jarmo hietarinta- topological solitons in the faddeev-skyrme model

Upload: pomac232

Post on 06-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    1/43

    Topological solitons in the

    Faddeev-Skyrme model

    Jarmo Hietarinta

    Department of Physics and Astronomy, University of TurkuFIN-20014 Turku, Finland

    in collaboration with P. Salo, J. Jykk, J. Palmu, and P. Pakkanen.

    NLP6, Gallipoli, 23.6-3.7.2010

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    2/43

    Faddeevs model

    Vortices

    Hopfion scattering

    Introduction

    Numerical results for knots

    Knot theory

    Introduction

    Solitons:

    Localized on the line (usually) or in the plane (lumps,

    dromions).

    Stability due to infinite number of conservation laws.

    Amenable to exact analytical treatment; completelyintegrable.

    Jarmo Hietarinta Faddeevs model

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    3/43

    Faddeevs model

    Vortices

    Hopfion scattering

    Introduction

    Numerical results for knots

    Knot theory

    Introduction

    Solitons: Localized on the line (usually) or in the plane (lumps,

    dromions).

    Stability due to infinite number of conservation laws.

    Amenable to exact analytical treatment; completelyintegrable.

    Topological solitons:

    Localized on the line (kinks), on the plane (vortices) or in

    3D-space (Hopfions).

    Stability due to topological properties.

    Often can only solve numerically.

    Jarmo Hietarinta Faddeevs model

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    4/43

    Faddeevs model

    Vortices

    Hopfion scattering

    Introduction

    Numerical results for knots

    Knot theory

    Introduction

    Solitons: Localized on the line (usually) or in the plane (lumps,

    dromions).

    Stability due to infinite number of conservation laws.

    Amenable to exact analytical treatment; completelyintegrable.

    Topological solitons:

    Localized on the line (kinks), on the plane (vortices) or in

    3D-space (Hopfions).

    Stability due to topological properties.

    Often can only solve numerically.

    In this talk: Review of work on Hopfions inFaddeevsmodelJarmo Hietarinta Faddeevs model

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    5/43

    Faddeevs model

    Vortices

    Hopfion scattering

    Introduction

    Numerical results for knots

    Knot theory

    Topology in R3: Hopfions

    Carrier field: smooth 3D unit vector field n in R3.

    Jarmo Hietarinta Faddeevs model

    F dd d l I d i

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    6/43

    Faddeevs model

    Vortices

    Hopfion scattering

    Introduction

    Numerical results for knots

    Knot theory

    Topology in R3: Hopfions

    Carrier field: smooth 3D unit vector field n in R3.

    Asymptotically trivial: n(r) n, when |r| can compactify R3 S3.

    Jarmo Hietarinta Faddeevs model

    F dd d l I t d ti

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    7/43

    Faddeevs model

    Vortices

    Hopfion scattering

    Introduction

    Numerical results for knots

    Knot theory

    Topology in R3: Hopfions

    Carrier field: smooth 3D unit vector field n in R3.

    Asymptotically trivial: n(r) n, when |r| can compactify R3 S3.

    3D-unit vectors can be represented by points on the surface of

    the sphere S2. Therefore

    n : S3 S2.

    Jarmo Hietarinta Faddeevs model

    Faddeevs model Introduction

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    8/43

    Faddeev s model

    Vortices

    Hopfion scattering

    Introduction

    Numerical results for knots

    Knot theory

    Topology in R3: Hopfions

    Carrier field: smooth 3D unit vector field n in R3.

    Asymptotically trivial: n(r) n, when |r| can compactify R3 S3.

    3D-unit vectors can be represented by points on the surface of

    the sphere S2. Therefore

    n : S3 S2.

    Such functions are characterized by the Hopf charge, i.e.,

    by the homotopy class 3(S2) = Z.

    Jarmo Hietarinta Faddeevs model

    Faddeevs model Introduction

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    9/43

    Faddeev s model

    Vortices

    Hopfion scattering

    Introduction

    Numerical results for knots

    Knot theory

    A concrete Hopfion

    Example of vortex ring with Hopf charge 1:

    n =

    4(2xz y(r2 1))

    (1 + r2)2,

    4(2yz+ x(r2 1))

    (1 + r2)2, 1

    8(r2 z2)

    (1 + r2)2

    .

    where r2 = x2 + y2 + z2. Note that

    n = (0, 0, 1) at infinity (in any direction).n = (0, 0,1) on the ring x2 + y2 = 1, z = 0 (vortex core).

