jet flow analysis of liquid poison injection in a candu

85
KR0101273 KAERI/TR-1739/2001 Jet Flow Analysis of Liquid Poison Injection in a CANDU Reactor Using Source Term 2001. 1.

Upload: others

Post on 04-Dec-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KR0101273

KAERI/TR-1739/2001

Jet Flow Analysis of Liquid Poison Injection in a CANDU Reactor

Using Source Term

2001. 1.

Page 2: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

"DUPIC ^ £ 5 . <$%<%*% 7}"

2001. 1. .

: DUPIC

- 1 -

Page 3: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

CANDU

10555

1/4

CANDU

nfl-

fgfm-%:

27.8 m/s °)JL,

2*}%

fe 8000 ppm

l r-x

, r- 6 ^ o l l A i f e 3.711 cl ^S-oil rcj-s|- 1

5J-7]]

- 2 -

Page 4: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

Jet Flow Analysis of Liquid Poison Injection in a CANDU Reactor

Using Source Term

ABSTRACT

For the performance analysis of Canadian deuterium uranium (CANDU) reactor shutdown system

number 2 (SDS2), a computational fluid dynamics model of poison jet flow has been developed to estimate

the flow field and poison concentration formed inside the CANDU reactor calandria. As the ratio of

calandria shell radius over injection nozzle hole diameter is so large (1055), it is impractical to develop

a full-size model encompassing the whole calandria shell. In order to reduce the model to a manageable

size, a quarter of one-pitch length segment of the shell was modeled using symmetric nature of the

jet; and the injected jet was treated as a source term to avoid the modeling difficulty caused by the

big difference of the hole sizes.

The source term model of the inlet flow was validated against experimental data of gas jet

flow. The validation calculation has shown that the source term model reproduces experimental results

when the grid structure is properly determined around the source position. The source-jet model was

also validated against a real-jet model that directly solves for the jet flow around the nozzle hole. The

results have shown that the source-jet simulation agrees with the real-jet simulation if the radial grid

is generated by stretching for several grids.

For the analysis of an actual CANDU-6 SDS2 poison injection, the grid structure was determined

based on the results of two-dimensional real- and source-jet simulations. The maximum injection velocity

of the liquid poison is 27.8 m/s and the mass fraction of the poison is 8000 ppm (mg/kg). The simulation

results have shown well-established jet flow field. In general, the jet develops narrowly at first but stretches

rapidly. Then, the flow recirculates a little in r-x plane, while it recirculates largely in r- 6 plane. As

the time goes on, the adjacent jets contact each other and form a wavy front such that the whole jet

develops in a plate form.

This study has shown that the source term model can be effectively used for the analysis of

the poison injection and the simulation result of the CANDU reactor is consistent with the model currently

being used for the safety analysis. In the future, it is strongly recommended to analyze the transient

(from helium tank to injection nozzle hole) of the poison injection by applying Bernoulli equation with

real boundary conditions.

- 3 -

Page 5: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

• 1

2

ABSTRACT , 3

List of Figures 6

List of Tables 8

Nomenclature 9

l.i

1.2 ^-tfl • <q <a^^^t 121.3 <3^-§- ^ ^ ^ 13

2. -fr a- *H ^^€- is2.1 xltij|«J-^^3|- Vb - S.'i 18

2.1.1 ^itifl^Ai i8

2.1.2 VHr-S-l 192.2 O]A>5)- v$%q 20

2.2.1 Body^Fitted Grid 20

2.2.2 5?-I-5r£3Hl tfl'S: <>]#%• *M^ 20

2.3 <y-5ie|# 22

2.3.1 Pressure-Velocity Coupling ^ ^ - ^ 22

2.3.2 Rhie-Chow i f l ^ ^ 23

2.3.3 SIMPLER SIMPLEC ^ 3 1 ^ # 24

3. ^ T f l f - S.'fl ^ ^ ^ 7fl<i 283.1 S L l ^ • 28

3.1.1 1/4 fi.<i 28

3.1.2 ^ % H ^«!r ^flJi. S.A> 29

3.1.3 3*1- ^ ^ 30

3.2 7^^^- ^ j ^ . 7\~fr ^ ^ £A} 30

3.2.1 ?3%}2:& ^ A*\ 30

3.2.2 ^I<+ £3j- «lJ2. 31

3.3 ^•y^l^f-0!] t})^- real-jetsf source-jet « ] s 31 # • 31

3.3.1 3 * H r % ^S: 32

3.3.2 AA^ % 7-^ 4€- ^4 als 32

- 4 -

Page 6: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

4. ^ 3 1 ^ -fr^ ^ ^ £ * H 524.1 H.1 ^ Tfl-ti M 524.2 -8- ^ ^ £ ^ ^ 53

4.2.1 ^^g- ^ 3L^: 54

4.2.2 ^ £ &3L 3L% 54

5. ^ § 67

6. I K f ^T2" 4 ^ 68

^ - J l ^ ^ 69

Appendix 71

- 5 -

Page 7: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERLTR-1739/2001

List of Figures

Figure

1-1 Reactor Assemble • 15

1-2 Schematic of Liquid Injection Shutdown System 16

1-3 Structure of CFX-4.3 Code 17

2-1 Finite Difference Grid for Physical and Transformed Computational Plane 26

2-2 SIMPLE Algorithm 27

3-1 Injection Nozzle 37

3-2 Schematic Quarter Model of Injection System 38

3-3 Source in Arbitrary Mesh Center 39

3-4 Comparison of Velocity Vector for Real- and Source-Jet Calculation 40

3-5 Calculation Domain of Free Jet 41

3-6 Grid Structure for Free Jet Calculation 42

3-7 Comparison of Axial Velocity Profile for Real- and Source-Jet

along Jet Direction 43

3-8 Comparison of Axial Concentration Distribution for Real- and Source-Jet 44

3-9 Percent Error between Prediction and Experiment 45

3-10 Two-Dimensional Domain for Real- and Source-Jet Calculation 46

3-11 Two-Dimensional Grid Structure for Real- and Source-Jet Calculation 47

3-12 Comparison of Velocity for Real- and Source-Jet in Radial

Direction (from Hole of Injection Nozzle) • 48

3-13 Comparison of Velocity Vector for Real- and Source-Jet 49

3-14 Comparison of Concentration Distribution for Real- and Source-Jet

in Radial Direction (from Hole Injection Nozzle) 50

3-15 Comparison of Concentration Contour 51

4-1 Schematic Diagram of 1/4 One-Pitch Model 57

4-2 Grid Structure for 1/4 One-Pitch Model 58

4-3 Velocity Vector for Five-Pitch Model in r-x Plane 59

4-4 Streamlines of r- 0 Plane 60

4-5 Velocity Vector by Poison Injection in r-x Plane 61

4-6 Pressure Distribution 62

4-7 Turbulent Viscosity Contour in r-x Plane 63

4-8 Turbulent Viscosity 64

- 6 -

Page 8: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

4-9 Concentration Contour in r-x Plane 65

4-10 Concentration Distribution in Radial Direction 66

- 7 -

Page 9: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

List of Tables

Table

2-1 Constants of Standard k-e Model 25

3-1 Comparison of Liquid Injection System and 1/4 Model 34

3-2 Source Term in Boundary Condition 35

3-3 Structure and Number of Grid for Radial Direction 36

4-1 Boundary Condition and Physical Properties 56

- 8 -

Page 10: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

Nomenclature

A area or chemical specie A

as, aw, &N> a$ coefficient in the discretization equation

B, Bu, Bv chemical specie B or matrix multiplier

C\, C2, Cp constant of the standard k— e model

Gi, G2 convective terms normal to grid cell boundary (Eq. 2-12)

/ Jacobian of the transformation

k turbulent kinetic energy

MB molar weight of specie B (Eq. 2-7)

m normal vector

P turbulent production term (Eq. 2-9)

