japan's experience and prospect on resource management of ... · peak phosphorus global...

60
K. Matsubae 1 , H. Ohtake 2 and T. Nagasaka 3 1 Assoc. Prof., Graduate School of Engineering, Tohoku University, Sendai, Japan, and the Leader of “Development of Analytical Model on Phosphorus Recovery and Utilization” Project, Ministry of the Environment, Japan 2 Prof., Graduate School of Engineering, Osaka University, Suita, Japan, and Chairperson of the Phosphorus Recycling Promotion Council of Japan (PRPCJ) 3 Prof., Graduate School of Engineering, Tohoku University, Sendai, Japan, and the Board member of PRPCJ Japan's experience and prospect on resource management of Phosphorus: policies, strategies, and technologies

Upload: others

Post on 09-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

K. Matsubae1, H. Ohtake2 and T. Nagasaka3

1 Assoc. Prof., Graduate School of Engineering, Tohoku University, Sendai, Japan, and the Leader of “Development of Analytical Model on Phosphorus

Recovery and Utilization” Project, Ministry of the Environment, Japan

2 Prof., Graduate School of Engineering, Osaka University, Suita, Japan, and Chairperson of the Phosphorus Recycling Promotion Council of Japan (PRPCJ)

3 Prof., Graduate School of Engineering, Tohoku University, Sendai, Japan, and the Board member of PRPCJ

Japan's experience and prospect on resource management of Phosphorus: policies, strategies, and technologies

Life can exist without oil !

There is a non-renewable resource that is essential for our life.

That is phosphorus.

Phosphorus is an essential constituent for all living organisms.

An essential element for animals and plants nutrition.

Nutrition barrel

Water level in the barrel, which is determined by theshortest plate, means growth degree of plant.

Supply of P often becomes critical for growth of plants

P, N, K

Without phosphorus, there will be no biomass, no biofuel, no agriculture, nor life.

Phosphorus is used in a wide

variety of manufacturing industries.

Flame-retardantsEtching agent

Food additives

Surface treatment chemicals

Today, phosphorus is mostly obtained from mined rock phosphate which is a non-renewable resource.

From Prof. D. A. Vaccari

D. Cordell et al., Global Environ. Change, 19:292‐305

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

30

25

20

15

10

5

0

Around 2040

Although the demand of phosphorus fertilizer is predicted to increase more than 50% by 2050, the global peak in phosphorus production is expected around 2040 .

Phosph

orus produ

ction (M

T P/Yr)

Year

Peak phosphorus

Global production

Global demand

Phosphate Rock reserves (thousands of metric tons)

D.A. Vaccari, Scientific American, 54-59, June (2009)

CONCENTRATED PHOSPHORUS RESOURCES

82,000 260,000 25,000 4,100,000 100,000 180,000 900,000 5,700,000Australia Brazil Canada China Egypt Israel Jordan Morocco

200,000 50,000 1,500,000 100,000 30,000 100,000 1,200,000 890,000Russia Senegal South Africa Syria Togo Tunisia U.S. Other

Japan

None

Morocco, China, South Africa and the U.S. hold 83% of the world’s easily exploitable

phosphate rock and contribute two thirds of the annual phosphorus production.

Trend in other country

Brazil was phosphorus exporting country

But now they are importing phosphorus due to bio‐fuel production

NATURE 461: 716-718 (2009)

SCIENTIFIC AMERICAN54-57 June (2009)

Prof. D.A. Vaccari

I. Why does Japan need P recycling?

II. What are the potential resources for P recycling?

III. Development of P recycling as a new green industry

IV. Emerging technologies and business models

V. Key issues for fully realizing P recycling

VI. P Recycling Promotion Council of Japan

I. Why does Japan need P recycling?

II. What are the potential resources for P recycling?

III. Development of P recycling as a new green industry

IV. Emerging technologies and business models

V. Key issues for fully realizing P recycling

VI. P Recycling Promotion Council of Japan

P RECYCLING: JAPAN AS A CASE STUDYP RECYCLING: JAPAN AS A CASE STUDY

(kt/Y =103 ton/year)

