web viewit organizations can choose from a broad ecosystem of technology solutions and cloud...

30
Six major trends that affect how storage architectures are built and how IT departments deliver services: 1. Flash a. Flash technology enables IT admins to improve I/O performance while reducing cost. Flash technology improves storage architecture performance. 2. Cloud a. Most companies are implementing cloud technology for their data centers. Cloud solutions enable IT departments to offer enhanced services to their business customers. 3. Software defined data center a. Like cloud technology the software defined data center enables new IT services to business customers 4. Converged infrastructure a. As data centers become more complex, IT managers seek easier methods to integrate data center technologies. Converged infrastructures offer viable options for these organizations. 5. Mobility a. As more people depend on mobile devices such as smartphones and tablets, IT departments must enable users too safely and securely access data anytime, anywhere. 6. Big data a. Big data is generated from all parts of an organization. IT departments need new ways to manage greater amounts of big data and the complex analytics that are associated with this data. Shared storage infrastructure Provide many features, including multi-tenancy, scale out NAS, midsize to enterprise environments and mission critical SAN. - Features of ssi o Nondisruptive operations o Proven efficiency o Seamless scalability Dedicated storage solutions infrastructure E-series storage systems and E-series flash array.

Upload: lamxuyen

Post on 30-Jan-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

Six major trends that affect how storage architectures are built and how IT departments deliver services:

1. Flasha. Flash technology enables IT admins to improve I/O performance while reducing

cost. Flash technology improves storage architecture performance.2. Cloud

a. Most companies are implementing cloud technology for their data centers. Cloud solutions enable IT departments to offer enhanced services to their business customers.

3. Software defined data centera. Like cloud technology the software defined data center enables new IT services

to business customers4. Converged infrastructure

a. As data centers become more complex, IT managers seek easier methods to integrate data center technologies. Converged infrastructures offer viable options for these organizations.

5. Mobilitya. As more people depend on mobile devices such as smartphones and tablets, IT

departments must enable users too safely and securely access data anytime, anywhere.

6. Big dataa. Big data is generated from all parts of an organization. IT departments need new

ways to manage greater amounts of big data and the complex analytics that are associated with this data.

Shared storage infrastructure

Provide many features, including multi-tenancy, scale out NAS, midsize to enterprise environments and mission critical SAN.

- Features of ssio Nondisruptive operationso Proven efficiencyo Seamless scalability

Dedicated storage solutions infrastructure

E-series storage systems and E-series flash array.

The e series is good for demanding workloads, high performance and high capacity.

EF-series: flash based solution for low latency and ultrahigh performance

EF series is good for low latency, ultrahigh performance and enterprise level reliability.

Universal data platform

Because netapp cloud solutions are based on clustered data ONTAP, they provide consistent data services and simplified data management across clouds.

Dynamic data portability

Page 2: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

Integrated data portability technology enables applications and data to move across cloud resources and providers.

Extensive customer choices

IT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements.

OnCommand management software

Product

- System managero Provides device level management of netapp storage systems

- Unified managero Monitors the availability, capacity, performance, and protection of clustered DATA

ONTAP resources- Workflow automations

o Enables automation and delegation of all repeatable storage management and storage service tasks

- Performance managero Provides performance monitoring and root-cause analysis of clustered data ontap

- Insighto Enables storage resource management and advanced reporting for heterogeneous

environments.

Module 2: shared storage solutions on clustered data ontap

Clustered data ontap

Page 3: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

Clustered data ontap offers three primary benefits

1. Non-disruptive operations

2. Proven efficiency

Includes SSD, SAS and SATA

3. Seamless scalability

Capabilities of clustered data ontap

- Raid-DP technologyo All data ontap disks are organized into RAID groups. RAID groups provide parity

protection against data loss. Each RAID group consists of data disks, parity disk( that is RAID 4), and a dual parity disk ( that is RAID-DP). A double parity RAID group must contain at least three disks: one or more data disk, a parity disk, and a double parity disk. If a data disk failure occurs in a RAId group, DATA ontap replaces failed disk

Page 4: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

with a spare disk. Data ontap automatically uses parity data to reconstruct the fail disks data on the replacement disk.