P, P' ,P* pressure, pressure correction, and guessed pressure (Pa)

Rij Reynolds stress, pufu/

Sj source term for i components

Sc, Sp constant part and coefficient of <f>P in the linearized source term (Eq. 3-1)

T temperature ( °C, °K )

t time (sec)

U{, Uj, uk velocity for x, y and z components (m/s)

u/ , Uj fluctuation velocity for x, y and z components (m/s)

xt Cartesian coordinates, x, y, z

YA mass fraction of specie A

Greek Symbol

a, 0, y coordinate transformation parameters (Eq. 2-14)

F diffusivity for the arbitrary scalar <f>

8y Kronecker delta

§7), 8$ finite difference mesh spacings in {• and r) directions

in transformed plane

e turbulent energy dissipation

TjB viscosity of solvent B , (Eq. 2-7 , cp, 10"2 g/cm • s)

fx, nt molar viscosity and turbulent viscosity (kg/m • s)

Ok, <ye turbulent Prandtl number for the turbulent kinetic energy

and the turbulent energy dissipation

p density (kg/m3)

- 9 -

Page 11: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

r,y shear stress tensor (N/m2)

4> association factor of solvent B, dimensionless (Eq. 2-7)

or arbitrary variable (Eq. 2-11)

- 10 -

Page 12: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

1.1

±r 1978\i ^ ^ A S

£r 12,716 MWe ll t « . *]$= 1999^

45,484

Fuel In CANDU Reactors)

DUPIC (Direct Use of Spent PWR

$X^[2]. DUPIC ^<S^.

, DUPIC

DUPIC

3TO. DUPIC

CANDU (CANadian

Deuterium Uranium) DUPIC

CANDU

(LOCA, Loss Of Coolant Accident)

( 4 ^

3*11- W ° } CANDU

SDSl (Shut Down System number 1)4 SDS2 (Shut

Down System number 2)7} §^-?);T}. (Fig. 1-1 %£) SDSl gr #^7.f ^^Sf lS . o l f -^^ l 3}*1

^ - i - ^r^-H-^l^lfe" ^ > k SDS2fe ^M ^ ^ # ^ ? 1 ^-S" € < i 71-1-e]^- (Gadolinium

nitrate solution, Gd(NC>3)3 • 6H2O)-§: ^ ^ ^ l ^ l f e ^ - i : ^fl^^-jaL $j)&. z\- ^ ^ l ^ j ^ . ^ S - ^ ^

^ AECL (Atomic Energy of Canada Limited)-*)] *)

- 11 -

Page 13: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERFTR-1739/2001

i ^ f e CANDU 3\Z}3,% Al-g-^fe- ^ 1 , 2 , 3 ? ! 43L7}<>\) - i ^ S ^ r } - . Qx}^ o]]u}*| o]-g-

l3E DUPIC ^<S5 .» CANDU. SDS2^ Aj^j ^ 3g7pi

-8-71 (calandria shell)S. ^ " S ^ E ^ - ^ l E H & t } . (Fig. 1-2 %^2) SDS2°ll

>1- i5}7) ^-5>^ JL#O.S. ^A^£) f e ^m-fi-*5i) ^-S-i : ^ ^ " 1 :

(1.5^.) ^ H # S . i | 7 l Bfll-e

1.2

(SDS2)o)l

fe Tennekes and

A]] <g^, ^ SEjl^ a o i <^^ (potential core region), ^ o l c g « (transitional

region), ^ } ^ ^ (similarity region)^ cfl^H

Rodi and Spalding[8]^ x}^- *flJL°fl ^-g-«|-7l ^ § } ^ ^^.oflui^] (k)S]- ^Q°] (L)

] 1 - FLUENT 3 H h | f lHinze and Zijnen[10]<>l

^7 Spalding[ll]ol

- 12 -

Page 14: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

1966\i Oak Ridge National Laboratory (ORNL)

31 & 4 - ^T^Pressurized Water Reactor,

l-o SDS2S. ^}-§-«r31 Slty. °A

Water Reactor)^ >H ^H-^M, ^ r f e € # 7

CANDU € -

a ^ €^>.SDS2S] ^ 7

£6)1 A ^ 5

4 s . ^^l^lf-^l t|)fr iL:a*)[i3;

3.$\ ^t-S-S.7]- $^ -50 mkS. «>-

flnfl^^[14]6l| t r f^^ , 1^71-1-i

|tfl -400 mk, 4000 ppm^ S . o

PWR)fe tn^.^-

! ^ 1 ^ ^ ^ ^

§-£7> t^^ l fe

fl^fe- ^tfl -200

SDSl^l

CANDU

r-^IS. A

7> o l ^

\ A^slmk^>^l

BWR (Boiling

nfl 1.5

8000

1997\i t l S . IGCAR (Indira Gandhi Centre for Atomic Research)^]-Hfe- Nawathe

SDS2°11

4 * -fV* Sl^r. ^ ^ CANDU

1.3

SDS2S]

CFX-4.3 S ^

Processing-S]

Solver^ CFX_Build<Hl

CFX-4.3 ^ g

Pre-Processing^r

AEAT

^ Pre-Processing, Solver, Post-

- Fig. l-3

(staggered grid)*

: # ^ , Post-Processing^ CFX_Visualize^ £\f>}<^

CFX-4.3 2 E £ l ^ 2 : » -a^*>jl Si4- CFX-4.3

Rhie-Chow . CFX-4.3 3 E

CFX-4.3 3E«fl^fe

^ 2:?i-g- 71 # 1 - xifl

- 13 -

Page 15: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

1/4 S-ig-i l t } a , ] #

^ A 1/4

1/2

. o]

4

SDS2S1 ^ ^ ^ l ^ - o l l t f l ^ - 3|-£AOVE]] « | ]^^ . 3^>^ 1/4

^ ^ S ^ ^ * l e | ^ ^ SLtflSL 1.2 a?V ^-S- i

^ . ^ SIMPLE (Semi-Implicit Method for Pressure-Linked Equation)[18]2}- SIMPLEC

(SIMPLE Consistent) ^ J l ^ # [ 1 6 ] l : 7 ] ^ - ^ ^ A>-g-§>^^.^, ^S^-n f l ^ - ^ . ^ oflal?i)Xj.^.

PISO (Pressure- Implicit with Splitting of Operators) ^•JLS)#[19]4- ^>-§--5>^4. ^-S^u}-, PISO

- 14 -

Page 16: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

CALANORIACALANORIA SHELLCALANDRIA TUBESEMBEDMENT RINGFUELING TUBESHEETEND SHIELD LATTICE TUBESEND SHIELD COOLING PIPESINLET-OUTLET STRAINERSTEEL BALL SHIELDING

10 END FITTINGS11 FEEDER PIPES12 MODERATOR OUTLET13 MODERATOR INLET

14 FLUX MONITOR AND POISON INJECTION15 ION CHAMBER16 EARTHQUAKE RESTRAINT17 VAULT WALL18 VAULT COOLING PIPES19 MODERATOR OVERFLOW20 PRESSURE RELIEF PIPES21 PRESSURE RELIEF DISC22 REACTIVITY CONTROL ROD N0Z2LES23 VIEWING PORT24 SHUTOFF ROO25 ADJUSTER ROD26 CONTROL ABSORBER ROD27 ZONE CONTROL ROD28 VERTICAL FLUX MONITOR

Fig. 1-1 Reactor Assembly

- 15 -

Page 17: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

HELIUM VENT LINES

LIQUID liUECTION SHUTDOWN UNIT

HELIUM SUPM.Y TANK

POISON.MODERATOR IMTEBfACE

Fig. 1-2 Schematic of Liquid Injection Shutdown System

- 16 -

Page 18: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

GeomertryFile

CommandFile

UserFORTRAN

Dump File

Output File

Pre-Processing Solver Post-Precessing

Fig. 1-3 Structure of CFX-4.3 Code

- 17 -

Page 19: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

2.

