jean-pierre colinge university of california davis, ca, usa jean-pierre colinge university of...

58
Jean-Pierre Colinge University of California Davis, CA, USA

Upload: tracey-lynch

Post on 13-Jan-2016

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Jean-Pierre ColingeUniversity of California

Davis, CA, USA

Jean-Pierre ColingeUniversity of California

Davis, CA, USA

Page 2: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

◊ Introduction (Where SOI Technology stands today)

◊ SOI Materials (SOS, SIMOX, Wafer Bonding, Unibond®)

◊ The “Classical” SOI MOSFET (Partially/Fully Depleted)

◊ Other SOI MOSFETs (Hybrid, Double Gate, Ground Plane, multiple gates)

◊ SOI Circuits (Hi-T°, Low-Power, RAMs)

Page 3: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

◊ Introduction (Where SOI Technology stands today)

◊ SOI Materials (SOS, SIMOX, Wafer Bonding, Unibond®)

◊ The “Classical” SOI MOSFET (Partially/Fully Depleted)

◊ Other SOI MOSFETs (Hybrid, Double Gate, Ground Plane, multiple gates)

◊ SOI Circuits (Hi-T°, Low-Power, RAMs)

Page 4: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

MAINSTREAM

Page 5: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

IBM PD MicroprocessorMotorola PD/FD MicroprocessorAMD PD/FD MicroprocessorTI PD VariousHP PD MicroprocessorPeregrine FD (SOS) RF, logic, EEPROM

analog, Rad-hard

Synova PD Rad-HardHoneywell PD Hi-T°; Rad-hardLincoln Lab FD Low-power, Rad-hard

US Semiconductor Manufacturers Using SOIUS Semiconductor Manufacturers Using SOI

SOI news web site: http://www.soisolutions.com

Page 6: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Advertisement page in USA Today, in Oct. 2000: IBM uses SOI and copper for its top-of-line servers

Page 7: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

G4

* 0.15 m copper process for initial G4 product (migrating to 1 GHz) * up to 1 GHz

G5

* 0.1 m process with initial G5 product* 2 GHz

Page 8: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA
Page 9: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

CLEARWATER, FLA. FEBRUARY 4, 1999 - Honeywell Space Systems and Motorola Semiconductor Products Sector today announced a joint licensing agreement for PowerPC* technology for use in Honeywell space processors. The result will be a next generation space microprocessor which will be radiation hardened to withstand the destructive effects of space, will operate with Power PC software and use less power.Internally, Honeywell is referring to this next generation microprocessor as the Space Processor Chip (SpacePC). It combines the capabilities of the advanced Motorola PowerPC 603e microprocessor with Honeywell’s radiation and performance enhancing Silicon On Insulator (SOI) technology.

CLEARWATER, FLA. FEBRUARY 4, 1999 - Honeywell Space Systems and Motorola Semiconductor Products Sector today announced a joint licensing agreement for PowerPC* technology for use in Honeywell space processors. The result will be a next generation space microprocessor which will be radiation hardened to withstand the destructive effects of space, will operate with Power PC software and use less power.Internally, Honeywell is referring to this next generation microprocessor as the Space Processor Chip (SpacePC). It combines the capabilities of the advanced Motorola PowerPC 603e microprocessor with Honeywell’s radiation and performance enhancing Silicon On Insulator (SOI) technology.

IBM

Motorola

Power PC

Honeywell

Page 10: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

◊ Introduction (Where SOI Technology stands today)

◊ SOI Materials (SOS, SIMOX, Wafer Bonding, Unibond®)

◊ The “Classical” SOI MOSFET (Partially/Fully Depleted)

◊ Other SOI MOSFETs (Hybrid, Double Gate, Ground Plane, multiple gates)

◊ SOI Circuits (Hi-T°, Low-Power, RAMs)

Page 11: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Silicon on SapphireSilicon on Sapphire

Page 12: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Silicon on SapphireSilicon on Sapphire

Page 13: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

SIMOXSIMOX

Silicon substrate

Oxygen ion implantation

Silicon substrateannealing

Buried oxide layer (BOX)