- NVRAMo Nonvolatile ram, or nvram is a component of a FAS controller that contains a built in

batter connection. This connection provides an uninterrupted power supply, so that data is not lost if the external power source fails. As I.O request come into a system, they first go to ram. The ram on a netapp system, as in other systems, is where the data ontap operating systems does active processing. As write requests come in, the operating system logs them into NVRAM. Operation that is logged into battery backed ram is safe from controller failure.

- WAFL o The WAFL ( write anywhere file layout) file system defines how blocks are laid out in

the data ontap operating system. The WAFL file system manages reading and writing data to and from disks. The WAFL file system optimizes writes by collecting data blocks and grouping them such that the system can write data blocks in any location on the disk. This placement also optimizes reads. WAFL always writes to the nearest available free block, which decreases write time. Other file systems write to pre-allocated locations on disk, which requires time-consuming disk seeks

- Snapshoto

Page 5: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

DATA ONTAP storage efficiency

- Data compressiono Data compression process reduces the physical capacity that is required to store

data on a flexvol volume, by eliminating repeated patterns in data blocks. This process can be used for primary, secondary, and archive storage. Pre-existing data can be compressed. Compression is completed manually or inline by schedule. This process is transparent to the application, which means that awareness is not needed, compression requires deduplication to be enabled on the volume, but does not require deduplication to be scheduled to run.

- Deduplicationo Improves storage efficiency by finding identical blocks of data and replacing them

with references to a single shared block. The same block of data can belong to several files or LUNs, or it can appear repeatedly within the same file. When deduplication is turned on, it finds removes duplicate 4-kilobyte blocks that are stored in the WAFL file system.

- Flexcone softwareo Reduces storage needs by using snapshot technology to replicate the production

copy as a readable and writeable virtual clone. Flexclone copies are created instantaneously, thus they have little to no incremental impact on available storage, even if the copies multiply.

- Thin provisioningo Enables storage to be allocated on an as-needed basis, which streamlines the

provisioning process and removes the guesswork in storage allocation. Thin provision is a flex vol volume feature of the data ontap operating system. Thin provision leverages a common pool of storage across all storage devices. The use of a common pool enables administrators to respond quickly to request by allocating less space initially and then adding or removing space, depending on how the space is used and how needs change.

- Thin replicationo Simplifies disk based disaster recovery and backup. Thin replication enables storage

administrators to restore full, point in time data at granular levels, unlike competitor soft. Storage capacity on replication targets is reduced, and storage capacity requirements are reduced by up to 90%.

Page 6: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

+ reduces latency

+ intelligent caching

+ data ontap raid protected aggregates

Page 7: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements
Page 8: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements
Page 9: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements
Page 10: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

Net app solutions for oracle database and applications

- Database solutionso Core technologies such as thin provisioning and the FlexVol feature make oracle

data management simple and efficient. Netapp snapmanager for oracle and Flexclone technology simplify and automate the database cloning and refresh process and require very minimal additional storage. Netapp integrates with oracle products such as oracle multitenant, oracle enterprise manager, and oracle recovery manager.

Page 11: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

- Application solutionso Oracle application solutions increase the speed and quality of project development

and deployment. Customers can accelerate their application lifecycle, improve SLAs, and respond with ease to events, data growth, and changing performance needs.

- Manageability solutionso Netapp provides integration and manageability products for data protection,

development and testing environments, and monitoring. The products ensure better data availability, efficient use of space, and a well-monitored oracle environement.

Netapp solutions for Microsoft database and applications

- Microsoft exchange server- Microsoft SharePoint server- Microsoft SQLServer

Data protection for shared storage infrastructures

Page 12: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements
Page 13: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

Data protection copies are put on aggregates of sata disks using raid-dp, data is then mirrored to the destination cluster at the least active time in the cluster.

