (

    1)mx2m

    22m+m!(+ m + 1)

  • 8/10/2019 Johanw - All Math Explanations

    29/65

    Chapter 4: Differential equations 23

    for :=nINthis becomes:Jn(x) = x

    n

    m=0

    (1)mx2m22m+nm!(n + m)!

    When=ZZthe solution is given byy(x) =aJ(x) + bJ(x). But because fornZZholds:Jn(x) = (1)nJn(x), this does not apply to integers. The general solution of Bessels equation is given byy(x) =aJ(x) + bY(x), whereYare theBessel functions of the second kind:

    Y(x) =J(x) cos() J(x)

    sin( ) and Yn(x) = lim

    nY(x)

    The equationx2y(x) +xy(x) (x2 +2)y(x) = 0has the modified Bessel functions of the first kind I(x) =iJ(ix)as solution, and also solutions K=[I(x) I(x)]/[2 sin( )].Sometimes it can be convenient to write the solutions of Bessels equation in terms of the Hankel functions

    H(1)n (x) =Jn(x) + iYn(x) , H(2)n (x) = Jn(x) iYn(x)

    4.2.6 Properties of Bessel functions

    Bessel functions are orthogonal with respect to the weight functionp(x) =x.

    Jn(x) = (1)nJn(x). The Neumann functionsNm(x)are definied as:

    Nm(x) = 1

    2Jm(x)ln(x) +

    1

    xm

    n=0

    nx2n

    The following holds: limx0 Jm(x) =x

    m

    , limx0 Nm(x) =x

    m

    form= 0, limx0 N0(x) = ln(x).

    limr

    H(r) =eikreit

    r , lim

    xJn(x) =

    2

    xcos(x xn) , lim

    xJn(x) =

    2

    xsin(x xn)

    withxn = 12 (n +

    12

    ).

    Jn+1(x) + Jn1(x) = 2n

    xJn(x) , Jn+1(x) Jn1(x) =2 dJn(x)

    dx

    The following integral relations hold:

    Jm(x) = 12

    20

    exp[i(x sin() m)]d= 1

    0

    cos(x sin() m)d

    4.2.7 Laguerres equation

    Given the LDE

    xd2y(x)

    dx2 + (1 x) dy(x)

    dx + ny(x) = 0

    Solutions of this equation are the Laguerre polynomialsLn(x):

    Ln(x) =ex

    n!

    dn

    dxnxnex =

    m=0

    (1)mm!

    nmxm

  • 8/10/2019 Johanw - All Math Explanations

    30/65

    24 Mathematics Formulary by ir. J.C.A. Wevers

    4.2.8 The associated Laguerre equation

    Given the LDE

    d2

    y(x)dx2

    +

    m + 1x 1

    dy(x)

    dx +

    n +

    1

    2 (m + 1)x

    y(x) = 0

    Solutions of this equation are the associated Laguerre polynomialsLmn(x):

    Lmn(x) = (1)mn!(n m)! e

    xxm dnm

    dxnm

    exxn

    4.2.9 Hermite

    The differential equations of Hermite are:

    d2Hn(x)

    dx2 2x dHn(x)

    dx + 2nHn(x) = 0 and

    d2Hen(x)

    dx2 x dHen(x)

    dx + nHen(x) = 0

    Solutions of these equations are the Hermite polynomials, given by:

    Hn(x) = (1)n exp

    1

    2x2

    dn(exp(12

    x2))

    dxn = 2n/2Hen(x

    2)

    Hen(x) = (1)n(exp

    x2 dn(exp(x2))

    dxn = 2n/2Hn(x/

    2)

    4.2.10 Chebyshev

    The LDE

    (1

    x2)

    d2Un(x)

    dx2 3x

    dUn(x)

    dx

    + n(n + 2)Un(x) = 0

    has solutions of the form

    Un(x) =sin[(n + 1) arccos(x)]

    1 x2The LDE

    (1 x2) d2Tn(x)

    dx2 x dTn(x)

    dx + n2Tn(x) = 0

    has solutionsTn(x) = cos(n arccos(x)).