71

Body-Fitted Gr id*

. CFX-4.3 S ^ ^ A ^

.3^- 3

Rhie-Chow

2.1

2.1.1

o

O

dt

djpuj)( 2" 2 )

fe stress tensor

> ^ Kronecker delta 0 ,4 .

dt

i'uj'^ Reynolds stress tensorH} §>^, R{j£. S.7]-s}x^} 4 # 4 go]

turbulent viscosity °]4-

(2-4)

- 18 -

Page 20: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAER1TR-1739/2001

O # € ^ VM^d(pYA) 3d

dt '

°*7W, YAr= # A$

coefficient)0] t\.

d(pYA) idt '

°^7l^:l, Sct^r turbulent

OUJYA) d I

dxj dXj \f

mass fraction °lt}\

§-oj] t)!S}c^ s l | ° ! ^

J(PUJYA) d

dxj dxj

Schmidt number

D 9YA )

UAB •<— ->T —i o -^i ^T -D

Y^DAB 1 5Cf j ^ j

Z).Bsl AQ

(2-5)

: (diffusion

(2-6)

•gr Perry's

2.1.2 \+^- S.1^ (Turbulent Models)

o

O

3^ 3z_f 9;

(2-1 OH -^rSt^: 52-1 o)|

(viscous sublayer)

(2-7)

(2-8)

- 19 -

Page 21: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERLTR-1739/2001

2.2 o l#

2.2.1 Body-Fitted Grid

3 ftThompson, Warsi n e } ^ Mastin[25]^l - i - '<>]•%•$!:

)4 . Fig. 2-1^

. CFX-4.3 2 £ ^

Rhie-Chow

2.2.2

Fig. 2-1

# Fig.

(2-iD

JL, /fe- Jacobian ^ ^ - ^ .

J^X^IL _ ^x 22.

- 20 -

Page 22: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

N, S, E, W q

o] | [ ]o>^ -^. Jacobian ^ - t -

J

(2-17)^,

as4>s+

(2-19)^1 31^r aE, aw, aN, as %

aE= j +Max[-

+Max[(pG1Sv)w,0]

+Max[-

^ + Maxl

a w+ aN + as -

hybrid $•§• 4 - 8 - ^ : ^ ^

aE=Max[- {PGl8n).,£

9 ) y (

n,

{pGf7))e,0

(2-16)

(2-17)

(2-19)

scheme)

(2,20b)

(2-20c)

(2-20d)

(2-20e)

(2-21a)

(2-2lb)

(2-21c)

(2-21d)

- 21 -

Page 23: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

aP = aE+ aw+ aN+ as+(2-21e)

( P G28£)n - (p G2S$)S

2.3

2.3.1 Pressure-Velocity Coupling

Ale)

/ f W "T"

«

VP =

Bu = -i 8q87)ldp , Cu

=

(2-25)^

+CU drj (2-22a)

(2-23)

(2-24a)

t; = »* + [Bu-^ + C u ^ ) (2.24b)

| f - B * ) - f t (2.25b)

- 22 -

Page 24: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

G2= Gl + {CV% -

= 0

aPpP= awpw+ aNpN+ asps+ mp

2.3.2 Rhie-Chow

(2.26a)

(2-26b)

Chowfe \S$ ^ ^

(2-27)

(2-28)

(2-29)

<2-30>

(2-31)

(2-32a)

( 2 " 3 2 b )

(2-32d)

(2-32e)

- 23 -

Page 25: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

( 2 . 3 3 )

I a|) (2-35)

7}

^l(2-35)7> Rhie-Chowl overbarfe-

Rhie-Chow

2.3.3 SIMPLER SIMPLEC

SIMPLER SIMPLEC , Fig. 2-2Sf ^ 4 . p

- SIMPLER SIMPLEC^ ^}^1^

= Sanbunb' + {pp - pE)Ae

ue =- pB')Ae

ae- aZanhunb

7} S\3L, SIMPLER a=0, SIMPLEC - a =\±S.

^ m 1 H 0^ f i ^ - t * Dl^l^l ^fe4- Tcq-t t i s l f(relaxation factor)* SIMPLECS] ^ ^ - 7 f c) 3.711

L, u\v

(2-36)

(2-37)

. ^, SIMPLE^ SIMPLEC^

TO

- 24 -

Page 26: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

Table 2-1 Constants of Standard k- e Model

Launder & Spalding[22]

Sondak & Pletcher[23]

Demirdzic et al.[24]

CFX-4.2

Manual[16]

CM

0.09

0.09

0.09

1.44

1.44

1.44

1.92

1.92

1.92

Ok

1.0

1.0

1.0

1.3

1.22

1.217

- 25 -

Page 27: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERFTR-1739/2001

NWo

Wo-

o

SW

No

o

s

NE

o

E

-o Js

o

SE

Fig. 2-1 Finite Difference Grid for Physical and Transformed

Computational Plane

- 26 -

Page 28: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

Update

P' = P

u = u

v' = v

V)' = V>

[ START ]

STEP 1: Solve discretized momentum equations

aeu,

a>u< =

'nb + (p'p- p'E)A,

STEP 2 : Solve pressure correction equation

aPpP=

STEP 3: Correct pressure and velocities

P= p' + p', u= a* + u , v = v' + v , w = w' + to

STEP 4 : Solve all other discretized transport equation

No

Fig. 2-2 SIMPLE Algorithm

- 27 -

Page 29: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERFTR-1739/2001

3.

1/45.

3.1

1/2

o]6Q

0)7]

14

1/4.$j-§.,g.

3.1.1 1/4

3367fl< fe Fig. 3-1 o]]

^^-S. 90°

1 ^ 285.75 mm 0)4. ^ S3-Hulfe 4 1/200044. 4

1/4

3.717} 1/4S.

£1^4. ne]4-,

- 28 -

Page 30: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

g- Fig. ^ 3 . ±4

5° JL

7}

e^fe. i3x)*H

fe Fig.

3.1.2

H CFXBuild ^ &

$££43- ^ 307fl ]fe 1/4USRSRC ^ t i .

(3-1)

Table 3-2^1]

CFX-4.3 H f e Body-fitted gr id* 71-g-

^ M w, E,

§ 4 . Fig. 3-3

N,

- 29 -

Page 31: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERiyTR-1739/2001

- Fig. 3-4

- Fig. 3-4(a)

6.25 Fig. 3-4(b)fe 3.125

?]

tt4-

3.1.3

4

3.2 ^ ^ ^

Hinze4

3.2.1

Hinze4 Zijnen4

10 cm *!^4 1 m r : f M

^ # 4 ^ ^£fe 400.12S.

1-1% 6120

^ 1 - 2.5 cm

Mach ^ f e

Fig.

- 30 -

Page 32: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

£ : 1 m

H £ r 0.0 PaS.

1, 2, 5 g 107^ 47H

170X112, 170X224, 170X100, 170X170^1^. 170Xl00°ll tfl^ ^x> ^ - 2 : ^ Fig.

3.2.2

3.°]

[26]. Fig.