- SnapMirror technology

SnapMirror is done asynchronously, when the scheduler triggers a replication update, a new snapshot copy is created on the source volume, the new block difference between the new snapshot copy and the last replicated snapshot copy is determined and then is transferred to the destination volume. This transfer includes snapshot copies that were replicated between the last snapshot copy and the new one, when the transfer is complete the new snapshot copy is on the destination volume. If a disaster occurs the destination takes over operations.

- SnapVault backups

SnapVault software leverages block-level incremental replication to provide a reliable, low-overhead backup solution. SnapVault technology provides efficient data protection by copying only the data blocks that changed since the last backup, instead of copying entire files. As a result, backups are taken more often while the storage footprint is reduced, because no redundant data is moved or stored. By default, vault transfers retain storage efficiency on disk and over the network, which further reduces network traffic. Additional deduplication and compression can be configured on the destination volume. The SnapVault feature uses two deployment operations: fan-in and fan-out. The fan-in operation supports up to 225 nodes backing up to one storage system. This deployment is ideal for centralized data protection between remote and branch offices. The fan-out operation enables one system to send backups to up to 16 nodes, which is useful for data distribution.

SnapVault software leverages block-level incremental replication to provide a reliable, low-overhead backup solution. SnapVault technology provides efficient data protection by copying only the data blocks that changed since the last backup, instead of copying entire files. As a result, backups are taken more often while the storage footprint is reduced, because no redundant data is moved or stored. By default, vault transfers retain storage efficiency on disk and over the network, which further reduces network traffic. Additional deduplication and compression can be configured on the destination volume. The SnapVault feature uses two deployment operations: fan-in and fan-out. The

Page 14: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

fan-in operation supports up to 225 nodes backing up to one storage system. This deployment is ideal for centralized data protection between remote and branch offices. The fan-out operation enables one system to send backups to up to 16 nodes, which is useful for data distribution.

Data ONTAP SnapMirror replication technology is used for disaster recovery. The SnapMirror function creates and updates a single replica of the source volume on a remote secondary server. If a disaster occurs, a system administrator can break the SnapMirror relationship, convert the SnapMirror replica to a writable volume, and then redirect users to write to the SnapMirror replica. Data ONTAP SnapVault is a type of SnapMirror replication that is used to create an archive of daily, weekly, and monthly read-only copies of the source volume for point-intime recovery. If data is lost, the storage administrator can retrieve the data from a SnapVault copy on the secondary system back to the primary system. To use the SnapVault copy as a writable volume, create a FlexClone volume copy of the SnapVault copy.

Page 15: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

MetroCluster software provides nondisruptive operations with zero data loss and near zero recovery time for unplanned events and disasters. Key features of this product include a simple switchover and switchback mechanism in case of a disaster and automatic local failover for component-level failures. MetroCluster software supports data recovery at up to 200 kilometers. This feature interoperates with SnapMirror software to provide unlimited long-distance disaster recovery and efficient disk-to-disk backup using the SnapVault solution. Synchronous data replicates across two Data ONTAP clusters. A high-availability pair is present at each site. For example, in a four-node configuration, two nodes are active, while the other two nodes are inactive. If a disaster occurs, the inactive nodes are activated. All active nodes can host or serve data. Node failure is managed locally. Data is mirrored at the aggregate level using the RAID SyncMirror feature. NVRAM is mirrored to a high-availability, or HA, partner and a disaster recovery partner. The cluster configuration is mirrored to the remote site. If a disaster occurs, the switchover is done with one command. The switchback can be completed by using three commands.

SnapProtect management software is an application-aware and virtualization-aware centralized backup and replication management tool. SnapProtect management software is optimized for environments that connect NetApp storage to NetApp storage. SnapProtect software combines the capabilities of a traditional backup application with NetApp Snapshot and replication technologies. This solution manages, monitors, and controls Snapshot copies, replication, and tape operations from a single interface.

Page 16: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

Module three

-Dedicated storage solutions

This module describes dedicated storage solutions that are ideal for intensive workloads. You learn about the E-Series storage system and the EF-Series flash array, FlashRay all-flash storage, and the StorageGRID Webscale system. All of these solutions are designed for SAN environments. This module requires approximately 25 minutes.

o E-series solutions E-Series solutions provide superior reliability and a price/performance ratio

that no other product in the storage industry can meet. The E-Series platforms are ideal for a wide range of customers, from entry-level SAN environments to big-data, performance-centric SAN environments. The E2700 platform is targeted at entry-level SAN configurations. The E5600 is targeted at performance-centric SAN environments.