    4.2.11 Weber

    The LDEWn (x) + (n + 12 1

    4x2)Wn(x) = 0has solutions:Wn(x) = Hen(x) exp(14 x2).

    4.3 Non-linear differential equations

    Some non-linear differential equations and a solution are:

    y =a

    y2 + b2 y = b sinh(a(x x0))y =a

    y2 b2 y = b cosh(a(x x0))

    y =a

    b2 y2 y = b cos(a(x x0))y =a(y2 + b2) y = b tan(a(x x0))y =a(y2 b2) y = b coth(a(x x0))y =a(b2 y2) y = b tanh(a(x x0))

    y

    =ayb yb y = b1 + Cb exp(ax)

  • 8/10/2019 Johanw - All Math Explanations

    31/65

    Chapter 4: Differential equations 25

    4.4 Sturm-Liouville equations

    Sturm-Liouville equations are second order LDEs of the form:

    ddx

    p(x)

    dy(x)

    dx

    + q(x)y(x) = m(x)y(x)

    The boundary conditions are chosen so that the operator

    L= ddx

    p(x)

    d

    dx

    + q(x)

    is Hermitean. The normalization functionm(x)must satisfy

    b

    a

    m(x)yi(x)yj(x)dx= ij

    Wheny1(x)andy2(x)are two linear independent solutions one can write the Wronskian in this form:

    W(y1, y2) =

    y1 y2y1 y2 = Cp(x)

    whereC is constant. By changing to another dependent variableu(x), given by: u(x) = y(x)

    p(x), the LDEtransforms into thenormal form:

    d2u(x)

    dx2 + I(x)u(x) = 0 with I(x) =

    1

    4

    p(x)

    p(x)

    2 1

    2

    p(x)

    p(x)q(x) m(x)

    p(x)

    IfI(x) > 0, thany

    /y < 0 and the solution has an oscillatory behaviour, ifI(x) < 0, than y

    /y > 0 and thesolution has an exponential behaviour.

    4.5 Linear partial differential equations

    4.5.1 General

    Thenormal derivativeis defined by:u

    n= (u, n)

    A frequently used solution method for PDEs isseparation of variables: one assumes that the solution can be written

    asu(x, t) =X(x)T(t). When this is substituted two ordinary DEs for X(x)andT(t)are obtained.

    4.5.2 Special cases

    The wave equation

    Thewave equationin 1 dimension is given by

    2u

    t2 =c2

    2u

    x2

    When the initial conditionsu(x, 0) = (x)andu(x, 0)/t = (x)apply, the general solution is given by:

    u(x, t) = 1

    2

    [(x + ct) + (x

    ct)] +

    1

    2c

    x+ct

    xct

    ()d

  • 8/10/2019 Johanw - All Math Explanations

    32/65

    26 Mathematics Formulary by ir. J.C.A. Wevers

    The diffusion equation

    Thediffusion equationis:

    ut

    =D2u

    Its solutions can be written in terms of the propagators P(x, x, t). These have the property thatP(x, x, 0) = (x x). In 1 dimension it reads:

    P(x, x, t) = 1

    2

    Dtexp

    (x x)24Dt

    In 3 dimensions it reads:

    P(x, x, t) = 1

    8(Dt)3/2exp

    (x x )24Dt

    With initial conditionu(x, 0) = f(x)the solution is:

    u(x, t) =

    G

    f(x)P(x, x, t)dx

    The solution of the equation

    u

    t D

    2u

    x2 =g(x, t)

    is given by

    u(x, t) = dt

    dxg(x, t)P(x, x, t t)

    The equation of Helmholtz

    The equation of Helmholtz is obtained by substitution ofu(x, t) =v(x) exp(it)in the wave equation. This givesforv:

    2v(x, ) + k2v(x, ) = 0This gives as solutions forv:

    1. In cartesian coordinates: substitution ofv = A exp(ik x )gives:

    v(x ) = A(k)eikxdk

    with the integrals over k 2 =k2.