Fig. 3-7^: a . ^ , <$ x < 5d ^

x

WygnaskiSf Fiedler[27]fe ^ 40d<^-^ ^ # € 4 ^ ^-a«>^l^ . Fig. 3-7£-

, source-jetfi|- -^^1 #%•§• ^ - ^ ^ S-A>?t ^-f, real-jetofl

t t nef)5.4. source-jet^]

y wov^ 4^1-^1- 1, 2, 5, 1074 20%

Fig. 3-8^: ^ ^ ^ ^ £ ^ £ « M-Bl-^4. ^ £ ^ S ^ ^ £ ^ f e ^ 3 4^>^7> 27fl

5, 107US! ^^-fe i 7 ] a^ i - i s ^

fe Fig. 3-9(a)2}- 3-

Fig. 3-9(a

3.3 T^Tfl^l-6!] Tfl^ real-jet^J- source-jet

\& real-jetsf source-jet^

\£\ real-jet

source-jet 7f|'£];ol y£|3|'tt1?]r'€!' -M4"B" -*<!!<£3:'5:Kr7)-011 t^\^V

- 31 -

Page 33: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERLTR-1739/2001

3.3.1 331S?1 ^ A A

£r A^^r 3*}^ ^<&A%- #*H SM, ^*<H1 ^ source-jet -real-jet efl#&£

20m/s 3. 3<^>7fi ^ J s ^ ^^ .S . - i W & 4 - AQ ^ ^ ^ Figfe Fig. 3-1H]

27fl ol^-o] 3.^.7]. Hf -§M, ^ ^ ^If-^ i^# *1»£ 3.2

6.25 mmS ^^^ l^^ l ^ # ^ ^ ^ 1 1 - 3.2 mm

4. ^^ t i o v *^ ^4fe 5°a AAQ y 1 5 ^ ^ 4 » ^ 1 A>-§-«> JflWa 3-3 1

3.3.2 ^1

Fig. 3-12fe ^-a t # ^^S.^E^ i&^itHK^S. # ^ » Fig. 3-13^ r-x. Fig. 3-121- £& ^ £ ^ £ § ^^^r^Ai ^ ^^1§]-JL ^

HA-1 4 ^ ^-^>» a.oljl 814. Fig. 3->^S. 33571)51

r < 0.2m 5) ^ ^ H W ^tfl 1800 ppm %SL£\ ^ H »real-jet^ ^ A } jzfs}- cfl^]^ 0.3. <^^]s|-fe 7jo.s i-MlsM-. Fig. 3-15^- O.r-x sg^ofl tfl^ ^ £ ^-2-Ai (concentration contour)^: i+Bj-^14.

(jet

real-jet^ source-jet

source-jeto)H

^ o^^. 33014.

3378

- 32 -

Page 34: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

5.SL SDS2S1

- 33 -

Page 35: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

Table 3-1 Comparison of Liquid Injection System and 1/4 Model

Unit

Injection

Pipe

Pitch

Hole

Calandria

Shell

Injection System[14]

Number

6

21

16

(per pitch)

1

Length

(mm)

6952

(per unit)

285.75

(per pitch)

5943.6

Diameter

(mm)

56

3.2

6756

(inner)

7594

(outer)

Quarter Model

Number

1

1

4*

(per pitch)

Length

(mm)

1428.5

285.75

(per pitch)

Diameter

(mm)

56

3.2

* Four holes are treated as sources and, therefore, there is no hole in the calculationmodel. Also, calandria shell is neglected in the model, and domain size isdetermined based on the radius of calandria shell.

- 34 -

Page 36: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

Table 3-2 Source Terms in Boundary Condition

sP

Sc

Velocity

— PVinlet

PVjnietVjn/et

Mass Flow Rate

0.0

pVinlet A ^fa

Mass Fraction

— PV inlet

PV Met 4> inlet

- 35 -

Page 37: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

Table 3-3 Structure and Number of Grid for Radial Direction

Number of Grid

(radial)

69

96

111

121

335

Grid Structure

Stretching

Stretching

Stretching

Stretching

Uniform

* The grid for axial direction is divided non-uniformly with total number of 59.

- 36 -

Page 38: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

y: 1/8" (3.2 mm) Dia. Hole

Wall thickness 0.10" (2.5 mm)

do"

Cross Sectionthrough Injection

2.20" (55.9 mm> W Nozzle (Full Size)

O O P t o o o o i

' o o o

(a) Injector

(b) Cross Section

Fig. 3-1 Injection Nozzle

- 37 -

Page 39: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

Fig. 3-2 Schematic Quarter Model of Injection System

- 38 -

Page 40: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

Fig. 3-3 Source in Arbitrary Mesh Center

- 39 -

Page 41: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

(a) Grid size (dx) = 6.25 mm

(b) Grid size (dx) = 3.125 mm

Fig. 3-4 Comparison of Velocity Vector for Real- and

Source-jet Calculation

- 40 -

Page 42: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

Pressure Boudary

mda

rylB

oiW

ai

(1) (2)

2.75 m

Calculation Domain

r Symmetric Line

i

S

• '

\

i

r

3IwoIis

40 m/sec( J is the velocity in the real condition and Qf the velocity as the source term.

Fig. 3-5 Calculation Domain of Free Jet

- 41 -

Page 43: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

Fig. 3-6 Grid Structure for Free Jet Calculation

- 42 -

Page 44: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERLTR-1739/2001

0.8 -

0.6 -

1 0.4 -

0.2-

0.0 -

10 20 30

x/d

• Measurement

—+— Real-jet

Sourece-jet

40 50 60

Fig. 3-7 Comparison of Axial Velocity Profile for Real- and

Source-jet along Jet Direction

- 43 -

Page 45: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERFTR-1739/2001

O

o

10 20 30

x/d

1.0-

0 .8 -

0.6-

0.4-

0.2-

0 .0-

\ \ \y.\v\

1 I ' 1 ' I • I

o Measured

—+—Real-jet

Source-jet

N = 1

[ N = 2N = 5

N = 10

' 1 *

40 50 60

Fig. 3-8 Comparison of Axial Concentration Distribution

for Real- and Source-Jet

- 44 -

Page 46: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

oooCD

a.

80-

60-

40-

20-

0-

Number of grid

N = 1

N = 2

N - 5

real-jet

— .

20

x/d

(a) Velocity

o

o

ooo

cO

100

80 -

4 0 -

10 20

x/d

/ X

Number of grid

N ~ 1

N = 2

N = 5

- real-jet

30 40

(b) Concentration

Fig. 3-9 Percent Error between Prediction and Experiment

- 45 -

Page 47: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERLTR-1739/2001

pressure boundary

"OCOooCDEE

source—jet

285.75

ooo^CDEE

oinCOco

CO

centerline

Fig. 3-10 Two-Dimensional Domain for Real- and Source-jet Calculation

- 46 -

Page 48: Jet Flow Analysis of Liquid Poison Injection in a CANDU

JOJ 3jnjotuj§ pur) \\-£

9 0 Z'O * I-0I I I I 1 1 1 1 1 I 1

-I/O

-20

-eo'

- 9 0

Page 49: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

source-jet 69source-jet 121source-jet 335 (uniform)real-jet 69real-jet 121real-jet 335 (uniform

2.0E+I

O.OE+00,0.0

2.0E+01

0.0E-

0.5

Radial Distance (m)

(a) time = 0.1 sec

source-jet 69source-jet 121source-jet 335 (uniform)real-jet 69real-jet 121real-jet 335 (uniform)

0.5

Radial Distance (m)(b) time = 0.5 sec

Fig. 3-12 Comparison of Velocity for Real- and Source-jet in Radial Direction

(from hole of injection nozzle)

- 48 -

Page 50: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

real-jet source-jet

0.7r-

0.6-

0.5-

.0.4

0.3

0.2

0.1

0.7

0.6

0.5

0.4

0.1

0.1 0.2 0.3x(m) time = 0.1s

(a) time = 0.1 s

0.1 0.2 0.3x(m)

real-jet source-jet

0.7r-

0.6 -

0.5-

.0.4 2

0.3

0.2

_

— ' nllltl

' " " Ill[];;;;;;;;;;: m i

iiiiiii lpl

0.7r-

0.1

1 _

0.3

time = 0.7 s

(b) time = 0.7 s

0.1 0.2 0.3

x(m)

Fig. 3-13 Comparison of Velocity Vector for Real- and Source-jet

- 49 -

Page 51: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

source-jet 69source-jet 121source-jet 335 (uniform)real-jet 69real-jet 121real-jet 335 (uniform

O.0E+O0,

1.0E+04

1.0E

0.0E+00,

Radial Distance (m)

(a) time = 0.1 sec

0.5

Radial Distance (m)(b) time = 0.5 sec

Fig. 3-14 Comparison of Concentration Distribution for Real- and Source-jet

in Radial Direction (from hole of injection nozzle)

- 50 -

Page 52: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

0.7

0.6

0.5

0.4

0.3

0.2

0.1

real-jet

-

-

: 498.946

\ ]§?