Page 17: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

o E-series solutions: modular design E-Series storage systems use a modular design. Customers can mix and

match disk shelves, controllers, and drives. Because E-Series implementations enable the creation of custom configurations, E-Series solutions meet the performance and capacity needs of every customer. Because all configurations use the same architecture and the same SANtricity storage management software, customization does not increase complexity

o E-SERIES SOLUTIONS: FEATURES AND BENEFITS Dynamic disk pools

Dynamic disk pools (DDP) technology spreads data across all drives in a pool, which reduces performance bottlenecks due to hot spots. If a drive failure accurs, DDP enables a quick return to an optimal state. Drive rebuild times are six times faster while maintaining high system performance.

Thin provisioning Improves storage utilization up to 35% and reduces over provision.

By setting a starting capacity and a maximum capacity, users can “set it and forget it” for worry-free business value.

Enterprise replicationProvides enterprise-class disaster recovery of data. By mirroring over FC or IP, the E-series systems work together to maintain a consistent set of data across platforms. Data from a volume on one system is automatically copied to a volume on a remote system. If a disaster overtakes the local system, the data is available from the remote site.

Drive encryption Users often are unable to control the security of disk drives, which

can be misplaced, sent off-site for service or repair, or disposed of. Drive encryption combines local key management and drive-level encryption for comprehensive data security. Data is protected

Page 18: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

throughout the lifecycle of the drive, yet storage system performance and ease of use are unaffected.

Snapshot technology Is a capacity-efficient, point-in-time (PiT) image of a volume that is

used for file and volume restoration, or application testing. This image points back to a base volume, and any request for data from the images is managed by the data that resides on the base volume. If thebase volume handles a write that would change the data that is used by the image, the original data is copied to a small repository of the actual coapacity that is assigned to the image.

Volume copy SANtricity volume copy is a feature that creates an exavty cop ( that

is, a clone) of a base volume. Unlike a snapshot copy, a volume copy is a full copy of the data set, not just a series of pointers to the original location. One main use of the volume copy feature is to create a full PiT data set for analysis minig or testing. Another main use of the volume copy feature is to redistribute data for performance and capacity optimization.

- E-SERIES SOLUTIONS: DEDICATED WORKLOADSo E-Series storage systems are designed for specific types of high-performance

computing workloads. For example, E-Series solutions are especially useful for high-performance file systems such as digital video surveillance and big-data analytics. However, E-Series solutions also work effectively for general-purpose SAN environments. E-Series solutions enable disk backup, read-intensive transactional databases, image archiving, and email servers.

Page 19: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

E-SERIES SOLUTIONS: OPERATING SYSTEM AND GUI

All E-Series platforms are built on the SANtricity operating system. So, all platforms display the same SANtricity GUI. Customers can move easily from one platform to another. Customers use the SANtricity software to set up, configure, and manage their E-Series environments. Because it is a thin client with low overhead, the SANtricity operating system offers customers a rich feature that yields a fast customer experience.

E-SERIES DEPLOYMENT: BACKUP TO DISK

Consider an example of how an E-Series deployment solved a customer problem. This customer's data was growing exponentially. Management costs were dramatically increasing. In addition, recovery was unreliable and used large amounts of time. The customer purchased the E2700 platform. When the customer used the platform's backup-to-disk solution, recovery times were reduced and reliability increased. In addition, the E-Series drive encryption feature provided an additional level of drive security. Data is now protected throughout the lifecycle of the drive, yet storage system performance and ease of use are unaffected.