    2. In polar coordinates:

    v(r, ) =m=0

    (AmJm(kr) + BmNm(kr))eim

    3. In spherical coordinates:

    v(r,,) =

    l=0

    l

    m=l

    [AlmJl+12

    (kr) + BlmJl 12

    (kr)]Y(, )

    r

  • 8/10/2019 Johanw - All Math Explanations

    33/65

    Chapter 4: Differential equations 27

    4.5.3 Potential theory and Greens theorem

    Subject of the potential theory are the Poisson equation 2u=f(x )where fis a given function, and theLaplaceequation

    2

    u = 0. The solutions of these can often be interpreted as a potential. The solutions of Laplacesequation are calledharmonic functions.

    When a vector field vis given by v= gradholds:

    ba

    (v, t )ds= (b ) (a )

    In this case there exist functions and wso that v= grad + curl w.

    Thefield linesof the field v(x )follow from:

    x (t) = v(x )

    Thefirst theorem of Greenis: G

    [u2v+ (u, v)]d3V =S

    uv

    nd2A

    Thesecond theorem of Greenis:G

    [u2v v2u]d3V =S

    u

    v

    n v u

    n

    d2A

    A harmonic function which is 0 on the boundary of an area is also 0 within that area. A harmonic function with a

    normal derivative of 0 on the boundary of an area is constant within that area.

    TheDirichlet problemis:

    2u(x ) =f(x ) , xR , u(x ) =g(x ) for all xS.

    It has a unique solution.

    TheNeumann problemis:

    2u(x ) =f(x ) , xR , u(x )n

    =h(x ) for all xS.

    The solution is unique except for a constant. The solution exists if:

    R f(x )d3V = S h(x )d

    2A

    Afundamental solutionof the Laplace equation satisfies:

    2u(x ) =(x )

    This has in 2 dimensions in polar coordinates the following solution:

    u(r) =ln(r)

    2

    This has in 3 dimensions in spherical coordinates the following solution:

    u(r) = 14r

  • 8/10/2019 Johanw - All Math Explanations

    34/65

    28 Mathematics Formulary by ir. J.C.A. Wevers

    The equation 2v=(x )has the solution

    v(x ) = 1

    4|x |After substituting this in Greens 2nd theorem and applying the sieve property of the function one can deriveGreens 3rd theorem:

    u() = 14

    R

    2ur

    d3V + 1

    4

    S

    1

    r

    u

    n u

    n

    1

    r

    d2A

    TheGreen functionG(x, )is defined by:2G=(x ), and on boundarySholdsG(x, ) = 0. ThanGcanbe written as:

    G(x, ) = 1

    4|x | + g(x,)

    Thang(x, ) is a solution of Dirichlets problem. The solution of Poissons equation 2u =f(x )when on theboundarySholds:u(x ) = g(x ), is:

    u() =

    R

    G(x, )f(x )d3VS

    g(x )G(x, )

    n d2A

  • 8/10/2019 Johanw - All Math Explanations

    35/65

    Chapter 5

    Linear algebra

    5.1 Vector spaces

    G is a group for the operation if:1.a, b G a b G: a group isclosed.2. (a

    b)

    c= a

    (b

    c): a group isassociative.

    3.e Gso thata e= e a= a: there exists aunit element.4.a Ga Gso thata a= e: each element has an inverse.

    If

    5.a b= b athe group is called Abelianor commutative. Vector spaces form an Abelian group for addition and multiplication:

    1 a= a,(a) = ()a,( + )(a + b) =a + b + a + b.W is a linear subspaceifw1, w2Wholds: w1+ w2W.W is aninvariant subspaceofV for the operatorAif

    w

    Wholds:A w

    W.

    5.2 Basis

    For an orthogonal basis holds:(ei, ej) = cij . For an orthonormal basis holds: (ei, ej) = ij .

    The set vectors {an} is linear independent if:i

    iai = 0 ii = 0

    The set {an} is a basis if it is 1. independent and 2. V =< a1, a2, ... >=

    iai.

    5.3 Matrix calculus

    5.3.1 Basic operations

    For the matrix multiplication of matricesA = aij andB = bkl holds withr the row index and k the column index:

    Ar1k1 Br2k2 =Cr1k2 , (AB)ij =k

    aikbkj

    where r is the number of rows and k the number of columns.