0.7i-

0.6

0.5

0.4

0.3

0.2

0.1

source-jet

499.955

0.1X

0.2

(m)0.3

time = 0.1s

(a) time = 0.1 sec

0.1X

0.2(m)

0.3

0.7

0.6

0.5

0.4

0.3

0.2

0.1

real-jet

498.946

0.7i-

0.6

0.5

.0.4

0.3

0.2

0.1

I , ,

source-jet

499.955

i l . i

0.1

X

0.2

(m)0.3

time =

(b) time =

0.5 s

0.5 sec

0.1X

0.2(m)

0.3

Fig. 3-15 Comparison of Concentration Contour

- 51 -

Page 53: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/ER-1739/2001

4.

3.2 mm7l-

^ 767fl

27171- #

. 51 ^ ^ ^

AECLS]

Fig. 1-2

4.1

Fig. 4-14

3378 mm 28

SDS2

7} AECL21 27.786

, e} 0.09 m3

^ ^ 0.08 m3 ^14- Fig.

- 52 -

Page 54: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

lfe Fig 1-15} 20«i Fig.ol

Fig. 4-1S]

1640.9 cm2 a]

48.1 cm ^ ^

^ a f e Fig.

, o]

y, z . r75/HS 4 - 3 ^ 199,875

(205X75X13)71)^ 1/4

Fig. 4 - 4 ^ 6 (a), (b)

5514

^-|-«1-Sa4.

^-^0=14. a 4-H1

fe 357B

7] $\ £-£:

41X75X45

8000 ppmSl

^ A ] ( 2 _ 7 )

51^112

4.2

- 53 -

Page 55: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

4.2.1 - f r * ^ 5L&

Br r-x ^ ^ 3 M 4 4 ^ 3 . $14. Fig. 4-5fe ^ ^ ^ # 0 ] ^ W r-x

. Fig. 4-6fe <4 4 1 ^ ^ 4 . Fig. 4-6(a)#

°fl 4 4Fig. 4-5S] ^|E.fi] z3o}7} ^ ^ ^ °1 ] 4 4

4 "3"^ 4 f e A}^o]^, olfe Fig. 4-6(b)

3.2

Fig.

Fig. 4-7£ \+^- £<H] tfltt -tJLAj(contour)o|51, F i g .

4 4 ^-^*1 ^ 0 ^ 4 . Fig. 4-8(a)» S.^ /-l^o] xl -ofl 4 4

- 44 #

4.2.2

. 2-7]

4 4 71%Jl

4 ^Tfl ol^<^^)4 Al^ol d x l4^ o]^ Sl HlAi ^ ^ ^ j | i 4 f tg^-^4 Fig. 4-10fe

44

- 54 -

Page 56: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

- 55 -

Page 57: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

Table 4-1 Boundary Condition and Physical Properties

Boundary Conditions

Injection

Velocity

Concentration of

Injection Poison

Outlet Condition

27.786 m/s

8000 ppm

Pressure

Boundary

Physical Properties

Density of

Moderator

Density of

Poison

Viscosity of

Moderator

Diffusion

Coefficient

1098 kg/m!

1127 kg/mJ

8.5E-04

(kg/m • s)

5.68E-07

(kg/m • s)

Model Condition

Mesh

Pressure Reference Point

Algorithm

41X75X45

22,75,23 (ij,k)

(Outlet Center)

SIMPLEC

- 56 -

Page 58: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

Outlet (Pressure Boundary)

Fig. 4-1 Schematic Diagram of 1/4 One-Pitch Model

- 57 -

Page 59: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERFTR-1739/2001

(a) x-6 Plane

(b) r-x Plane (c) x- 6 Plane (side)

(d) x-8 Plane (top)

Fig. 4-2 Grid Structure for 1/4 One-Pitch Model

- 58 -

Page 60: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERLTR-1739/2001

1.5

0.5

-0.25 0 0.25

x(m)

(a) Time = 0.1 sec

1.5

6 1

0.5

-0.25 0 0.25

x(m)

(b) Time = 0.3 sec

1.5!

0.5;

-n.25 0 n.25

x(m) •

(c) Time =0.7 sec

1.5

0.5

-0.25 0 0.25

x(m)(d) Time =1.1 sec

Fig. 4-3 Velocity Vector for Five-Pitch Model in r-x Plane (K = 7)

- 59 -

Page 61: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

\

(a) grid number = 1 3 ( 5 direction)

(b) grid number = 35 ( 9 direction)

(c) grid number = 45 ( 9 direction)

Fig. 4-4 Streamlines of r- 9 Plane (time = 0.7 s)

- 60 -

Page 62: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

1.2

0.8

0.4

JL

1.2

0.8

0 0.2

x(m)(a) t ime^ 0.1 s

0.4

0 0.2

x(m)(b) time = 0.3 s

1.2rr 1.2rr

0.4 » 0.4 •

(c) time = 0.7 s (d)time= 1.0 s

Fig. 4-5 Velocity Vector by Poison Injection in r-x Plane (K = 23)

- 61 -

Page 63: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

a)OH

1.5E+03

l.OE+03 Ht

5.0E+02

O.OE+00

-5.0E+02

-1.0E+03

-1.5E+O3

2.0E+03

1.0E+03 h

O.OE+00 F

-1.0E+03 h

-2.0E+03

x(m)

(a) Radial Direction

-

\ \VI\\

&ftI ^ >i \'ji

h 4i\V'j

! ij ii 1 i

/

1k

- - — -ime = O. I sime = 0.3sime = 0.5sime= 1.0 s

r= 0.5371 m

itiii

'ii

r= 0.028954 m1 >

/

/

1-0.1 0

x(m)

(b) Axial Direction

0.1

Fig. 4-6 Pressure Distribution

- 62 -

Page 64: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

1.2

0.8

0.4

1.4875

j _

1.2

0.8

0.4

' 1.48827

Z96654

'7M13

1.2

0.8

0.4

1.4875

14.44429

7.4017.40108

1.2

0.8

0.4

0 0.2 " 0 0.2x (m) x (m)

(a) time = 0.1 s (b) time = 0.3 s

0 0.2x(m)

(c) time = 0.5 s

i '0 0.2x(m)

(d) time = 1.0 s

Fig. 4-7 Turbulent Viscosity Contour in r-x Plane (K = 23)

- 63 -

Page 65: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

20

15

10 -

5 -

I

20

15

10

-

- \

• K

\ ^ 1 ,

_ _ _ _

"\_

\\

time = 0.1 stime = 0.3 stime = 0.5 stime= 1.0 s

\\

\\

0.5r(m)

(a) Radial Direction

1.5

time = 0.1s— — — time = 0.3 s

time = 0.5 stime= 1.0s

-0.1 0.1

(b) Axial Direction

Fig. 4-8 Turbulent Viscosity

- 64 -

Page 66: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

1.2rr

0.8

0.4 499.981

1.2rr

0.8

0.4

J L

499.981

J _0 0.2 0 0.2

x (m) x (m)(a) time = 0.1 s (b) time = 0.3 s

1.2

0.8

0.4

499.981

999.963

1499.94

A1499.94III \\\1999,93

_L

1.2

0.8

0.4

0 0.2

x(m)(c) time = 0.5 s

0

499.981

999.963

499.94

999.9

Mj _0 0.2

x(m)(d) time = 1.0 s

Fig. 4-9 Concentration Contour in r-x Plane (K = 23)

- 65 -

Page 67: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

ao

§oO

2.5E+03

2. OE+03

1.5E+03

1. OE+03

5.0E+02

O.OE+00

time = 0.1 stime = 0.3 stime = 0.5 stime= 1.0 s

r(m)

Fig. 4-10 Concentration Distribution in Radial Direction

- 66 -

Page 68: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERFTR-1739/2001

5. ^

DUPIC CANDU

CFX-4.3 3 £

^ 1/4

2)

3)

±§•5. (reactor physics) «>-§-

SDS251

- 67 -

Page 69: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

6.