    Jarmo Hietarinta Faddeevs model

    Faddeevs model Introduction

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    10/43

    Faddeev s model

    Vortices

    Hopfion scattering

    Introduction

    Numerical results for knots

    Knot theory

    A concrete Hopfion

    Example of vortex ring with Hopf charge 1:

    n =

    4(2xz y(r2 1))

    (1 + r2)2,

    4(2yz+ x(r2 1))

    (1 + r2)2, 1

    8(r2 z2)

    (1 + r2)2

    .

    where r2 = x2 + y2 + z2. Note that

    n = (0, 0, 1) at infinity (in any direction).n = (0, 0,1) on the ring x2 + y2 = 1, z = 0 (vortex core).

    Computing the Hopf charge:

    Given n : R3 S2 define Fij = abcnainbjnc.Given Fij construct Aj so that Fij = iAj jAi, then

    Q =1

    162

    ijkAiFjk d

    3x.

    Jarmo Hietarinta Faddeevs model

    Faddeevs model Introduction

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    11/43

    Faddeev s model

    Vortices

    Hopfion scattering

    Introduction

    Numerical results for knots

    Knot theory

    Possible physical realization

    Jarmo Hietarinta Faddeevs model

    Faddeevs model Introduction

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    12/43

    Faddeev s model

    Vortices

    Hopfion scattering

    Introduction

    Numerical results for knots

    Knot theory

    Dynamics: Faddeevs model

    In 1975 Faddeev proposed the Lagrangian (energy)

    E =

    (in)

    2 + gF2ij

    d3x, Fij := n in jn.

    Jarmo Hietarinta Faddeevs model

    Faddeevs model Introduction

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    13/43

    Vortices

    Hopfion scattering

    Numerical results for knots

    Knot theory

    Dynamics: Faddeevs model

    In 1975 Faddeev proposed the Lagrangian (energy)

    E =

    (in)

    2 + gF2ij

    d3x, Fij := n in jn.

    Under the scaling r r the integrated kinetic term scales as

    and the integrated F2 term as 1.

    Nontrivial configurations will attain some fixed size determined

    by the dimensional coupling constant g. (Virial theorem)

    Jarmo Hietarinta Faddeevs model

    Faddeevs model Introduction

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    14/43

    Vortices

    Hopfion scattering

    Numerical results for knots

    Knot theory

    Dynamics: Faddeevs model

    In 1975 Faddeev proposed the Lagrangian (energy)

    E =

    (in)

    2 + gF2ij

    d3x, Fij := n in jn.

    Under the scaling r r the integrated kinetic term scales as

    and the integrated F2 term as 1.

    Nontrivial configurations will attain some fixed size determined

    by the dimensional coupling constant g. (Virial theorem)

    Vakulenko and Kapitanskii (1979): a lower limit for the energy,

    E c|Q|34 ,

    where c is some constant, and Q the Hopf charge.

    Similar upper bound has been derived recently by Lin and Yang.

    Jarmo Hietarinta Faddeevs model

    Faddeevs model Introduction

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    15/43

    Vortices

    Hopfion scattering

    Numerical results for knots

    Knot theory

    Minimum energy states in Faddeevs model

    What is the minimum energy state for a given Hopf charge?

    Studied in 1997-2004 by Gladikowski and Hellmund, Faddeev

    and Niemi, Battye and Sutcliffe, and Hietarinta and Salo.

    Jarmo Hietarinta Faddeevs model

    Faddeevs model Introduction

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    16/43

    Vortices

    Hopfion scattering

    Numerical results for knots

    Knot theory

    Minimum energy states in Faddeevs model

    What is the minimum energy state for a given Hopf charge?

    Studied in 1997-2004 by Gladikowski and Hellmund, Faddeev

    and Niemi, Battye and Sutcliffe, and Hietarinta and Salo.

    Our work:Full 3D minimization using dissipative dynamics:

    nnew = nold n(r)L.No assumptions on symmetry, on the contrary:

    Linked unknots of various charges.

    J.H. and P. Salo, Phys. Lett. B 451, 60-67 (1999),

    Phys. Rev. D 62, 081701(R) (2000).

    Jarmo Hietarinta Faddeevs model

    Faddeevs model

    V i

    Introduction

    N i l l f k

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    17/43

    Vortices

    Hopfion scattering

    Numerical results for knots

    Knot theory

    How to visualize vector fields?