    The transpose ofA is defined by: aTij = aji . For this holds(AB)T = BTAT and(AT)1 = (A1)T. For the

    inverse matrixholds:(A

    B)1 =B1

    A1. The inverse matrixA1 has the property thatA

    A1 =IIand can

    be found by diagonalization:(Aij |II)(II|A1ij ).

    29

  • 8/10/2019 Johanw - All Math Explanations

    36/65

    30 Mathematics Formulary by ir. J.C.A. Wevers

    The inverse of a2 2matrix is:

    a bc d

    1

    = 1

    ad bc d

    b

    c a Thedeterminant functionD = det(A)is defined by:

    det(A) = D(a1, a2, ..., an)

    For the determinantdet(A)of a matrixAholds:det(AB) = det(A) det(B). Een2 2matrix has determinant:

    det

    a bc d

    =ad cb

    The derivative of a matrix is a matrix with the derivatives of the coefficients:

    dA

    dt =

    daij

    dt and

    dAB

    dt =B

    dA

    dt + A

    dB

    dtThe derivative of the determinant is given by:

    d det(A)

    dt =D(

    da1dt

    , ..., an) + D(a1,da2

    dt , ..., an) + ... + D(a1, ...,

    dandt

    )

    When the rows of a matrix are considered as vectors the row rankof a matrix is the number of independent vectors

    in this set. Similar for thecolumn rank. The row rank equals the column rank for each matrix.

    Let A: V Vbe the complex extension of the real linear operatorA : VV in a finite dimensionalV. ThenAand Ahave the same caracteristic equation.

    WhenAijIRand v1+ i v2is an eigenvector ofA at eigenvalue = 1+ i2, than holds:1. Av

    1=

    1v

    1

    2v

    2and Av

    2=

    2v

    1+

    1v

    2.

    2. v =v1 iv2 is an eigenvalue at =1 i2.3. The linear span< v1, v2> is an invariant subspace ofA.

    Ifkn are the columns ofA, than the transformed space ofAis given by:

    R(A) =< Ae1, ..., Aen >=< k1,..., kn >

    If the columns kn of an mmatrixAare independent, than the nullspaceN(A) ={0 }.

    5.3.2 Matrix equations

    We start with the equation

    A x= band b= 0. Ifdet(A) = 0the only solution is 0. Ifdet(A)= 0there exists exactly one solution = 0.The equation

    A x= 0has exactly one solution = 0ifdet(A) = 0, and ifdet(A)= 0 the solution is 0.Cramers rule for the solution of systems of linear equations is: let the system be written as

    A x= ba1x1+ ... + anxn = bthenxj is given by:

    xj =

    D(a1, ..., aj1,b, aj+1, ..., an)

    det(A)

  • 8/10/2019 Johanw - All Math Explanations

    37/65

    Chapter 5: Linear algebra 31

    5.4 Linear transformations

    A transformationAis linear if: A(x + y ) = Ax + Ay.

    Some common linear transformations are:

    Transformation type Equation

    Projection on the line< a > P (x ) = (a, x )a/(a, a )Projection on the plane(a, x ) = 0 Q(x ) =x P(x )Mirror image in the line < a > S (x ) = 2P(x ) xMirror image in the plane(a, x ) = 0 T(x ) = 2Q(x ) x= x 2P(x )

    For a projection holds:x PW(x )PW(x )andPW(x )W.If for a transformationAholds:(Ax, y ) = (x, Ay ) = (Ax, Ay ), thanA is a projection.