Silicon overlayer

[O] 66%

Page 14: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

SIMOX,

circa1985

SIMOX, 1998

3,000dislocations/cm2

1,000,000,000dislocations/cm2

SIMOXSIMOX

SiliconSilicon

BOX BOX

Page 15: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Si-handle wafer

SiO2

Si wafer (future SOI layer)

Bonding

Polishing/etching

Etch-back

Wafer Bonding and Etch BackWafer Bonding and Etch Back

Page 16: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Wafer BondingWafer Bonding

Page 17: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

H+ implant

Wafer A

Wafer A

Wafer B

Wafer A

Wafer B

Wafer A to be used next as Wafer B

Wafer B

A B

C D

Smart-Cut®

/ Unibond®Smart-Cut

® / Unibond

®

Page 18: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

◊ Introduction (Where SOI Technology stands today)

◊ SOI Materials (SOS, SIMOX, Wafer Bonding, Unibond®)

◊ The “Classical” SOI MOSFET (Partially/Fully Depleted)

◊ Other SOI MOSFETs (Hybrid, Double Gate, Ground Plane, multiple gates)

◊ SOI Circuits (Hi-T°, Low-Power, RAMs)

Page 19: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

P- type silicon

Depletion zoneN + Source N + Drain

GateGate Oxide

Buried oxide

0.1-

0.2

µm

P- type silicon

Depletion zoneN+ Source N+ Drain

GateGate Oxide

0.1

µm

1 m

m

P- type silicon

Depletion zoneN+ Source N+ Drain

GateGate Oxide

Buried oxide

< 0

.1 µ

m

MOSFETsMOSFETs

Bulk

Fully Depleted SOI

Partially Depleted SOI

Page 20: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

0 1 2 3 4 510 -9

10 -8

10 -7

Supply voltage (V)

Dra

in c

apac

itan

ce (

F/cm

2 ) Bulk, NB=1017 cm-3

SOI, P+ drain on P-substrate, tBOX=400 nm, NB=1015 cm-3

SOI, N+ drain on P-substrate, tBOX=400 nm, NB=1015 cm-3

Source and Drain CapacitanceSource and Drain Capacitance

Page 21: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Gate

Source (N+) Drain (N+) tsi

Buried oxide tox2

Back gate (mechanical substrate)

tox1

Vg1

Vds

Vg2

P

SOI MOSFET: a few definitionsSOI MOSFET: a few definitions

FD: 30-80 nmPD:100-200 nm

60-400 nm

Page 22: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Field IsolationField Isolation

LOCOS

Mesa

STI

PossibleEdgeLeakage

Page 23: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Edge LeakageEdge Leakage

Page 24: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Source Drain

Gate

Substrate contact

N+N+

P+

A

Source

Drain

Gate

Subst

rate

conta

ct

Subst

rate

conta

ct

B

N+

N+

P+ P+Source Drain

Gate

N+

N+

P+

P+

Edge Leakage Elimination

AndBody Ties

Edge Leakage Elimination

AndBody Ties

Source Drain

Gate

N+N+

A

Source

Drain

Gate

N+

N+ B

A: Regular SOI MOSFET; B: Edgeless device

A: Lateral body tie; B: H-gate body tieBody ties in source

Page 25: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Source Drain

Gate

Silicon wafer (back gate)

E-fieldlines

SOI MOSFET: DIBLSOI MOSFET: DIBL

or: Drain-Induced Barrier Loweringor: Drain-Induced Barrier Lowering

Electric field lines from the drain encroach on the channel region. Any increase of drain voltage decreases the threshold voltage (the “NPN” potential barrier between source and drain is lowered).

