japan j. shiogai (institute for materials research, tohoku … · 2015. 6. 9. · i. time. sample....

24
Graduate School of Science, Osaka University Tomonori Arakawa Japan J. Shiogai (Institute for Materials Research, Tohoku University) K. Kobayashi, M. Maeda (Osaka University) T. Ono (Kyoto University) M. Kohda, J. Nitta (Tohoku University) Germany M. Ciorga, M. Utz, D. Schuh, D. Bougeard , D. Weiss (University of Regensburg ) This work was partially supported by the JSPS Funding Program for Next Generation World Leading Researchers (GR058) and Grant-in-Aid for Scientific Research on Innovative Areas (25103003). Collaborators; Acknowledgment; Collaboration started since 2011 1

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Graduate School of Science, Osaka University

    Tomonori Arakawa

    JapanJ. Shiogai (Institute for Materials Research, Tohoku University)

    K. Kobayashi, M. Maeda (Osaka University)T. Ono (Kyoto University)

    M. Kohda, J. Nitta (Tohoku University)Germany

    M. Ciorga, M. Utz, D. Schuh, D. Bougeard , D. Weiss (University of Regensburg )

    This work was partially supported by the JSPS Funding Program for Next Generation World Leading Researchers (GR058) and Grant-in-Aid for Scientific Research on Innovative Areas (25103003).

    Collaborators;

    Acknowledgment;

    Collaboration started since 2011

    1

  • Introduction◦ What is Shot noise and how to measure it◦ Shot in mesoscopic system◦ Potential of Shot noise in spintronics

    Our result◦ Remind for spin current◦ Experimental results

    Conclusion and future plan

    2

  • I

    Time

    sample

    R = 1/GV

    I

    FFT

    Current noise spectral density

    Y. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).

    3

  • Thermal noiseJohnson-Nyquist (1928)

    A

    E

    EFsystemV=0

    Thermal fluctuation

    𝑆𝑆thermal = 4𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒𝐺𝐺

    A

    Shot noiseSchottky (1918)

    system

    E

    EFV≠0

    𝑆𝑆shot = 2𝑒𝑒∗ 𝐼𝐼 𝐹𝐹Electron Temperature

    Partition process

    Fano factor

    Powerful tool to investigate transport processesReview: Y. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).

    Effective charge

    4

  • X. Jehl et al., Nature 405, 50 (2000).

    N S

    Cooper pair transport

    e*/e=2

    L. Saminadayar et al., PRL 79, (1997).

    Fractional quantum Hall effect

    e*/e=1/3

    D. C. TsuiH. L. StörmerR. B. Laughlin

    1998 Nobel Prize

    M. Hashisaka et al., PRL 114, (2015).

    R. de-Picciotto et al., Nature 389, (1997).

    A. Kumar et al., PRL 76 2778 (1996).

    Statistical properties of quantum channels

    ( )1n nnnn

    T TF

    T−

    = ∑∑

    0

  • SPINTRONICS

    MESOSCOPICS

    TeruoOno

    Kensuke Kobayashi

    Spin transport

    Target

    Shot noise measurement

    Probe

    MotivationSpin dependent transport probed by Shot noise measurement

    6

  • T. Arakawa et al., Appl. Phys. Lett. 98, (2011).

    T. Tanaka, T. Arakawa et al., APEX 5, (2012).

    insulator

    FM electrode FM electrode

    Kai Liu et al., PRB 86, (2012).

    M. Kohda et al., Nat. Commun. 3, (2012).

    Spin filter effect

    QPC

    Direct proof for Coherent tunneling theory

    Tunnel Magnetresistance effect

    Estimation of Spin polarizationTheory

    Experiment Experiment

    7

  • E. G. Mishchenko, PRR B 68, (2003).W. Belzig and M. Zareyan, PRB 69, (2004).