    There is one fixed direction, n = (0, 0, 1), the north pole.Vortex core is where n = n (the south pole).

    Jarmo Hietarinta Faddeevs model

    Faddeevs model

    V ti

    Introduction

    N i l lt f k t

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    18/43

    Vortices

    Hopfion scattering

    Numerical results for knots

    Knot theory

    How to visualize vector fields?

    There is one fixed direction, n = (0, 0, 1), the north pole.Vortex core is where n = n (the south pole).

    We plot isosurfaces n3 = c with color determined by n1.

    Example: Isosurface n3 = 0 for |Q| = 1, 2

    Color order and handedness of twist determine Hopf charge.

    Inside the torus is the core, where n3 = 1.

    Jarmo Hietarinta Faddeevs model

    Faddeevs model

    Vortices

    Introduction

    Numerical results for knots

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    19/43

    Vortices

    Hopfion scattering

    Numerical results for knots

    Knot theory

    Evolution of linked unknots

    Total charge = sum of individual charges + linking number

    Jarmo Hietarinta Faddeevs model

    Faddeevs model

    Vortices

    Introduction

    Numerical results for knots

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    20/43

    Vortices

    Hopfion scattering

    Numerical results for knots

    Knot theory

    Various final states

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    IntroductionNumerical results for knots

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    21/43

    Vortices

    Hopfion scattering

    Numerical results for knots

    Knot theory

    Evolution 5+ 4 2 trefoil

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    IntroductionNumerical results for knots

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    22/43

    Vortices

    Hopfion scattering

    Numerical results for knots

    Knot theory

    Vakulenko bound

    0 1 2 3 4 5 6 7

    Q

    0.96

    0.98

    1.00

    1.02

    1.04

    1.06

    1.08

    1.10

    EQ/

    (E1

    Q3/4)

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    IntroductionNumerical results for knots

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    23/43

    Vortices

    Hopfion scattering

    Numerical results for knots

    Knot theory

    Framed links and ribbon knots

    The proper knot theoretical setting is to use framed links.Framing attached to a curve adds local information near the

    curve, e.g., twisting around it.

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    IntroductionNumerical results for knots

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    24/43

    Hopfion scattering Knot theory

    Framed links and ribbon knots

    The proper knot theoretical setting is to use framed links.Framing attached to a curve adds local information near the

    curve, e.g., twisting around it.

    One way to describe framed links is to use directed ribbons,

    which are preimages of line segments.Example: Q = 2 in two ways:

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    IntroductionNumerical results for knots

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    25/43

    Hopfion scattering Knot theory

    Computing the charge

    For a ribbon define:

    twist = linking number of the ribbon core with a ribbon

    boundary, locally.

    writhe = signed crossover number of the ribbon core with

    itself.

    linking number = 12 (sum of signed crossings)

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    IntroductionNumerical results for knots

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    26/43

    Hopfion scattering Knot theory

    Computing the charge

    For a ribbon define:

    twist = linking number of the ribbon core with a ribbon

    boundary, locally.

    writhe = signed crossover number of the ribbon core with

    itself.

    linking number = 12 (sum of signed crossings)

    The Hopf charge can be determined either by

    twist + writhe

    or

    linking number of the two ribbon boundaries,

    or

    linking number of the preimages of any pair of regular points.

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    IntroductionNumerical results for knots

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    27/43

    Hopfion scattering Knot theory

    Diagrammatic rule for deformations

    Knot deformations correspond to ribbon deformations, e.g.,

    crossing and breaking, but the Hopf charge will be conserved.

    Note that when considering equivalence of ribbon diagrams

    type I Reidemeister move is not valid:

    Jarmo Hietarinta Faddeevs model

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    28/43

    Faddeevs modelVortices

    H fi tt i

    Topology for vorticesNumerical results 2: Hopfion vortices

    P f i di

  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    29/43

    Hopfion scattering Process of unwinding

    What is different with vortices

    Vortices do not allow 1-point compactification of R3 S3.

    Instead we have R2 T if periodic in z-direction

    or T3 if periodic in all directions.

    Topological conserved quantities studied by Pontrjagin in 1941,

    They are mainly related to vortex punctures of the periodic box.

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    Hopfion scattering

    Topology for vorticesNumerical results 2: Hopfion vortices

    Process of unwinding

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    30/43

    Hopfion scattering Process of unwinding

    Further results on single vortices:

    J.H., J. Jykk and P. Salo: JHEP Proc.: PrHEP unesp2002/17

    J.H., J. Jykk and P. Salo: Phys. Lett. A 321, 324-329 (2004).