E-SERIES DEPLOYMENT: VIDEO SURVEILLANCE

Consider another example of how an E-Series deployment solved a customer problem. This customer needed a long retention, high-resolution video surveillance solution to process real-time video applications. The customer realized that higher resolution video required more capacity and that longer retention times impacted system performance for recalling video. The purchase of an E-Series E5600 system enabled this customer to process real-time video applications with high reliability, performance, and availability. This customer gained a cost-effective solution that provided the ability to scale to any desired amount of surveillance content.

Lesson two: Netapp flash technology

Flash technology:

- EF-Series and SANtricityo Provides all-flash storage that is built for SANo Is field-proven in mission critical environments

Page 20: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

o Excels at price/performance ratios. Low latency, and densityo Leverages applications for data managements and mobility.

- FAS and Data ONTAPo Offers the flexibility of all-flash and hybrid technologies within the same clustero Provides infrastructure storage that is built for consolidated workloadso Enables nondisruptive data mobility between tiers and cloudso Provides enterprise-class data lifecycle management.

- FlashRay and Mars OSo Is built to improve the economics and performance of flasho Provides always-on inline efficiencies with adaptable performanceo Leverages and integrates wth the data ONTAP ecosystemo Provides expanded opportunities in SAN

EF-SERIES

E-Series SAN storage systems provide superior reliability and a price/performance ratio that no product in the storage industry can meet. The all-flash EF-Series solution is a Solid-state Drive storage system that leverages the superior performance and reliability of E-Series technology to deliver extreme performance and reliability. The EF-Series product line consists of the EF560 platform and the EF550 platform. These products are built on three key pillars: low-latency performance, maximum density, and enterprise-class reliability. When these capabilities are combined, they enable customers to drive Greater Speed And Responsiveness from their applications.

EF-SERIES SOLUTION: MODULAR DESIGN

Like E-Series systems, all EF-Series systems use a modular design. Customers can mix and match disk shelves, controllers, and drives to meet performance and capacity needs. All EF-Series configurations use the same architecture and the same SANtricity storage management software, thereby, reducing the time it takes to implement training.

EF-SERIES SOLUTION: DEDICATED WORKLOADS

The EF-Series all-flash array is designed for enterprise customers that want to drive extreme speed and responsiveness from their I/O-intensive workloads. Workloads that benefit from the EF-Series solution include transactional workloads (that is, OLTP workloads), such as order entry and financial transactions. The solution also includes analytics workloads (that is, OLAP workloads), such as relational databases and data mining. Business intelligence workloads, such as report writing and benchmarking, are also included in the EF-Series solution.

CUSTOMER DEPLOYMENT: EF-540: ONLINE RETAILER

Consider an example of how an EF-Series deployment solves a customer problem. This global online retailer required consistent submillisecond latency to accelerate a payment transaction database and increase customer satisfaction. Because each minute of downtime meant significant lost revenue to the customer, very high system reliability was also required. This customer purchased the EF540 flash array, which improved the performance of the Oracle databases that governed transactions by 20 times what was previously possible. The EF540 occupied just one-quarter of the previous storage footprint, which resulted in a dramatic 75% reduction in the customer's power and cooling costs.

Page 21: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

CUSTOMER DEPLOYMENT: EF-540: ENGINEERING APPLICATION

Consider another example of how an EF-Series deployment solves a customer problem. This customer is a contract drilling company that has been a top industry performer for over 90 years. This customer is committed to maintaining its reputation through innovation and service. Their clients pay for drilling that is based on oil rig data that is captured or ingested once per minute. The CIO requested an increase in the ingest rate of oil rig data to once per second, so that more data would be available to clients. The existing storage was not designed to handle these extremely high IOPS and sustained bandwidth requirements, so the drilling company purchased the EF540 system. The EF540 system helped this customer achieve ingest rates of one second. Clients could access real-time drilling analytics such as drilling depth, what the drill hit, and so forth. This information enabled the clients to make immediate decisions about the drilling they were paying for.