Page 26: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

SOI MOSFETSOI MOSFET

PDSOI MOSFETPDSOI MOSFET FDSOI MOSFETFDSOI MOSFETPro: better VTH controlCon: floating substrate effectsRemedy: Body tie

Pro: better electrical propertiesCon: worse VTH control*Remedy: Uniform SOI material

OFFSPRING

Hybrid (DTMOS, MTCMOS)

OFFSPRING

Double gateMultiple gateBuried ground plane electrode

* VTH < 9 mV in literature

Page 27: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Source Drain

Front Gate

Back Gate

PDSOI MOSFETPDSOI MOSFET

Page 28: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

PDSOI MOSFET: Kink Effect

PDSOI MOSFET: Kink Effect

Source Drain

Front Gate

Back Gate

1. Impact ionization

2. Hole injection in floating substrate

3. Forward bias diode

4. Increase of floating body potential

5. Reduces VTH

6. Increases current

12

43

Page 29: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Drain Voltage

Dra

in C

urre

ntPDSOI MOSFET:

Kink Effect

PDSOI MOSFET: Kink Effect

Current is increased(GOOD!)

Output conductance(or Early voltage)

is very poor(BAD!)

Page 30: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Incr

ease

d

dra

in v

olt

age

a

b

c

Gate Voltage

Log

(d

rain

cu

rren

t)c

ba

0 V

Illustration of the single-transistor latch. "Normal" subthreshold slope at low drain voltage (a), infinite subthreshold slope and hysteresis (b), and device "latch-up" (c).

SOI MOSFET: Single-Transistor Latchup

SOI MOSFET: Single-Transistor Latchup

Source Drain

Front Gate

Back Gate

Page 31: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Source Drain

Front Gate

Back Gate

PDSOI MOSFET: floating-body effectsPDSOI MOSFET: floating-body effects

VG

ID

250 s

VG

ID

20 s

This is only one exampleamong MANY!

Floating body

Page 32: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

ID CoxW

LVG VTH VD

1

2n VD

2

IDsat 1

2n Cox

W

LVG VTH 2

S = nkT

qln(10)

gm

IDVA

q

n kTVA (VA Earlyvoltage)

gm

IDVA

2 Cox W L

n IDVA

Non saturation:

Saturation:

Subthreshold swing:

Gain (weak inversion):

Gain (strong inversion):

MOSFET Equations: Body FactorMOSFET Equations: Body Factor

Page 33: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

S

G

D S

G

D

s

Vg

s1

Vg

s2

Bulk SOI

Cox

Cdepl

CoxfCsi

Coxb

Oxide

Gate - Channel CouplingGate - Channel Coupling

Body factor: n = …1.5… in Bulk; n = …1.05... in FDSOI

Page 34: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

10-

10-

10-

10-

10-

10-

10-

10-

10-

10-

1.00.50.0-0.5-1.0

Gate voltage

Dra

in c

urre

nt [

A]

P-channel N-channel

Transistor characteristics

W = L = 3µm VDS = ±50mV

Vth = ±0.4V Ioff = 1pA/µm

-12

-11

-10

-9

-8

-7

-6

Page 35: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

BESOI 1 - - - 14 5 / 6.4 SIMOX 1 - - - 11 5 / 4.4 SOS 0.35 3 10 23 56 - / - SIMOX 0.32 3 33 14 21 3 / 13.4 SIMOX 0.25 3 41 23.6 32 1.5 / 17.5 SIMOX 0.75 0.9 3 10 11 1.5 / 9 SIMOX 0.75 0.9 10 12.9 30 - / 13.9 (10.4¥) SIMOX 0.3 2 - - 24.3 0.9 / 14 SOS* 0.5 2 2 26 60 1.7 / 16.3 SIMOX 0.2 2 125 28.4 46 1/15.3† SIMOX 0.07 1.5 5 150

(*) Metal-gate technology is used; (†) at 3 GHz and (¥) at 5 GHz.

SOI material

L (µm)

VD (V)

ID (mA)

fmax (GHz)

fT (GHz)

Noise figure / Associated gain (dB) at 2GHz

Microwave SOI MOSFETs

Unibond 0.25 1.5 50 75

Page 36: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

100101.1-10

0

10

20

30

H21 (dB)MAG (dB)ULG (dB)

Frequency (GHz)

Gai

n (d

B)

VDS=VGS=1 V L=0.75 µm NiSi (2.8 ohm/sq.)