    Knotting as usual if tightly wound.

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    Hopfion scattering

    Topology for vorticesNumerical results 2: Hopfion vortices

    Process of unwinding

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    31/43

    Hopfion scattering Process of unwinding

    Further results on single vortices:

    J.H., J. Jykk and P. Salo: JHEP Proc.: PrHEP unesp2002/17

    J.H., J. Jykk and P. Salo: Phys. Lett. A 321, 324-329 (2004).

    Knotting as usual if tightly wound.

    If there are several vortices close enough there can be

    bunching or in the fully periodic case, Hopfion unwinding.

    J. Jykk and J.H., Phys. Rev. D 79, 125027 (2009).

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    Hopfion scattering

    Topology for vorticesNumerical results 2: Hopfion vortices

    Process of unwinding

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    32/43

    Hopfion scattering Process of unwinding

    4 4

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    Hopfion scattering

    Topology for vorticesNumerical results 2: Hopfion vortices

    Process of unwinding

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    33/43

    Hopfion scattering Process of unwinding

    4 4

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    Hopfion scattering

    Topology for vorticesNumerical results 2: Hopfion vortices

    Process of unwinding

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    34/43

    Hopfion scattering Process of unwinding

    4 4

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    Hopfion scattering

    Computational methodResults

    Conclusions

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    35/43

    p g

    True time evolution

    So far: fictitious time giving 1st order dissipative dynamics.

    Now: Full dynamics by the Lorentz invariant Lagrangian:

    L

    =

    1

    4{

    0 (

    )

    1[(

    )

    2

    (

    )(

    )]+(1

    )}.

    The metric is (1, 1, 1, 1) and 0 = 1, with 1 > 0. is the Lagrange multiplier.

    Jarmo Hietarinta Faddeevs model

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    36/43

    Faddeevs modelVortices

    Hopfion scattering

    Computational methodResults

    Conclusions

  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    37/43

    Computational setting:

    Time evolution by 4th order Runge-Kutta.

    Spatial derivatives discretized on 53 points,

    space typically discretized into a 1503 lattice.

    Dirichlet boundary condition with n| = n = (0, 0, 1).Furthermore a thin and mild absorption layer to prevent

    radiation from reflecting and re-entering scattering region.

    Courant instability was controlled by smoothing.

    Platform: SAMRAI for dynamics and Visit for visualization.

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    Hopfion scattering

    Computational methodResults

    Conclusions

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    38/43

    Scattering processes

    Initial states constructed by minimization and then Lorentz

    boosted numerically.

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    Hopfion scattering

    Computational methodResults

    Conclusions

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    39/43

    Scattering processes

    Initial states constructed by minimization and then Lorentz

    boosted numerically.

    Observations:

    Head on scattering:

    Various deformations possible, but the Hopf charge is

    conserved.

    The final state may acquire spinning

    With nonzero impact parameter there may be intermediatebound states.

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    Hopfion scattering

    Computational methodResults

    Conclusions

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    40/43

    Conclusions

    We have studied of Hopfions in Faddeevs model.

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    Hopfion scattering

    Computational methodResults

    Conclusions

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    41/43

    Conclusions

    We have studied of Hopfions in Faddeevs model.

    Used dissipative dynamics to find minimum energy states

    for a given Hopf charge.

    Some results obtained on the taxonomy of the minimumenergy states.

    The results follow closely the Vakulenko-Kapitanskii bound

    E c|Q|3/4

    The trefoil knot is obtained at |Q| = 7 from various initialconfigurations.

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    Hopfion scattering

    Computational methodResults

    Conclusions

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    42/43

    Conclusions

    Results on vortices:

    Tightly would vortices form knots in the middle.

    Closeup vortices form a bunch.

    In the fully periodic case the vortices can unwind

    completely.

    We have also studied Hopfion scattering.

    Jarmo Hietarinta Faddeevs model

    Faddeevs modelVortices

    Hopfion scattering

    Computational methodResults

    Conclusions

    http://find/http://goback/
  • 8/3/2019 Jarmo Hietarinta- Topological solitons in the Faddeev-Skyrme model

    43/43

    Conclusions

    The videos can be seen at

    www.youtube.com/nonlinearUTU

    This work is supported by Academy of Finland grants

    47188 and 123311.

    Jarmo Hietarinta Faddeevs model

    http://find/http://goback/