FLASHRAY: ALL-FLASH STORAGE WITH MARS OS

FlashRay is all new flash array that combines the benefits of all-flash storage technology with patented NetApp software to improve the economics and performance of flash technology. FlashRay provides breakthrough performance, storage efficiency, data protection, and data management. The result is a no-compromise approach to all-flash storage that provides more value for the storage dollar and enables customers to address a wide range of high-performance SAN workloads. FlashRay technology uses the Mars OS operating system. Mars OS is a new architecture that delivers the classic NetApp values of efficiency, protection, and data management. Among its innovations are "always-on" inline efficiency features and a variable length block layout. Together these features minimize the I/O activity to flash, increase effective capacity, and deliver adaptable performance at consistent submillisecond latencies. Mars OS is designed to address future needs as well as current ones, by establishing a foundation to enable tight integration with Data ONTAP, ensure fine-grained seamless scaling of capacity and performance, and leverage future solid-state technologies to further drive down the cost of all-flash stora

Lesson three: The storageGRID webscale system.

THE EVOLVING DATA MANAGEMENT CHALLENGE

The Internet of Things not only drives decentralized data creation and consumption and massive data growth in unstructured data, it also requires efficient data management to balance cost and performance in the hybrid cloud environment. To learn more, click each challenge. As data is created and consumed across many sites (in contrast to a more traditional data center setup), IT departments need to reevaluate how to manage a large amount of data that is spread over different locations. A solution is to create multisite datastores that bring data closer to its workloads, applications, and users. The growth in unstructured data drives new requirements for storing and protecting data. With object-enabled data management, organizations can establish highly granular, flexible data management policies that determine how data is stored and protected. Such policies address a wide range of requirements for performance, durability, availability, geo-location, and longevity. The value of data typically changes over time. So does the cost of storing data in a specific location or storage technology. These challenges require policy-based data management that ensures optimal data storage throughout the entire data lifecycle, including storage on-premises and off-premises and in cloud-based infrastructures.

Page 22: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

- Decentralized data creation and consumptiono Multisite topologies are required:

The primary data center plus the disaster recovery site are replaced by multisite datastores

Users, workloads, and data are brought closer together.- Unstrucutred data growth

o Object-enabled data management is required: Intelligent data placement is enabled A wide range of performance, durability, availability, geo-location, and

longevity is required- Cost and performance balance in the hybrid cloud

o Policy based data management is required: Data must be placed optimally throughout the data lifecycle Onpremise and cloud base storage must be dynamically leveraged over

time.e

THE STORAGEGRID WEBSCALE SYSTEM

NetApp delivers on the promise of object storage today, addressing the challenges of the most demanding environments with the StorageGRID Webscale system. The StorageGRID Webscale system is a massively scalable, software-defined storage solution for large archives, media repositories, and web datastores. The StorageGRID Webscale system is a distributed storage system that is based on object storage. It supports the StorageGRID API (or SGAPI) and standard RESTful protocols, such as the Cloud Data Management Interface, or CDMI, protocol, and Amazon Simple Storage Service (otherwise known as S3). These protocols ensure compatibility with cloud applications. The system can scale to a large number of objects that are distributed across many data centers. Because the StorageGRID Webscale system is softwaredefined, it gives customers the flexibility to choose their ideal storage hardware, including disk and tape. The StorageGRID Webscale system incorporates a highly dynamic policy engine that determines exact "cradle to grave" data placement for data based on cost, performance, durability, availability, and longevity requirements, and that enforces compliance with required policies.