    LetA : W

    Wdefine a linear transformation; we define:

    IfSis a subset ofV:A(S) :={AxW|xS} IfTis a subset ofW:A(T) :={xV|A(x )T}

    ThanA(S)is a linear subspace ofWand theinverse transformationA(T) is a linear subspace ofV. From thisfollows thatA(V)is theimage spaceofA, notation:R(A).A(0 ) = E0is a linear subspace ofV, thenull spaceofA, notation:N(A). Then the following holds:

    dim(N(A)) + dim(R(A)) = dim(V)

    5.5 Plane and line

    The equation of a line that contains the points aand bis:

    x= a + (b a ) = a + r

    The equation of a plane is:

    x= a + (b a ) + (c a ) = a + r1+ r2When this is a plane in IR3, thenormal vectorto this plane is given by:

    nV = r1 r2|r1 r2|

    A line can also be described by the points for which the line equation : (a, x) + b = 0holds, and for a plane V:

    (a, x) + k= 0. The normal vector to V is than:a/|a|.The distanced between 2 pointspandqis given byd(p, q) =p q.InIR2 holds: The distance of a pointpto the line(a, x ) + b= 0is

    d(p, ) =|(a, p ) + b|

    |a|

    Similarly inIR3: The distance of a pointpto the plane(a, x ) + k= 0is

    d(p, V) =|(a, p ) + k|

    |a|This can be generalized forIRn andCn (theorem from Hesse).

  • 8/10/2019 Johanw - All Math Explanations

    38/65

    32 Mathematics Formulary by ir. J.C.A. Wevers

    5.6 Coordinate transformations

    The linear transformationAfromIKn

    IKm is given by (IK=IRofC):

    y= Amnx

    where a column ofAis the image of a base vector in the original.

    The matrixA transforms a vector given w.r.t. a basis into a vector w.r.t. a basis . It is given by:

    A = ((Aa1),...,(Aan))

    where(x )is the representation of the vectorxw.r.t. basis.

    Thetransformation matrixS transforms vectors from coordinate system into coordinate system:

    S

    := II

    = ((a1),...,(an))

    andS S =IIThe matrix of a transformationAis than given by:

    A =

    Ae1,...,Aen

    For the transformation of matrix operators to another coordinate system holds: A = SA

    S

    , A

    = S

    A

    S

    and(AB) = AB

    .

    Further isA = SA

    ,A

    =A

    S

    . A vector is transformed viaX = S

    X.

    5.7 Eigen values

    Theeigenvalue equation

    Ax= x

    with eigenvalues can be solved with (AII) = 0 det(AII) = 0. The eigenvalues follow from thischaracteristic equation. The following is true: det(A) =

    i

    i and Tr(A) =i

    aii =i

    i.

    The eigen valuesi are independent of the chosen basis. The matrix ofA in a basis of eigenvectors, with S thetransformation matrix to this basis,S= (E1 ,...,En), is given by:

    = S1AS= diag(1,...,n)

    When 0 is an eigen value ofAthanE0(A) =N(A).When is an eigen value ofAholds:Anx= nx.

    5.8 Transformation types

    Isometric transformations

    A transformation isisometricwhen:Ax=x. This implies that the eigen values of an isometric transformationare given by = exp(i) ||= 1. Than also holds:(Ax, Ay ) = (x, y ).When W is an invariant subspace if the isometric transformation A with dim(A)

    . The matrix of such a transformation is given by:

    1 0 00 cos() sin()0 sin() cos()

    For all orthogonal transformationsO in IR3 holds thatO(x ) O(y ) = O(x y ).IRn (n

  • 8/10/2019 Johanw - All Math Explanations

    40/65

    34 Mathematics Formulary by ir. J.C.A. Wevers

    Hermitian transformations

    A transformation H : V

    V with V = Cn is Hermitian if(Hx, y ) = (x, Hy ). The Hermitian conjugated

    transformationAH ofA is: [aij ]H = [aji ]. An alternative notation is: AH =A. The inner product of two vectorsxandycan now be written in the form: (x, y ) = xHy.

    If the transformationsAandB are Hermitian, than their product AB is Hermitian if:[A, B] =AB BA = 0.[A, B]is called thecommutatorofAandB.The eigenvalues of a Hermitian transformation belong to IR.

    A matrix representation can be coupled with a Hermitian operator L. W.r.t. a basisei it is given by Lmn =(em, Len).

    Normal transformations

    For each linear transformationA in a complex vector space V there exists exactly one linear transformationB sothat(Ax, y ) = (x, By ). ThisB is called theadjungated transformationofA. Notation: B =A. The followingholds:(CD) =DC.A =A1 ifAis unitary andA =A ifAis Hermitian.