NaturalWaters

Other Industry

Phosphate rock

Steelmaking Industry

Products/By-productsOther mineral

resources

Livestock

Domestic products

Wastewater

Wastes

Soils

Agricultural lands

River/Coastal water

Farm/Ranch

Slag

Steel

Food & Feed

Humans

Steelmaking Industry

Food & Feed

Livestock

Humans

Fertilizer

Wastes

Fertilizer

Chemical Industry

141.3

110.6

155.9

157.2

395.2

103.6

Chemical Industry

63.910.5

356.1

111.6

145.2

129.3

96.4

88.2

54.5224.9

Food &Feed Livestock

Fertilizer

Domestic and municipal wastes

Waste sludges

55.4

54.5

4.3 10.6

0.114.2

110.6

0.22.1

0.2

3.1

22.90.2

4.7

24.514.2

32.9

42.00.4

Crop

17.5 75.1

Wastes3.2

4.3

2.1

Wastes18.7

Fertilizer10.60.1

14.56.6

32.9

17.4

18.73.2

14.2

Chemical Industry

Fertilizer

Farm/Ranch

42.8

Humans

Sewage sludge

2.6

Yokoyama, et al., ISIJ International, 47: 1541‐1548 (2007); modified by H. Ohtake

173.4 (23%)

Iron oreand coal

Total inflow of P = 750 kt/Y

NATIONAL PHOSPHORUS FLOW IN JAPAN

Food & Feed production outside Japan (Virtual P)

170 x 5 = 850 kt/Y

WORLD P CONSUMPTION = ~17,000 KT/Y

INFLOW OF P = 750 (4.4%)VIRTUAL P = 850 (5.0%) 

TOTAL = ~ 1,600 KT/Y

~ 9% OF WORLD P CONSUMPTION

SIGNIFICANCE OF P RECYCLING IN JAPAN

Morocco

Morocco is the world-largest producer of high-quality rock phosphate. Nevertheless, the people in Morocco are facing difficult problems on the phosphate availability.

Japan is consuming approximately 10% of

the world-consumption of rock phosphate.

We have a responsibility for achieving phosphorus recycling for the green growth of the world.

0.3

800

IMPORTANCE OF SUSTAINABLE P MANAGEMENT

3001005

billion $/Y

Import of Rock P

Agricultural Production

Food Industry ProductionFinal Food Consumption

Fertilizer Market

THE SIZE OF MARKETS RELEVANT TO FOOD IN JAPAN

The nature of phosphorus flow

Most of all the phosphorus products start from ore.

Once phosphorus flow into our society, phosphorus is in gradually loss by stages

Input Loss

Fertilizer Soil and Water

Feed Excrement

Crops Inedible Part, Food waste

Phosphorus compounds Waste water, sludge

Food consumption derives the phosphorus ore demand.

One unit of cattleconsumes 7 t of maize, 11 t of corn silage, and 450 kg of soy bean in 394 days produce 250 kg of beef from 550 kg of grown cattle (Subak, 1999).

Feedstuffs also require crop acreage and nutrients.  One unit of cattle requires 0.6 ha of farmland and 15.8 kg of 

phosphorus to produce its feedstuff.  Feedstuff requirement for other meat production refers to 

inventory data derived from a Japanese Input Output Table

250 kg

550 kg 7 t of maize, 11 t of corn silage, and 450 kg of soy bean

0.6 ha of farmland 

15.8 kg of phosphorus

Virtual Phosphorus Ore Requirement (VPOR)

Details are in  Matsubae et al, Chemosphere, 2011

6,160ktof Ore

Fig. The Virtual Phosphorus Ore Flow in Japan(2005)

Approximately half of imported embodied phosphate ore was transformed into fertilizer, and utilized to produce agricultural products. 

“Eaten” phosphate ore was 20% of imported virtual phosphorus ore and 12% of all the virtual phosphorus ore demand of Japan. 

The more imported agricultural products and the less phosphorus yield food consumption, the lower the “eaten” phosphorus ratio. 

Virtual Phosphorus Ore Requirement

Matsubae, Kajiyama, Hiraki, Nagasaka, Chemosphere, 2011

P Recycling for Industry

High-tech IndustrySewage Wastewater

treatment

Food and Feed

Biosludge

P recovered

Ash

Yellow Pmanufacturing

P-free ash

Yellow P Phosphoric acidmanufacturing

High-quality phosphate

Iron ore Coke

Steel Industry Steel-making slag

P-free slug

P-free slag can be returned to a steel manufacturing process.