Page 23: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

THE STORAGEGRID WEBSCALE SYSTEM: FEATURES AND BENEFITS

A key element of the unique StorageGRID Webscale storage system is its data durability framework, which establishes both data integrity and data availability. To learn more, click each item. As an object is ingested, the StorageGRID Webscale system creates a digital fingerprint. The system offers multiple interlocking layers of integrity protection such as hashes, checksums, and authentications. Object integrity is verified upon ingest, retrieval, replication migration, and at rest. Suspect objects are automatically regenerated. Object availability functions include a fault-tolerant architecture that delivers nondisruptive operations and infrastructure refreshes, with load balancing during normal and degraded conditions. In addition, the NetApp AutoSupport tool can be set up to provide NetApp support and weekly updates on the health and status of the system. The NetApp AutoSupport tool enables users to proactively troubleshoot issues that arise. The AutoSupport tool is available for other NetApp products, such as the E-Series storage platform. When it is deployed on E-Series storage systems, the StorageGRID Webscale system takes advantage of features such as Dynamic Disk Pools technology for node-level erasure coding. Such features enable highly efficient deployments, because single component failures (such as disk drive failure) won’t affect overall system functionality. Data management is another key element of the StorageGRID Webscale system. To learn more, click each item. As part of the data management framework, the StorageGRID Webscale system supports multiple deployment models. These models range from virtualized software deployments in on-premise or off-premise private clouds to support for third-party storage systems and NetApp E-Series storage systems. The StorageGRID Webscale system supports both S3 and CDMI protocols for seamless integration of cloud applications. The StorageGRID Webscale system's dynamic policy engine, which is an information lifecycle management, or ILM policy, executes ILM rules against objects at ingest as well as at rest. These ILM rules can be configured based on factors such as resource availability and latency, data retention and geographical location requirements, and network cost. The ILM policy and ILM rules for the system are automatically reevaluated, and the system brings objects into compliance.

- Data durabilityo Data integrity

Digital fingerprint Tamper detection Integrity verification in all critical operations Automatic regeneration of suspect objects

o Data availability A fault tolerant architecture supports nondisruptive operations, upgrades,

and infrastructure refreshes Load balancing automatically distributes workloads during normal

operations and failures The Netapp autosupport tool automatically alerts the Netapp support site

for proactive issue resoloution Node level erasure coding uses E-Series dynamic disk pools technology to

improve single node availability.- Data management

o Multiple deployment models

Page 24: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

Virtualized software deployments that support on-premise and hosted environments

Available on third party storage systems Performance, density, and efficiency benefits when deployed on E-Series

storage systems S3 and CDMI protocol support for cloud applications

o Dynamic policy engine User metadata drives placement policy The system evaluates placement policy at ingest or access Policies are defined by these factors:

Resource availiability and latency Data retention requirements Geographical location requirements Network cost

Policy changes are applied retroactively

THE STORAGEGRID WEBSCALE SYSTEM: BENEFITS FOR ALL PARTIES

The StorageGRID Webscale system is designed to ensure that all parties successfully fulfill their business requirements.

- IT benefito Store and easily manage large amounts of datao Store 100 billion objects in a single, elastic content store:

Customizable ILM rules determine the physical location of data across locations and storage tiers

A single software layer across hardware products ensures consistent management and flexible deployment options

Simplified provision of storage for applications is provided- Application owner benefit

o Seamlessly run cloud applications and traditional applications Support for industry-standard S3 and CDMI protocols enables cloud

applications to run seamlessly on-premises or in hosted environments Compliance and physical location rules are easily executed through an ILM

policy that is triggered by object metadata Global access is available to the application data cloud Simple development of cloud applications is enable by using S3 or CDMI

- Purchase Decision-Maker Benefito Easily move data to the most cost-effective platform

As cost models change, organizations can easily adjust and implement policies that govern object placement across geographically distributed regions and storage tiers, including disk and tape.

The StorageGRID webscale system reduces the complexity and cost of technology refreshes while presvering data durability.

Page 25: Web viewIT organizations can choose from a broad ecosystem of technology solutions and cloud provider options to meet their unique business requirements

THE STORAGEGRID WEBSCALE SYSTEM: GRID DEPLOYMENT TOPOLOGIES

The StorageGRID Webscale system can be adapted to meet a variety of topologies and use cases, from a single data center site to multiple geographically distributed data center sites. Generally, the choice of a deployment topology is based on the unique object replication and protection requirements of each StorageGRID Webscale system. In a single data center site deployment, the infrastructure and operations of the StorageGRID Webscale system can be centralized in a single site. In a deployment with multiple data center sites, the infrastructure of the StorageGRID Webscale system can be asymmetrical across data center sites and proportional to the needs of each data center site. Typically, data center sites are located in different geographic locations. Data sharing and disaster recovery are achieved in a peer-to-peer delivery model by automatically distributing data to other sites. Each data center site acts as a disaster recovery site for another data center site.

Module Four