    Definition: the linear transformation A isnormalin a complex vector space V ifAA= AA. This is only the caseif for its matrixSw.r.t. an orthonormal basis holds: AA= AA.

    IfAis normal holds:

    1. For all vectorsxVand a normal transformationAholds:

    (Ax, Ay ) = (AAx, y ) = (AAx, y ) = (Ax, Ay )

    2. xis an eigenvector ofAif and only ifxis an eigenvector ofA.

    3. Eigenvectors ofAfor different eigenvalues are mutually perpendicular.

    4. IfEif an eigenspace fromAthan the orthogonal complementE is an invariant subspace ofA.

    Let the different roots of the characteristic equation ofA be i with multiplicitiesni. Than the dimension of eacheigenspaceVi equalsni. These eigenspaces are mutually perpendicular and each vectorx Vcan be written inexactly one way as

    x=i

    xi with xiVi

    This can also be written as: xi =PixwherePi is a projection onVi. This leads to the spectral mapping theorem:letA be a normal transformation in a complex vector spaceV with dim(V) =n. Than:

    1. There exist projection transformationsPi,1ip, with the properties

    Pi Pj = 0fori=j , P1+ ... + Pp = II, dimP1(V) + ... + dimPp(V) = n

    and complex numbers1,...,p so thatA = 1P1+ ... + pPp.

    2. IfAis unitary than holds |i|= 1 i.

    3. IfAis Hermitian thaniIR i.

  • 8/10/2019 Johanw - All Math Explanations

    41/65

    Chapter 5: Linear algebra 35

    Complete systems of commuting Hermitian transformations

    Considerm Hermitian linear transformationsAi in an dimensional complex inner product space V. Assume they

    mutually commute.Lemma: ifE is the eigenspace for eigenvalue fromA1, thanE is an invariant subspace of all transformationsAi. This means that ifxE, thanAixE.Theorem. Considerm commuting Hermitian matricesAi. Than there exists a unitary matrixUso that all matricesUAiUare diagonal. The columns ofUare the common eigenvectors of all matricesAj .

    If all eigenvalues of a Hermitian linear transformation in a n-dimensional complex vector space differ, than thenormalized eigenvector is known except for a phase factorexp(i).

    Definition: a commuting set Hermitian transformations is calledcompleteif for each set of two common eigenvec-

    tors vi, vj there exists a transformationAk so that vi and vj are eigenvectors with different eigenvalues ofAk.

    Usually a commuting set is taken as small as possible. In quantum physics one speaks of commuting observables.

    The required number of commuting observables equals the number of quantum numbers required to characterize a

    state.

    5.9 Homogeneous coordinates

    Homogeneous coordinates are used if one wants to combine both rotations and translations in one matrix transfor-

    mation. An extra coordinate is introduced to describe the non-linearities. Homogeneous coordinates are derived

    from cartesian coordinates as follows:

    xyz

    cart=

    wxwywzw

    hom

    =

    XYZw

    hom

    so x= X/w,y = Y /wand z = Z/w. Transformations in homogeneous coordinates are described by the followingmatrices:

    1. Translation along vector(X0, Y0, Z0, w0):

    T =

    w0 0 0 X00 w0 0 Y00 0 w0 Z00 0 0 w0

    2. Rotations of thex,y, zaxis, resp. through angles, ,:

    Rx() =

    1 0 0 0

    0 cos sin 00 sin cos 00 0 0 1

    Ry() = cos 0 sin 0

    0 1 0 0 sin 0 cos 00 0 0 1

    Rz() =

    cos sin 0 0sin cos 0 0

    0 0 1 00 0 0 1

    3. A perspective projection on image planez = cwith the center of projection in the origin. This transformationhas no inverse.

    P(z= c) =

    1 0 0 00 1 0 00 0 1 0

    0 0 1/c 0

  • 8/10/2019 Johanw - All Math Explanations

    42/65

    36 Mathematics Formulary by ir. J.C.A. Wevers

    5.10 Inner product spaces

    A complex inner product on a complex vector space is defined as follows:

    1. (a,b ) = (b, a ),

    2. (a, 1b1+ 2b 2) = 1(a,b 1) + 2(a,b 2)for all a,b1,b2V and1, 2C.3. (a, a )0 for all aV,(a, a ) = 0if and only ifa= 0.