P slag

Phosphoric acidmanufacturing

Phosphate

Phosphate production by a wet process

Water reclamation

Steel-making Industry

Chemical Industry

Recycle Industry

Cement Industry

The P content of clinker needs to be lower than 0.5%.

Automobile

Semiconductor

Liquid crystal

AgricultureFood

ConsumerFertilizer Industry

P fertilizer ManureAshFarmland

P recovered

Eutrophication control

P recycle through yellow phosphorus regeneration

Vegetable oil refinery process

Food Industry

P RECYCLING AS GREEN INDUSTRY

P RECOVERY IN HIGH-TECH INDUSTRY

Automobile

Rechargeable battery

Liquid crystal panel

Surface treatment chemicals

Etching agents

Quality phosphoric acid is used in high-tech industries.

Zn2Fe(PO4)2・4H2O

LiFePO4

Flame retardants

DIRECT HYDRATION OF ETHYLENE TO ETHANOL

Catalyst: phosphoric acid300oC 60 atm. JAPAN SYNTHETIC ALCOHOL CO.,Ltd. 

Waste and wastewater from edible oil refining process contain high levels of P.

P RECOVERY IN FOOD AND FERMENTATION INDUSTRY

P emission: 10-20 tons P per year

Ever-increasing disposal costs have offered incentives to P recycling.

Food and Feed

P recovered

Yellow P Phosphoric acidmanufacturing

High-quality phosphate

Iron ore Coal

Steel Industry Steel-making slag

P-free slug

P-free slag can be returned to a steel manufacturing process.

P slag

Phosphoric acidmanufacturing

Phosphate

Phosphate production by a wet process

Steel-making Industry

Chemical Industry

Liquid crystal

Agriculture

Fertilizer Industry

P fertilizer ManureAshFarmland

P recycle through yellow phosphorus regeneration P recovered

P RECYCLING AS GREEN INDUSTRY

P RECYCLING AS A SUCCESSFUL BUSINESS

Import from Australia, Brazil, and India

P RECYCLING IN STEEL-MAKING INDSUTRY

高炉 トーピードカー(溶銑予備処理炉)

転炉(脱炭炉)

溶銑(~1500℃)

脱リンスラグ

溶銑(~1400℃)

粗鋼(~1600℃)

P 0.12 w%

P 2-3 w%

P 0.02 w%

Iron making Hot metal pretreatment Basic oxygen steel making

90 ktonP/Y

Steel-making slag

K. Felkins, H.P. Leighly, Jr., and A. Jankovic:

The Royal Mail Ship Titanic: Did a Metallurgical Failure Cause a Night to Remember?Journal of Metals, 50 (1) (1998), pp. 12‐18.

Figure 1. The Titanic under construction at the Harland and Wolff shipyard in Ireland. (Photo courtesy of the Titanic Historical Society.) 

Phosphorus and the Titanic

Table The Composition of Steels from the Titanic, and ASTM A36 SteelC Mn P S Si Cu O N MnS: Ratio

Titanic Hull Plate 0.21 0.47 0.045 0.069 0.017 0.024 0.013 0.0035 6.8:1

ASTM A36 0.20 0.55 0.012 0.037 0.007 0.01 0.079 0.0032 14.9:1

The presence of relatively high amounts of phosphorous, oxygen, and sulfur has a tendencyto embrittle the steel at low temperatures.There is a high probability that the steel used in the Titanic was made in an acid‐lined open‐hearth furnace, which accounts for the fairly high phosphorus and high sulfur content.

Phosphorus and the Titanic

P RECOVERY FROM STEEL-MAKING SLAG

Approximately 90 kt P/Y is emitted in the

form of steel-making slag.

“We are producing high quality steels, not slag”, steelmaker said.

Tragedy of phosphorus in slag

P RECOVERY FROM SEWAGE

P recovery and recycling in the sewage treatment sector is most practical and promising.