Low-voltage Microwave MOSFET

Rather unsophisticated device: tox = 30 nm …

Page 37: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

◊ Introduction (Where SOI Technology stands today)

◊ SOI Materials (SOS, SIMOX, Wafer Bonding, Unibond®)

◊ The “Classical” SOI MOSFET (Partially/Fully Depleted)

◊ Other SOI MOSFETs (Hybrid, Double Gate, Ground Plane, multiple gates)

◊ SOI Circuits (Hi-T°, Low-Power, RAMs)

Page 38: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Emitter (Source)

Collector (Drain)

Gate

Base

Buried Oxide

Emitter (Source)

Collector (Drain)

Gate

Base

Buried Oxide

Hybrid bipolar-MOS aka DTMOS (Dual-Threshold MOS)

aka MTCMOS (Multiple-Threshold CMOS)

Page 39: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

1001010.11

10

Power/stage (µW)

Del

ay/s

tage

(ns

))

Vdd=0.7 V

0.8 V1.0 V0.9 V

1 fJ

10 fJ

100 fJ

2.52.01.51.00.50

100

200

300

400

500

600

700

Vdd (V)D

elay

/gat

e (p

s)

Hybrid device

CMOS/SOI

Leff,N = 0.45 m, Leff,P = 0.58 m(1987)

Leff,N = Leff,P = 0.3 m(1994)

Page 40: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

(Double-Gate MOSFET)

Page 41: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Increasing gate voltageDepth in silicon film

(0 to 40 nm)

Electron concentration (cm-3)

1016

VT

tsi=40 nm

Double-Gate SOI MOSFET:Volume Inversion

Double-Gate SOI MOSFET:Volume Inversion

Page 42: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

543210-1-2-3-4-510 -12

10 -11

10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

Gate voltage [V]

Dra

in c

urre

nt [

A]

300°C300°C

200°C 200°C

20°C

P-channel N-channel

W = L = 3µm

Page 43: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Ground Plane SOI MOSFETGround Plane SOI MOSFET

"The ground-plane concept for the reduction of short-channel effects in fully depleted SOI devices", Ernst, T., and Cristoloveanu, S., Electrochemical Society Proceedings 99-3, p. 329, 1999

Source Drain

Gate

Silicon wafer (back gate)

E-fieldlines

Source Drain

Gate

Silicon wafer (back gate)E-fieldlines

Page 44: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Boron doping concentration

1019 cm-3

1015 cm-3

Source Drain

buried oxide

Gate

Doping concentration

contour plot

L = 0.1 µm

Distance (micrometres)

Dis

tanc

e (m

icro

met

res)

Ground-Plane SOI MOSFETGround-Plane SOI MOSFETP+ implanted ground plane (in Si wafer)

Page 45: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Potential

0 V

1.5 V

Source Drain

buried oxide

Gate

Potential contour plot

L = 0.1 µm VG = 0 V

VDS = 1.5 V

Distance (micrometres)

Dis

tanc

e (m

icro

met

res)

Potential

0 V

1.5 V

Source DrainGate

Potential contour plot

L = 0.1 µm VG = 0 V

VDS = 1.5 V

Distance (micrometres)

Dis

tanc

e (m

icro

met

res)

buried oxide

Ground-Plane SOI MOSFETGround-Plane SOI MOSFETEquipotentials (Regular SOI MOSFET)

Equipotentials (Ground-Plane SOI MOSFET)

Page 46: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

L (nm) S (mV/dec) SGP (mV/dec) DIBL (mV) DILBGP (mV)

50 99 89 350 260

70 91 84 272 190

100 83 77 190 120

200 74 71 80 70

500 71 69 45 40

Regular FD SOI vs. Ground-Plane FD SOIRegular FD SOI vs. Ground-Plane FD SOI

RegularSOI MOSFET

RegularSOI MOSFET

Ground-PlaneSOI MOSFET

Ground-PlaneSOI MOSFET

Page 47: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Double-Gate SOI MOSFETDouble-Gate SOI MOSFET

J.P. Colinge, M.H. Gao, A. Romano, H. Maes and C. Claeys, Technical Digest of IEDM, p. 595, 1990

Source Drain

Gate

Silicon wafer (back gate)

E-fieldlines

Source Drain

Gate

Silicon wafer (back gate)

GateE-fieldlines

Page 48: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

S

D

G

S

DG

S

DG

S

DG

S

DG

1 2 3 4 5Buried Oxide

Different gate configurations for SOI devices: 1) single gate; 2) double gate; 3) triple gate; 4) quadruple gate (or: gate-all-around structure); 5) ∏-gate MOSFET.