    Due to (1) holds: (a, a )IR. Theinner product spaceCn is the complex vector space on which a complex innerproduct is defined by:

    (a,b ) =ni=1

    ai bi

    For function spaces holds:

    (f, g) =b

    a

    f(t)g(t)dt

    For each a the length a is defined by:a = (a, a ). The following holds:a b a+b a +b ,and with the angle between aand bholds: (a,b ) =a b cos().Let{a1, ..., an} be a set of vectors in an inner product space V. Than the Gramian G of this set is given by:Gij = (ai,aj). The set of vectors is independent if and only ifdet(G) = 0.

    A set isorthonormalif(ai, aj) =ij . Ife1, e2,...form an orthonormal row in an infinite dimensional vector spaceBessels inequality holds:

    x

    2

    i=1 |

    (ei, x )|2

    The equal sign holds if and only if limn

    xn x = 0.

    The inner product space2 is defined inC by:

    2 =

    a= (a1, a2,...) |

    n=1

    |an|2 0there are no more than a finite number of discontinuities and each discontinuityhas an upper - and lower limit,

    2.t0[0, > anda, MIRso that fortt0holds:|f(t)| exp(at)< M.Than there exists a Laplace transform forf.

    The Laplace transformation is a generalisation of the Fourier transformation. The Laplace transform of a function

    f(t)is, withsC andt0:

    F(s) =

    0

    f(t)e

    st

    dt

  • 8/10/2019 Johanw - All Math Explanations

    43/65

    Chapter 5: Linear algebra 37

    The Laplace transform of the derivative of a function is given by:

    Lf(n)(t) =f

    (n1)(0)

    sf(n2)(0)

    ...

    sn1f(0) + snF(s)

    The operator L has the following properties:1. Equal shapes: ifa >0 than

    L (f(at)) = 1a

    F s

    a

    2. Damping:L(eatf(t)) = F(s + a)3. Translation: Ifa > 0 andg is defined by g (t) = f(ta) ift > a and g (t) = 0 for t a, than holds:

    L (g(t)) = esaL(f(t)).IfsIRthan holds (f) =L((f))and (f) =L((f)).For some often occurring functions holds:

    f(t) = F(s) =L(f(t)) =tn

    n!eat (s a)n1

    eat cos(t) s a(s a)2 + 2

    eat sin(t)

    (s a)2 + 2(t a) exp(as)

    5.12 The convolution

    The convolution integral is defined by:

    (f g)(t) =t

    0

    f(u)g(t u)du

    The convolution has the following properties:

    1. f gLT2.L(f g) =L(f) L(g)

    3. Distribution:f (g+ h) = f g+ f h4. Commutative:f g = g f5. Homogenity:f (g) = f g

    IfL(f) = F1 F2, than isf(t) =f1 f2.

    5.13 Systems of linear differential equations

    We start with the equation x= Ax. Assume thatx= v exp(t), than follows:Av= v. In the2 2case holds:1. 1= 2: thanx(t) = viexp(it).2. 1=2: thanx(t) = (ut + v)exp(t).

  • 8/10/2019 Johanw - All Math Explanations

    44/65

  • 8/10/2019 Johanw - All Math Explanations

    45/65

    Chapter 6

    Complex function theory

    6.1 Functions of complex variables

    Complex function theory deals with complex functions of a complex variable. Some definitions:

    f isanalyticalon G iffis continuous and differentiable on G.AJordan curveis a curve that is closed and singular.

    If K is a curve in Cwith parameter equationz = (t) = x(t) +iy(t),atb, than the lengthL of K is givenby:

    L=

    ba

    dx

    dt

    2+

    dy

    dt

    2dt=

    ba

    dzdt dt=

    ba

    |(t)|dt

    The derivative off in pointz = a is:

    f(a) = limza

    f(z) f(a)z a

    Iff(z) = u(x, y) + iv(x, y)the derivative is:

    f(z) =u

    x+ i

    v

    x =i u

    y +

    v

    y

    Setting both results equal yields the equations of Cauchy-Riemann:

    u

    x =

    v

    y ,

    u

    y =v

    x

    These equations imply that 2u=2v= 0.fis analytical ifu andv satisfy these equations.