SDS2<>11fe Fig. l-2ofl

2)

3)

- 68 -

Page 70: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

, 1999, " 3 ^ 3 . <S31 «|«?!3*M 7 | ^ 7 f l ^ - DUPIC

KAERI/RR-1999/99.

2. J.S. Lee, K.C. Song, M.S. Yang, K.S. Chun, B.W. Rhee, J.S. Hong, H.S. Park, C.S. Rim, H. Keil,

1993, "Research and Development Program of KAERI for DUPIC (Direct Use of Spent PWR Fuel

in CANDU Reactors)", Proceedings of International conference and Technology Exhibition on Future

Nuclear System: Emerging Fuel Cycles and Waste Disposal Options, GLOBAL'93, Seattle, pp.

733-739.

3. « H ^ § ^ k 1996, " ^ 2,3,43L7} $f^#^£^iLjL-H", 4 6.5=£.

4. S. Nawathe, M.K. Sapra, L.R. Mohan, M.K. Nema and S.C. Mahajan, 1997, "Development and

Qualification of Liquid Poison Injection System (SDS-2) for 500 MW(e) PHWRs", Presented in

Work shop on Reactor Shutdown System, IGCAR, Kalpakkam, pp. IV.4.1-IV.4.11.

5. H. Tennekes and J.L. Lumley, 1972, "A first Coourse in Turbulence", The MIT Press.

6. J.O. Hinze, 1975, "Turbulence", McGraw-Hill.

7. P.M. Sforza, M.H. Steiger, and N. Trentacoste, 1966, "Studies on Three-Dimensional Viscous Jets",

A.I.A.A. J. 4, pp. 800-806.

8. W. Rodi and D.B. Spalding, 1970, "A Two-Parameter Model of Turbulence, and its Application

to Free Jets", Warme und Stoffubertragung, B.3, pp. 85-95.

9. % ^ ^ , 1998, "

10. J.O. Hinze and B.G. Van Der Hegge Jijnen, 1949, "Transfer of Heat and Matter in the Turbulent

Mixing Zone of an Axially Symmetrical Jet", Appl. Sci. Res. Al., pp. 435-461.

11. D.B. Spalding, 1971, "Concentration Fluctuations in a Round Turbulent Free Jet", Chemical

Engineering Science, 26, pp. 95-107.

12. C.S. Walker, 1966, "Secondary shutdown system of nuclear power plants", ORNL, ORNL-NSIC-7.

13. A.R. Dastur, 1977, "Confirmation of CANDU shutdown system design and performance during

commissioning", AECL, AECL-5914.

14. AECL, 1996, "Design Manual Liquid Injection Shutdown Units", Revision 6, XX-31760-DM -000.

15. # » g ^ , 1995, " € ^ 2,3,45171 42 ^^7flf-(SDS2) i = 2 = $ M ^ ^ ^ ^ W 2L5L

*\", 1993.03.01-1995.02.28, Canada, tR--&*r^ Q^^i, KAERI/OT-132/95.

16. AEA Technology, 1997, "CFX-4.2 Manual."

17. CM. Rhie, W.L.Chow, 1983, "Numerical Study of the Turbulent Flow Past an Airfoil with Training

Edge Separation", AIAA J. 21, pp. 1525-1532.

18. S.V. Patankar, 1980, "Numerical Heat Transfer and Fluid Flow", Hemisphere

19. R.I. Issa, 1985, "Solution of the Implicitly Discretised Fluid Flow Equations by Operator- Splitting",

- 69 -

Page 71: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERFTR-1739/2001

J. Comp. Phys. 61, pp. 40-65.

20. S.W. Kim, T.J. Benson, 1992, "Comparison of the SMAC, PISO and Iterative Time-Advacing Schemes

for Unsteady Flows", Comput. Fluids, 21, pp. 435-454.

21. R.H. Perry, D.W. Green, J.O. Maloney, 1984, "Perry's Chemical Engineers' Handbook", 6th edition,

McGraw-Hill, pp. 3.286-3.287.

22. B.E. Launder, D.B. Spalding, 1974, "The Numerical Computation of Turbulent Flows", Comput.

methods appl. mech. eng., 3, pp. 269-289.

23. D.L. Sondak, R.H. Pletcher, 1993, "Application of Wall Functions to Generalized Nonorthogonal

Curvilinear Coordinates Systems", AIAA 24th Fluid Dynamics Conference, July 6-9, AIAA 93-3107,

pp. 1-19.

24. I. Demirdzic, A.D. Gosman, R.I. Issa, M. Peric, 1987, "A Calculation Procedure for Turbulent Flow

in Complex Geometries", Comput. Fluids, 15, pp. 251-273.

25. J.F. Thompson, Z.U.A. Wasi, C.W. Mastin, 1982, "Numerical Grid Generation", North-Holland.

26. J.A. Schetz, 1980, "Injection and Mixing in Turbulent Flow", AIAA, 68, Chapter II.

27. I. Wygnanski and H. Fiedler, 1969, "Some Measurements in the Self-Prserving Jet", J. Fluid Mech.

38, pp. 577-612.

- 70 -

Page 72: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

APPENDIX

A.1 CFX-4.3 COMMAND FILE

£-§- CFX-4.3 3.B.Z] COMMAND FILEtfl«V

A]-g--sT: real-jet a.A}c>lj7, ^ g*ty ^ ^ " S ^ - 3x>^ 5s|*l 1/4

»MODEL TOPOLOGY^ Tfcb ^ ^ * ^ ^ ^ ^ 4 ^ S f 4 ^.^.ofl cfl^ PATCH* ^>#<H 1+

f"=fl »MODEL BOUNDARY CONDITIONS'^ ^^I?J:-i- # ^r SlH^- 5 ] ^ $14. °1 S€ r

^w.^-Bi^: »CFX4<?]:i $ 1 4 4 i ^ S »MODEL D A T A ^ A ^ X}^- 7 l ^ , -fj- 1 ^J-Efl^^

7l^*V4. -n- 1 Aov^l^^ »PHYSICAL PROPERTIES^ ^w.f -H »FLUID PARAMETERS^A1 € ^ « H , CFX-4.3^)]^ ^ l € « f e PCP t lHEi l - o]^-^- ^ 014.