Multiple-Gate SOI MOSFETscMultiple-Gate SOI MOSFETsc

Page 49: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

DIBL in fully depleted SOI MOSFETs with different gate structures and different effective gate lengths. VDS = 100 mV.

Gate length (nm)

Multiple-Gate SOI MOSFETscMultiple-Gate SOI MOSFETsc

Page 50: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

◊ Introduction (Where SOI Technology stands today)

◊ SOI Materials (SOS, SIMOX, Wafer Bonding, Unibond®)

◊ The “Classical” SOI MOSFET (Partially/Fully Depleted)

◊ Other SOI MOSFETs (Hybrid, Double Gate, Ground Plane, multiple gates)

◊ SOI Circuits (Hi-T°, Low-Power, RAMs)

Page 51: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

N-well

0V

Vin1=5V

Vin2=0V

Vin

1=5V

Vin

2=0V

5V

5V

0V

5V

Leakage currents

0V

Vin1=5V

Vin2=0V

Vin

1=5V

Vin

2=0V

5V

5V

0V

5V

Leakage current

Leakage currents: example of NAND gate

Bulk SOI

Page 52: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

109

108

107

106

105

104

103

102

101

100

0

20

40

60

80

100

120

Frequency (Hz)

Ope

n-lo

op g

ain

(dB

)

Phase margin (degrees)

Room temp. CL =10 pF

CL=250 pF

400°C

300°C

200°C

50°C

SOI CMOS operational amplifier: High-temperature operation

Page 53: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Circuit Vdd Speed Company µcontroller CPU 0.9V 5.7 MHz Motorola 8k-gate 16b ALU 0.5V 40 MHz NTT 300k gate array 1.2V 38 MHz NTT 16x16b multiplier 0.5V 18 ns Toshiba PLL 1.5V 1.1 GHz Sharp 32-bit ALU 0.5V 260 MHz Toshiba 8x8 ATM switch 2V 40 Gb/s NTT 560k master array 1V 50 MHz Mitsubishi 0.2 µm 64b PPC 1.8V 550 MHz IBM 0.25 µm 64b ALPHA 1.5V 600 MHz Samsung

Low-Voltage Circuits Low-Voltage Circuits

10

PD

FD

PD

FD

FD

FD

FD

hybrid

hybrid

Page 54: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

101.11

10

100

Bit rate per link (Gbps)

Num

ber

of l

inks

CMOS

CMOS

BiCMOSHEMT

SIMOX

ATM Switch

5 Gbps

10 Gbps

40 Gbps

Y. Ohtomo, S. Yasuda, M. Nogawa, J. Inoue, K. Yamakoshi, H. Sawada, M. Ino, S. Hino, Y. Sato, Y. Takei, T. Watanabe, and K. Takeya, Digest of Technical papers, International Solid-State Circuits Conference, p. 154, 1997

Page 55: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

* Much lower rate of soft errors * Less junction leakage * Reduced bit line capacitance * Higher pass-transistor transfer efficiency

Storage capacitance can be reduced 2-3 Supply voltage can be reduced below 1 V

DRAMsDRAMs

Page 56: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

Year Company Memory chip Vdd

1993 IBM 512 kb SRAM 1V 1993 Mitsubishi 64 kb DRAM 1.5V 1995 Samsung 16 Mb DRAM 1996 Mitsubishi 16Mb DRAM 0.9 V 1997 Hyundai 1 Gb DRAM 2 V

Low-Voltage Memories

Page 57: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

16k

64k

256k

1M

16M

1G

1 Gb

1 Mb

1 kb1k 4k

SOI RAMs

Page 58: Jean-Pierre Colinge University of California Davis, CA, USA Jean-Pierre Colinge University of California Davis, CA, USA

SOI now used in commercial products

PD and FD SOI MOSFET physics

Advanced SOI MOSFET structures