Surface treatment chemicals

Food additive

Frame retardant

Electronics, Battery

Chemicals, Pesticide

Fertilizer, Feed additive

Food oil refinery agent

SECONDARY PRODUCT

Automobile bodySteel plate

ComputerCellular phoneLiquid crystal TV

AntioxidantFlavor enhancer

Home electronicsTextilePrinter

Electric Car BatteryPC battery

AntibioticsMedicine

DetergentShampoo

Phosphate fertilizerMixed fertilizer

Cooking oilSalad oil

Eutrophic lake water and sediments

Sewage sludge and sludge incineration ash

Steel-making slag

Waste from food and fermentation industry

Waste from chemical industry

Agricultural and livestock waste

Waste from high-tech industry

Farmland soil

Garbage and kitchen waste

Low-quality rock phosphate

USE APPLICATION

Yellow phosphorus

Phosphoric acid

Etching agent

UN

US

ED P

HO

SP

HO

RU

S R

ESO

UR

CE PHOSPHATE

REFINERY

QUALITY,COST, ANDMARKET

Intermediate of medicine

Phosphate Refinery is the technology for recovering phosphorus from unused resources .

P RECYCLING HAS NEVER BEEN REALIZED ON A LARGE SCALE.P RECYCLING HAS NEVER BEEN REALIZED ON A LARGE SCALE.

It is very important to show how P recycling becomes

a successful business.

Microcystis aeruginosa cyanobacterium

Eutrophication

Fish Kill

Eutrophication

Dissolved oxygen is consumed when the cells are decomposedby aerobic bacteria, killing economically important fishes andother aquatic organisms. In addition, a toxic substance, calledalgal toxin, is released from the bloom. This is also a difficultproblem in drinking water supply.

PPK

PPXGppA

Ppa

PhoB

Pta

PhoRR

PhoRAPhoB*

BAP

CreB

PhoE*

PhoU*

Organic Pi

polyP PPi

Inorganic Pi

Pi

PitKm=0.4M, Ka=1MVmax=15.9nmol /min mg

G3P

Ugp*(ugpBAECQ)GlpT

Pst*

(pstSCAB)

H6PG1P

Phosphonates

Phosphonates

PhnG~M*

Degradation of Phosphonates

Organic Pi

Organic Pi

[Pi]>4M

[Pi]<4Mphosphorylation

PhoB-P dephosphorylation

Pho regulon promoter

Succinyl-CoA

ATP PhoBPhosphorylation

Transcriptional factor?efficiency

Activation

Cross regulation

Activation

Cross Regulation(C and energy metabolism)

Phosphorylationor

Detection by censor

Leader peptidase1Amino peptidase

471amino acids

Arg-22S-SBond forming

Dimer(BAP activity)

330 amino acids Tertial structure

trimer

Hydrolysis

ADP

Acetyl-CoA+Pi

Acetyl phosphate

CoA

ATP+Acetate

A EC

Phn*

CDE

TCACycle

NADHATP, GTP, NTP

Pi

RNA,DNA + PPi

PolyPn+1

PolyPn+Pi

PolyPn

Pi

NTP(Trinucleotides)

Ca2+

Mg2+etc.Pi Inhibition Pi

UhpT

Glycerophosphoryl diester

(Hydrolysis )Q

E

M HGP

N

CreC

Pi

Central metabolic pathway

PEP

ATP

BPGGAP

Pi ATP

Glycolysis

Succinic acid

GDP+PiGTP

ADP

GDP

Electron transportH+

ADP+Pi

ATP

H+

Organic PiPi

PhoQPhoP Unknown target

Most favorable

*Pi regulon genes

Pi-starvatopm inducible but not involved in Pi regulon genes

Pi Pi

(pitA)

(constitutive)

Bap*

AppA●

CpdBAgp UshAH6P (pH4~6)

(pH7.5)

(pH2.5)

(pH8~10)

C sourceC source

polyP

cAMP+CAPControl Inhibition of UDP-G

degradation

?

Pi starvation

1000-fold increase

Pi-starvation10-fold increase

Periplasmic region

Enzymes and proteins

ATPase activity

Outer membrane

Km=1.5MVmax=3nmol/min mg

cAMP+CAPControl

70 Pho Box

OmPF

OmPC

1 channel/monomer

Amino ester phosphonate etc.Methyl phosphonateOrtho phosphonate etc.