    6.2 Complex integration

    6.2.1 Cauchys integral formula

    LetKbe a curve described byz = (t)ona

    t

    b andf(z)is continuous onK. Than the integral offoverK

    is: K

    f(z)dz =

    ba

    f((t))(t)dtfcontinuous

    = F(b) F(a)

    Lemma: letKbe the circle with centeraand radiusr taken in a positive direction. Than holds for integer m:

    1

    2i

    K

    dz

    (z a)m =

    0 if m= 11 if m= 1

    Theorem: ifL is the length of curveKand if|f(z)| M forzK, than, if the integral exists, holds:

    K

    f(z)dz M L

    39

  • 8/10/2019 Johanw - All Math Explanations

    46/65

    40 Mathematics Formulary by ir. J.C.A. Wevers

    Theorem: letfbe continuous on an area G and let p be a fixed point ofG. LetF(z) =zp

    f()dfor allz Gonly depend onz and not on the integration path. ThanF(z)is analytical onG withF(z) =f(z).

    This leads to two equivalent formulations of themain theorem of complex integration: let the function fbe analyticalon an areaG. LetKandK be two curves with the same starting - and end points, which can be transformed intoeach other by continous deformation withinG. LetB be a Jordan curve. Than holds

    K

    f(z)dz =

    K

    f(z)dzB

    f(z)dz = 0

    By applying the main theorem oneiz/zone can derive that

    0

    sin(x)

    x dx=

    2

    6.2.2 Residue

    A pointaC is a regular pointof a functionf(z)iffis analytical ina. Otherwiseais asingular pointor poleoff(z). Theresidueoff ina is defined by

    Resz=a

    f(z) = 1

    2i

    K

    f(z)dz

    whereKis a Jordan curve which encloses a in positive direction. The residue is 0 in regular points, in singularpoints it can be both 0 and = 0. Cauchys residue proposition is: let fbe analytical within and on a Jordan curveKexcept in a finite number of singular points ai withinK. Than, ifKis taken in a positive direction, holds:

    12i

    K

    f(z)dz =n

    k=1

    Resz=ak

    f(z)

    Lemma: let the functionfbe analytical ina, than holds:

    Resz=a

    f(z)

    z a =f(a)

    This leads to Cauchys integral theorem: ifF is analytical on the Jordan curve K, which is taken in a positivedirection, holds:

    1

    2i

    K

    f(z)

    z a dz =

    f(a) if a inside K0 if a outside K

    Theorem: letKbe a curve (Kneed not be closed) and let ()be continuous onK. Than the function

    f(z) =

    K

    ()d

    z

    is analytical withn-th derivative

    f(n)(z) = n!

    K

    ()d

    ( z)n+1

    Theorem: letKbe a curve and G an area. Let(, z)be defined forK,zG, with the following properties:1. (, z)is limited, this means |(, z)| M forK,zG,2. For fixedK,(, z)is an analytical function ofz on G,

  • 8/10/2019 Johanw - All Math Explanations

    47/65

    Chapter 6: Complex function theory 41

    3. For fixedzG the functions(, z)and(, z)/z are continuous functions ofon K.Than the function

    f(z) =K

    (, z)d

    is analytical with derivative

    f(z) =

    K

    (, z)

    z d

    Cauchys inequality: let f(z)be an analytical function within and on the circle C:|z a|= R and let |f(z)| MforzC. Than holds f(n)(a) M n!

    Rn

    6.3 Analytical functions definied by series

    The series

    fn(z)is calledpointwise convergenton an areaGwith sumF(z)if

    >0zGN0IRn>n0f(z)

    Nn=1

    fn(z)

    <

    The series is calleduniform convergentif

    >0N0IRn>n0zGf(z)

    Nn=1

    fn(z)

    <

    Uniform convergence implies pointwise convergence, the opposite is not necessary.

    The