0 ] ^ . && »TURBULENT PARAMETERS'3] t\ ^

Prandlt ^ ^ ^ * N t f l ^ w ^ A } ^ 41-^^1-^ - ^ ^ ^ ^ ^

j ^ f ] ^ ^ ^ ) ^ ^ ^ a i e l # , o ] ^ 31^&, »MODEL

»OUTPUT OPTIONS^

COMMAND FILE 1

»CFX4

» S E T LIMITS

TOTAL INTEGER WORK SPACE 3500000

TOTAL CHARACTER WORK SPACE 5000

TOTAL REAL WORK SPACE 10000000

»OPTIONS

TWO DIMENSIONS

BODY FITTED GRID

CYLINDRICAL COORDINATES

AXIS INCLUDED

TURBULENT FLOW

ISOTHERMAL FLOW

INCOMPRESSIBLE FLOW

TRANSIENT FLOW

MASS FRACTION EQUATIONS 1

- 71 -

Page 73: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERFTR-1739/2001

»MODEL TOPOLOGY

»CREATE BLOCK

BLOCK NAME 'BLOCK-NUMBER-1'

BLOCK DIMENSIONS 59 318 1

»CREATE PATCH

PATCH NAME 'PRESS'

BLOCK NAME 'BLOCK-NUMBER-1'

PATCH TYPE 'PRESSURE BOUNDARY

HIGH J

»CREATE PATCH

PATCH NAME 'SYMMETLEFT

BLOCK NAME 'BLOCK-NUMBER-1'

PATCH TYPE 'SYMMETRY PLANE1

LOW I

»CREATE PATCH

PATCH NAME 'SYMMETRIGHT

BLOCK NAME 'BLOCK-NUMBER-1'

PATCH TYPE 'SYMMETRY PLANE'

HIGH I

»CREATE PATCH

PATCH NAME 'HOLE1'

BLOCK NAME 'BLOCK-NUMBER-1'

PATCH TYPE 'INLET

PATCH LOCATION 21 21 1 1 1 1

LOW J

»MODEL DATA

»AMBIENT VARIABLES

U VELOCITY 0.0000E+O0

V VELOCITY 0.O000E+OO

PRESSURE 0.0000E+00

K 1.0000E-04

EPSILON 1.0000E-04

- 72 -

Page 74: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

MASS FRACTI0N1 0.0000E+O0

»DIFFERENCING SCHEME

ALL EQUATIONS 'HYBRID'

» S E T INITIAL GUESS

» S E T CONSTANT GUESS

U VELOCITY 0.0000E+00

V VELOCITY 0.O000E+OO

PRESSURE O.OOOOE+00

K 1.0000E-04

EPSILON 1.0000E-04

. MASS FRACTION1 O.OOOOE+00

»PHYSICAL PROPERTIES

»FLUID PARAMETERS

VISCOSITY 8.5000E-04

DENSITY 1.0980E+03

» M A S S TRANSFER PARAMETERS

»DIFFUSIVITIES

MASS FRACTION1 5.6800E-07

»TRANSIENT PARAMETERS

»FIXED TIME STEPPING

TIME STEPS 12* 1.000000E-01

INITIAL TIME 0.0000E+00

»TURBULENCE PARAMETERS

»TURBULENCE MODEL

TURBULENCE MODEL 'K-EPSILON

»TURBULENCE CONSTANTS

CMU 9.0000E-02

Cl 1.4400E+00

C2 1.9200E+00

C3 O.OOOOE+00

CAPPA 4.1870E-01

»TURBULENT PRANDTL NUMBER

K 1.0000E+00

EPSILON 1.2170E+00

- 73 -

Page 75: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

MASS FRACTION1 9.0000E-01

»LOGLAYER CONSTANT

VELOCITY 9.793 OE+00

MASS FRACTION1 9.7930E+00

»SUBLAYER TfflCKNESS

VELOCITY 1.1225E+01

MASS FRACTION1 1.1225E+01

»SOLVER DATA

»PROGRAM CONTROL

MAXIMUM NUMBER OF ITERATIONS 9999

PRESSURE REFERENCE POINT 30 318 1

MASS SOURCE TOLERANCE 1.0000E-06

TRACE MAXIMUM RESIDUALS

»PRESSURE CORRECTION

SIMPLEC

»TRANSIENT CONTROL

»CONVERGENCE TESTING ON VARIABLE

PRESSURE

»UNDER RELAXATION FACTORS

U VELOCITY 6.5000E-01

V VELOCITY 6.5000E-01

PRESSURE 1.0000E-01

VISCOSITY 7.0000E-01

K 7.0000E-01

EPSILON 7.0000E-01

MASS FRACTION1 1.0000E-01

»CREATE GRID

»SIMPLE GRID

BLOCK NAME 'BLOCK-NUMBER-1'

DX 20* 4.682500E-03 3.200000E-03 5* +

5.710000E-03 3.200000E-03 5* 5.710000E-03 +

3.200000E-03 5* 5.710000E-03 +

3.200000E-03 20* 4.682500E-03

DY .001012 .001023 .001035 .001047 .001060 +

- 74 -

Page 76: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERFTR-1739/2001

.001072 .001085 .001097 .001110 .001123 +

.001136 .001149 .001163 .001176 .001190 +

.034349 .034749 .035155 .035565 .035980 +

.036399 .036824 .037253 .037688 .038127 +

.038572 .039022 .039477

DZ 1.000000E+00

X START O.0000E+OO

Y START 2.8000E-02

Z START -5.0000E-01

»MODEL BOUNDARY CONDITIONS

»INLET BOUNDARIES

PATCH NAME 'HOLE1'

NORMAL VELOCITY 2.0000E+01

TURBULENCE INTENSITY 5.0000E-02

DISSIPATION LENGTH SCALE 3.2000E-03

MASS FRACTION 1 8.0000E-03

»PRESSURE BOUNDARIES

PATCH NAME 'PRESS'

PRESSURE 0.0000E+O0

STATIC PRESSURE SPECIFIED

MASS FRACTION 1 0.O000E+O0

» S T O P

COMMAND FDLE 2

» C F X 4

»OPTIONS

THREE DIMENSIONS

BODY FITTED GRID

- 75 -

Page 77: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

CYLINDRICAL COORDINATES

TURBULENT FLOW

ISOTHERMAL FLOW

INCOMPRESSIBLE FLOW

TRANSIENT FLOW

MASS FRACTION EQUATIONS 1

» U S E R FORTRAN

USRSRC

USRTRN

»MODEL TOPOLOGY

»CREATE PATCH

PATCH NAME 'OUTLET

BLOCK NAME 'BLOCK-NUMBER-1'

PATCH TYPE 'MASS FLOW BOUNDARY

PATCH LOCATION 75 131 75 75 7 7

HIGH J

»MODEL DATA

»AMBIENT VARIABLES

U VELOCITY 0.0000E+00

V VELOCITY O.O00OE+O0

W VELOCITY O.000OE+00

PRESSURE O.0000E+O0

K 1.0000E-04

EPSILON 1.0000E-04

MASS FRACTION 1 O.0000E+O0

»DIFFERENCING SCHEME

ALL EQUATIONS 'HYBRID'

» S E T INITIAL GUESS

» S E T CONSTANT GUESS

U VELOCITY 0.0000E+00

V VELOCITY 0.0000E+00

W VELOCITY 0.0000E+00

PRESSURE O.000OE+O0

K 1.0000E-04

- 76 -

Page 78: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

EPSILON 1.0000E-04

MASS FRACTI0N1 O.000OE+O0

» W A L L TREATMENTS

WALL PROFILE 'LOGARITHMIC

NO SLIP

»PHYSICAL PROPERTIES

»FLUID PARAMETERS

VISCOSITY 8.5000E-04

DENSITY 1.0980E+03

»MASS TRANSFER PARAMETERS

»DIFFUSIVITIES

MASS FRACTION1 5.6800E-07

»TRANSIENT PARAMETERS

»FIXED TIME STEPPING

TIME STEPS 12*0.1

INITIAL TIME 0.0000E+00

»TURBULENCE PARAMETERS

»TURBULENCE MODEL

TURBULENCE MODEL 'K-EPSILON'