K I J

L

C-PlyasePathway

Accesary

F OControl

AckA

[0.5mM]

PPi

Glucose

ATP

[0.2mM]

AC

Pi [10mM]

Pgc

Gapa

sucCDPyruvate kinase

FADH2

Fumaric acid -ketogluttaric acid

Isocitric acid

L-Malic acid

Oxalacetic acid

PsiFPhoHPsiE

Unknown function

AtpLBEAGDC

PhoA

Amino acid starvation

Lon protease

ribosomal proteindegradation

PolyP-PHB complex

Ca++

RelAppGppATP

GTP

Km=38.2MVmax=55nmol /min mg

(pitB)

PhoB control

Polyphosphates

H-P-OH OH

-

=O

R-P-OHOH-

=O

HO-P-OHOH

-

=O

-O-P-O-P-O-P-OH

=O

=O

=O

OH-

OH

-

OH

-

[polyP]

HO-P-OHOH

-=O

RO-P-OHOH

-

=O

[Pi][Pt]

H-P-OH OH

-

=O

[Pt]

[Pn]

Polyphosphate

PhnCDE PhnG‐M

PhnG‐M

PhnCDE

[ATP]PPK

PPX

PST PIT

BAP

Inducible under Pi limitation

[Pi][Org-Pi]

K. Imazu et a., Appl. Environ. Microbiol., 64: 3754‐3758 (1998).

Phosphate Inorganic Transport

Polyphosphate kinase

exopolyphosphatase

Phosphate-specific Transport

Polyphosphate

PolyP-accumulating mutants of Acinetobacter sp. K3

Microorganisms are the best agents to remove phosphorus from wastewater.

Aeration tankWastewater

Sludge settler

Effluent

Waste sludgeSludge recycle

Approximately 50% of organic pollutants are oxidized to CO2, while the remaining half is converted to activated sludge biomass. It is very important to use waste sludge as renewable resource.

Sterilization by chlorination

ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL PROCESS

Enhanced biological phosphorus removal primarily relies on the ability of sludge microorganisms to accumulate polyphosphate.

Phosphate can be released from polyphosphate-accumulating sludge by anaerobic sludge digestion.

SLUDGE MANAGEMENT

P-recovery as struvite

Struvite crystallization reactor

Dr. Esumi, a pioneer in struvite crystallization process

Struvite often causes difficult incrustation problems in pipelines. The hard crystalline incrustations have to be removed by means of mechanical cleaning techniques.

Struvite (MAP):

Sales  price = ¥12 /kg‐MAPProduction cost = ¥50 /kg‐MAPat Matsue city

Sales  price = ¥21 /kg‐MAPProduction cost = ¥500 /kg‐MAPat Fukuoka city

Osaka city and Kitakyushu city have withdrawn from MAP business.

MAP = Magnesium Ammonium Phosphate (Struvite)

Wastewater treatment plant at Fukuyama

Sludge incineration ash contains P at concentrations similar to rock phosphate.

SLUDGE INCINERATOR

The full-scale plant for recovering phosphorus from sludge incineration ash started running in April at the city of Gifu, Japan.

From Mr. K. Goto, Gifu City Office

From Mr. K. Goto, Gifu City Office

Recovered phosphorus

QUALITY, COST, AND MARKET BARRIERS

Sales price:¥800 /20-kg HAP bag (¥40/kg-HAP)

More than 2,000 bags have been sold so far.

HAP: Calcium hydroxyapatite

Amorphous Calcium Silicate Hydrate (A-CSH)

Patent publication number: JPA_2009285635Onoda Chemical Industry Co., Ltd.

Autoclaved Lightweight Concrete (ALC)A by-product of the building material industry

Tobermorite

Crystalline calcium silicate hydrates are not effective in recovering P.ALC and tobermorite were added to the liquor at concentrations of 50-times higher than ACSH.

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140

Time (min)

P c

on

cen

tra

tio

n (m

g/l)

Tobermorite

ALC

A-CSH

Ca:P = 2

Ca:P = 100

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0 20 40 60 80 100 120

KF‐2 A KF‐2 B

KF‐2 C KF‐2 D

P recovery using A-CSH particles

Onoda Chemical Industry Co., Ltd.