    Spin flip process in diffusive conductor

    A. Lamacraft, PRB 69, 081301 (2004).

    B. Wang et al., PRB 69, (2004).

    S. I. Erlingsson and D. Loss, PRB 72, (2005).

    A. Chudnovskiy et al., PRL 101 (2008).

    R. L. Dragomirova et al., EPL 84, (2008).

    J. Meair et al., PRB 84, (2011).

    O. Sauret and D. Feinberg, PRL 92, (2004).

    A lot of theoretical predictions

    Shot noise of spin current

    Spin torque phenomenon

    Spin Hall effect

    Spin accumulation

    A few experimental reports

    etc….8

  • T. Arakawa et al., PRL 114, 016601 (2015).9

  • sample

    sample

    CI I I↑ ↓= +Charge current

    eV

    Bias voltage

    sample

    SI I I↑ ↓= −Spin current

    µ∆

    Spin accumulation

    Spin flip processindependent

    10

  • E

    Tunnel barrier

    eVIS

    V

    ( )2IS e I I↑ ↓= +E

    µ∆ IS

    µ∆

    I

    V

    total

    I

    total

    µ∆11

  • IS

    V

    total

    µ∆

    Eµ∆

    +

    eV

    Direct measurement of Spin current and Δμ without ferromagnet

    or Invers spin Hall effect

    I I↑ ↓= − C 0I = S0I ≠

    Pure spin current

    S2S e I F=

    12

  • 50 nm (Ga0.945Mn0.055)As

    2.2 nm (Al0.35Ga0.65)As

    8.0 nm n+-GaAs (n+=5-6×1018cm-3)15 nm n+→n-GaAs

    1μm n-GaAs (n=2-4×1016cm-3)

    500 nm [AlGaAs/GaAs ]50300 nm GaAs

    GaAs substrate

    50 μm

    5 μm

    lateral all-semiconductor spin valve device

    P-type (FM)

    n-type (Normal)Tunnel barrier

    M. Ciorga et al., PRB 79, 165321 (2009). J. Shiogai et al., APL 101, 212402 (2012).

    13

  • Spin accumulation

    F. J. Jedema et al., Nature 410, 345 (2001).

    V P µ∆ = ∆

    1 2

    1 2

    0.82T TPT T−

    = =+

    14

  • Modulate V and Δμ independently

    Measure SI and I

    PE

    µ∆

    +

    eV

    AP

    n-GaAs GaMnAs15

  • IS

    V

    total

    µ∆

    PE

    µ∆

    +

    eV

    AP

    n-GaAs GaMnAs

    P

    Without Δμ

    IS

    V

    totalµ∆

    AP

    16

  • No spin accumulation

    ( )( )

    B

    B

    4 1 2d d tanh 2I

    k T F eIFSV I eV k T

    −= +

    F : Fano factorT : electron temperature

    No injection

    Injection

    17

  • P APS 2

    S SS

    P−

    P APC 2

    S SS +≡

    Charge current

    Spin current

    B, 4eV k Tµ> ∆

    P APC 02 2

    I IIµ µ

    µ↑ ↓+ +

    = ∝ −

    ( )P APS 2I II

    Pµ µ↑ ↓

    −= ∝ −

    Eµ∆

    +

    eV

    n-GaAs GaMnAs

    ( )PI V ( )API V

    ( )PS V

    and

    Current

    Noise

    and ( )APS V

    reconstruct

    µ↑µ↓

    18

  • 2C CS eI F=

    Charge

    2S SS eI F=

    Spin

    charge and spin tunnel through the barrier as a single objectSame Fano factor

    19

  • 2012/8/24 20

    2eV µ∆<

    Bk T µ> ∆

    Tcryostat=1.6 K (140 μV)

    Eµ∆

    +

    eV

    n-GaAs GaMnAs

    V P µ∆ = ∆

  • E

    0.2µ∆ ≈

    n-GaAsGaMnAs

    meV

    Spin injection process

    200V >meV

    V µ∆

    Hot electrons

    21

  • sampleµ∆

    Spin accumulation

    Spin flip process

    E. G. Mishchenko, Physical Review B 68, 100409 (2003).

    22

  • GaMnAs

    E

    µ∆

    n-GaAs GaMnAs

    F=0.5

    F=1

    PAP

    23

  • Shot noise due to the spin current through a tunnelling barrier was detected

    Our result indicates that charge and spin tunnel through the barrier as a single object

    The electron temperature increase due to spin injection was quantitatively estimated

    sensitive probe for spin transport

    Spin current shot noise in various systems

    v?C SF F≠

    Spin orbit interactionMany body effectetc…

    Cooling the electron temperature

    v

    Spin injection through metallic contactSuper conductor on the channel

    Coherent phenomena of Spin current

    heatSpin current

    24

    Shot noise induced by spin accumulationFirst experimental demonstration of shot noise induced by spin accumulation�Measuring Noise� =Measuring Current fluctuationThe noise is the signalShot noise in mesoscopic fieldスライド番号 6Spintronics via Shot noiseSpintronics via Shot noise (Theory)Shot noise induced by spin accumulationWhat is Spin current What’s happen in the Shot noise More general caseSample structureCharacteristic of the sampleSet up for shot noise measurementExpected signalMeasured noise SIHigh bias regionRelation between Noise and CurrentLow bias regionOrigin of over heatingWhat’s happen in the presence � of spin flip process Brief resultConclusion