»TURBULENCE CONSTANTS

CMU 9.0000E-02

Cl 1.4400E+00

C2 1.9200E+00

C3 0.0000E+O0

CAPPA 4.1870E-01

»TURBULENT PRANDTL NUMBER

K 1.0000E+00

EPSILON 1.21700E+00

MASS FRACTION1 9.0000E-01

»LOGLAYER CONSTANT

VELOCITY 9.7930E+00

MASS FRACTION 1 9.7930E+00

»SUBLAYER THICKNESS

VELOCITY 1.1225E+01

- 77 -

Page 79: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

MASS FRACTI0N1 1.1225E+01

»SOLVER DATA

»PROGRAM CONTROL

MAXIMUM NUMBER OF ITERATIONS 5000

PRESSURE REFERENCE POINT 103 75 7

MASS SOURCE TOLERANCE 1.0000E-06

TRACE MAXIMUM RESIDUALS

»PRESSURE CORRECTION

SIMPLEC

»TRANSIENT CONTROL

»CONVERGENCE TESTING ON VARIABLE

PRESSURE

»CONTROL PARAMETERS

MINIMUM RESIDUAL VALUE O.OOOOE+00

MAXIMUM RESIDUAL VALUE 1.0000E+20

REDUCTION FACTOR 1.0000E+03

DIVERGENCE RATIO 1.0000E+05

»UNDER RELAXATION FACTORS

U VELOCITY 6.5000E-01

V VELOCITY 6.5000E-01

W VELOCITY 6.5000E-01

PRESSURE 1.0000E+00

VISCOSITY 6.0000E-01

K 7.0000E-01

EPSILON 7.0000E-01

MASS FRACTION1 1.0000E+00

»MODEL BOUNDARY CONDITIONS

»PRESSURE BOUNDARIES

PATCH NAME 'OUTLET

PRESSURE 0.0000E+O0

STATIC PRESSURE SPECIFIED

»OUTPUT OPTIONS

»PRINT OPTIONS

» W H A T

- 78 -

Page 80: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

U VELOCITY

V VELOCITY

W VELOCITY

PRESSURE

DENSITY

VISCOSITY

K

EPSILON

MASS FRACTION 1

»WHERE

K PLANES 7

»WHEN

FINAL SOLUTION

EACH TIME STEP

» S T O P

- 79 -

Page 81: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERFTR-1739/2001

A.2 CFX-4.3 GEOMETRY FILE

1/4

fe $^}l:-€r patch o]f-4 n patch?}

vertices ] tfl^ ^ i # 4 1 ^ tflS}o ^^ t f l s 4 4 ^ 4

GEOMETRY FILE (1/4 five-pitch model)

/* GEOMETRY FILE FOR CFX-4 FROM CFX-MESFflMPORT */

1 5 0 199875 219184 /*

hffiLC€K,NPATCH,NGLUE,NELEHNPOINT */

/* BLOCK NAMES AND SIZE (NI,NJ,NK) */

BLOCK-NUMBER-1 205 75 13

/* PATCH TYPE, NAME, NO., RANGE, DIREC, BLK. NO., AND LABEL */

SYMMET SYMMET_DOWN 1

1 1 1 75 1 13 4 1 1

SYMMET SYMMETJLEFT 2

1 205 1 75 1 1 6 1 1

SYMMET SYMMET_RIGHT 3

1 205 1 75 13 13 3 1 1

SYMMET SYMMETJUP 4

205 205 1 75 1 13 1 1 1

WALL WALL_PIPE 5

1 205 1 1 1 13 5 1 1

/* BLOCK TO BLOCK GLUEING INFORMATION */

I* VERTEX CO-ORDS (X,Y,Z) FOR BLOCK 1 •/

-0.714375E+00 0.280000E-01 0.785398E+00

-0.702619E+00 0.280000E-01 0.785398E+00

-0.691651E+00 0.280000E-01 0.785398E+00

-0.681417E+00 0.280000E-01 0.785398E+00

- 80 -

Page 82: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERFTR-1739/2001

A.3 CFX-4.3 USER FORTRAN (USRRSC)

•i- W - A £*r4) tfltt -£^£ ^ W - ^ I t e SP(INODE, IPHS)4 SUGP, IPHS)

flfe address ^ 5 1 ^ 4 . INODEfe

(phase) a iJ lS .^] 1-& liquid, 2fe gas, 3fe soHd

'PRESSURE' yo>;§^)l- ° l-8-«H SP = 0.0, SU =

3-241

USER FORTRAN (USRSRC)

SUBROUTINE USRSRC(IEQN,ICALL,CNAME,CALIAS,AM,SP,SU,CONV

+ ,U,V,W,P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL

+ ,XP,YP,ZP,VOL,AREA,VPOR,ARPOR,WFACT)IPT

+ ,IBLK,IPVERT,IPNODN,IPFACN,IPNODF,IPNODB,IPFACB

+ ,WORK,IWORK,CWORK)

C

IF(CALIAS.EQ.'PRESSURE') THEN

C

CALL IPREC('BLOCK-NUMBER-1 ','BLOCK','CENTRES',IPT,ILEN,JLEN,KLEN,

+ CWORKJWORK)

C

DO I = 1,IMAXI

DO J = UJMAXJ

IIX = 12+41*a-l)+6*(J-l)

IUSRIP = IPaiX,IIY,IIZ)

SU(IUSRIP,1) = SU(IUSRIP,1) + GDM

END DO

END DO

END IF

C

IF(ICALL.EQ.2) THEN

- 81 -

Page 83: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

ENDIF

C

ENDIF

RETURN

END

- 82 -

Page 84: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERI/TR-1739/2001

7)

INIS

KAERI/TR-1739/2001

(DUPIC

(DUPIC

2001. 1.

O] 82 p. S. 3. 7) 26 cm.

o ),( )

CANDU

1/4

nfl-f. CANDU

fe 27.8 m/s fe 8000 ppmr-x r- d

Page 85: Jet Flow Analysis of Liquid Poison Injection in a CANDU

KAERLTR-1739/2001

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org.

Report No.

Sponsoring Org.

Report No.Standard Report No. INIS Subject Code

KAERI/TR-1739/2001

Title/Subtitle Jet Flow Analysis of Liquid Poison Injection in a CANDU Reactor Using Source Term

Main Author Chae, Kyung Myung (Choongnam University)

CoauthorChoi, Hangbok (DUPIC Fuel Compatibility Assessment)

Rhee, Bo Wook (DUPIC Fuel Compatibility Assessment)

Publication

PlaceTaejon Publisher KAERI

Publication

Date2001. 1.

Page 82 p. 111. & Tab. Yes ( V ), No ( ) Size 26 cm.

Note

ClassifiedOpen( V ), Restricted( ),

Class Document, Internal Use Only( )Report Type Technical Report

Sponsoring Org. Contract No.

Abstract (15-20 Lines)

For the performance analysis of Canadian deuterium uranium (CANDU) reactor shutdown system number 2(SDS2), a computational fluid dynamics model of poison jet flow has been developed to estimate the flowfield and poison concentration formed inside the CANDU reactor calandria. As the ratio of calandria shellradius over injection nozzle hole diameter is so large (1055), it is impractical to develop a full-size modelencompassing the whole calandria shell. In order to reduce the model to a manageable size, a quarter of one-pitchlength segment of the shell was modeled using symmetric nature of the jet; and the injected jet was treatedas a source term to avoid the modeling difficulty caused by the big difference of the hole sizes. For the analysisof an actual CANDU-6 SDS2 poison injection, the grid structure was determined based on the results oftwo-dimensional real- and source-jet simulations. The maximum injection velocity of the liquid poison is 27.8m/s and the mass fraction of the poison is 8000 ppm (mg/kg). The simulation results have shown well-establishedjet flow field. In general, the jet develops narrowly at first but stretches rapidly. Then, the flow recirculatesa little in r-x plane, while it recirculates largely in r- 6 plane. As the time goes on, the adjacent jets contacteach other and form a wavy front such that the whole jet develops in a plate form. This study has shownthat the source term model can be effectively used for the analysis of the poison injection and the simulationresult of the CANDU reactor is consistent with the model currently being used for the safety analysis. Inthe future, it is strongly recommended to analyze the transient (from helium tank to injection nozzle hole)of the poison injection by applying Bernoulli equation with real boundary conditions.

Subject Keywords(About 10 words)

CANDU, SDS2, Jet Flow, Liquid Poison Injection