P r

eco

ve

ry (%

)Ca/P=2 Ca/P=1.5 Ca/P=1

N 0.13 0.12 0.19P2O5 15.6 18.3 22.0

N and P contents after P adsorption

Time (min)

Flow rate: 400 m3/day  P: 120 mg/l

P = 0.5 ton/day = 180 ton/Y

Mixing tank: 20 m3

A‐CSH: 400 kg/day

Settler

Recovery  rate: 470 kg/day (P2O5 18%) 

P: 25 mg/l

P removal rate: 80%

Anaerobic sludge digestion

Aeration tank

P RECOVERY

Onoda Chemical Industry Co., Ltd.

150 tonP/Y

P recovery

P RECYCLING BUSINESS

Cement Industry

Production and distribution of A-CSH

Plant Engineering company

Onoda Chemical Industry Co., Ltd.Fertilizer Industry

Wastewater treatment plantSewage

Treated water

Sewage sludge

Anaerobic sludge digestion

Digestion liquor

Carrying in

Carrying out

Recovered P

Agitating truck

P Recycling for Industry

High-tech IndustrySewage Wastewater

treatment

Food and Feed

Biosludge

P recovered

Ash

Yellow Pmanufacturing

P-free ash

Yellow P Phosphoric acidmanufacturing

High-quality phosphate

Iron ore Coke

Steel Industry Steel-making slag

P-free slug

P-free slag can be returned to a steel manufacturing process.

P slag

Phosphoric acidmanufacturing

Phosphate

Phosphate production by a wet process

Water reclamation

Steel-making Industry

Chemical Industry

Recycle Industry

Cement Industry

The P content of clinker needs to be lower than 0.5%.

Automobile

Semiconductor

Liquid crystal

AgricultureFood

ConsumerFertilizer Industry

P fertilizer ManureAshFarmland

P recovered

Eutrophication control

P recycle through yellow phosphorus regeneration

Vegetable oil refinery process

Food Industry

Business model 1

Business model 2

Business model 3

BUSINESS MODELS FOR P RECYCLING

Patents have been applied for P recycling.

Narrow knowledge and information gaps between different industrial sectors,

Promote cooperation between different sectors,

Innovate P refining technologies,

Create market for recovered P,

Establish a nationwide association for P recycling,

Formulate national strategy for securing of P resources.

Narrow knowledge and information gaps between different industrial sectors,

Promote cooperation between different sectors,

Innovate P refining technologies,

Create market for recovered P,

Establish a nationwide association for P recycling,

Formulate national strategy for securing of P resources.

To realize P recycling, we needed to:To realize P recycling, we needed to:

Model area in P recycling 

Ashidagawa WWTP Biophosphorites

P recycling center

SalesFertilizer Industry

Waste water treatment plants (WWTP)

Recovered P

・Hotels・Superstores・Food manufacturers

BiogasElectricity

Heat energy

P industry

Night soil treatment plant

P recovery(Heatphos)

Industrial Wastes Industrial Wastes

P recovery(Heatphos)

P recovery(Heatphos)

P recycling center

Recovered P

The Phosphorus Recycling Promotion Council of Japan

Industry Academia Government

THE PHOSPHORUS RECYCLING PROMOTION COUNCIL OF JAPAN

PRPCJ membership = 139 ( 71 corporate members)

Phosphate rock

P recycle technology

Yellow phosphorus

International cooperation for P recycling in Asia

Yellow phosphorus

China

Vietnam

Others

Transfer of P recycle technology

Stable supply of P from Asia

Japan

P fertilizer

Food and Feed

Industrial P

Efficiency of P use

P recycling

Technology improvement

P depletion is a common challenge not only in Asia, but also in the world. The P recycling technology of Japan can make a great contribution to the crisis prevention in the world.

INTERNATIONAL COLLABORATION

EU commission Sustainable Use of PhosphorusFebruary 2011

Phosphorus and Food Production

Arizona State University, USA

60% P recycling by 2015

2

Our book on Phosphorus 1785 JPY

What’s the Looming Crisis of Phosphorus Depletion

By

H. Ohtake, K. Matsubae, T. Nagasaka, A. Kuroda and

M. Hashimoto

Osaka Univ. Publisher

Thank you very much for your kind attention

K. [email protected]

H. [email protected]‐u.ac.jp

T. Nagasakat‐[email protected]