jack wolf lecture

120
CananInforma*onTheoristBe HappyinaCenterforInforma*on Storage? JackKeilWolf CMRR,UCSD PadovaniLecture 2010SchoolofInforma*onTheory USC

Upload: joe-caroselli

Post on 06-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 1/120

CananInforma*onTheoristBeHappyinaCenterforInforma*on

Storage?

JackKeilWolf

CMRR,UCSD

PadovaniLecture

2010SchoolofInforma*onTheory

USC

Page 2: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 2/120

This talk is dedicated to David Slepian

who taught me all that I know about

informa*ontheoryandalotmore.

Page 3: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 3/120

Introduc*on

•  Averyshortpictorialhistoryofmyrela*onshipwith

RobertoPadovaniandhowIendedupteachingatUCSD.

Page 4: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 4/120

TheUniv.ofPennsylvania

1952-1956

Page 5: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 5/120

PrincetonUniversity

1956-1959

Page 6: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 6/120

USAF

1960-1963

Page 7: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 7/120

NYU(Uptown)

1963-1965

Page 8: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 8/120

BrooklynPoly

1965-1973

Page 9: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 9/120

UMASS

1973-1984

Page 10: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 10/120

RobertoPadovaniandMe

•  RobertoPadovaniwasoneofmygraduatestudentsatthe

UniversityofMassachuse\s.

•  HisM.S.thesiswasontheperformanceoferrordetec*ng

codesandhisPh.D.thesiswasonthedesignand

performanceoftrelliscodes.

•  HejoinedLinkabitCorpora*onupongradua*onfromUMass.

Page 11: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 11/120

RobertoPadovaniandMe

•  HejoinedQualcommshortlya_eritwasfounded.

•  OneofthefirstQualcommproductswasaTCMchipbaseduponapragma*ccodingschemeheco-developed.

•  HewastheprinciplearchitectofQualcomm’shighspeedcellulardatasystem.

•  HeispresentlyCTOofQualcomm.

•  Heisagreatfriendandaterrificboss.

Page 12: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 12/120

Adver*sementforTCMChip

Page 13: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 13/120

RobertoPriortoGivinganInvited

LectureatUMassin2008

Page 14: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 14/120

RobertoPresen*ngtheLecture

Page 15: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 15/120

RobertoAnsweringQues*onsAbout

theFutureofCommumica*ons

Page 16: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 16/120

UCSD

•  In1983anewinterdisciplinaryresearchcenterwasbeingformedatUCSD.

•  ItwascalledtheCenterforMagne*cRecordingResearch(CMRR)

andwasconcernedwitheduca*ngstudentsandpursuingresearchinmagne*crecording.

•  Itsoundedinteres*ngtomebecause:

 –  Ourkidshadallle_Amherstandwewerelookingforsomethingnew.

 –  IhadworkedwithGoriedUngerboeckatIBMZurichoncodingforapar*alresponsechannelwhichIlearnedwasamodelforthemagne*crecordingchannel.

 –  UCSDwasinSanDiego.

Page 17: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 17/120

Loca*on,Loca*on,Loca*on

Page 18: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 18/120

AMinorProblem

•  Iknewnothingaboutmagne*crecording.

•  NotonlydidInotknowhowtospellcoercivitybutthefirst

*meImen*oneditinatalkImispronouncedit.

•  ButUCSDreluctantlymademeanofferasthefirstfaculty

memberinCMRR.

Page 19: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 19/120

AdvicefromOtherstoMe

•  Berlekamphadwri\en: –  "Communica*onlinkstransmitinforma*onfromheretothere.

Computermemoriestransmitinforma*onfromnowtothen.“

 –  Thatsoundedverygoodtome.

•  Butmanyofmyverysmartfriendssaid: –  Magne*crecordingisboring.

 –  Notonlyisitboringbutitisadeadend!Alltheadvanceshave

beenmade.Thefutureliesin…•  Op*calrecording

•  Holographicrecording

•  Etc.,etc.,etc.

Page 20: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 20/120

Page 21: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 21/120

1956:IBMRAMACFirstMagne*cHard

Drive

TotalCapacity=5Mbyte

Page 22: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 22/120

GigabyteDriveCirca1983

IBM3380

Page 23: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 23/120

A20102TerabyteDrive

$119.00Amazon.com

Page 24: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 24/120

Page 25: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 25/120

 Arealdensityhasbeenincreasedmorethan250million:meswithrespecttothe

firstRAMACin1956from0.002Mbit/in2to500Gbit/in2intoday

 Weexpectmuchhigherarealdensityinthefuture,i.e.,1Tbit/in2and10Tbit/in2

HistoricalArealDensityIncrease

ofHardDiskDrives

25 

JackWolfArrivesatCMRR

*

CAGR=Cumula*veAnnualGrowthRate

Page 26: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 26/120

Page 27: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 27/120

Page 28: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 28/120

Page 29: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 29/120

1980’s:IBM3380Drive

Page 30: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 30/120

Page 31: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 31/120

Page 32: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 32/120

Page 33: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 33/120

CoatofArmsofInforma*onTheorist

WorkinginDigitalRecordingError

Correction

Encoder

Modulation

Encoder

Write

Equalization

Equalization

and Detection

Modulation

Decoder

Error

Correction

Decoder

Channel

Channel Encoder

Channel Decoder

Notethatthechanneliscontrollable(butbyphysicists)

Page 34: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 34/120

SomeItemsofInteresttoan

Informa*onTheorist•  Thechannel(whichismadeupofthemagne*cmediaand

thewriteandreadheads)keepschanging.

 –  Bigimprovementsinrecordingdensityhavebeenachievedhere!!

•  Theerrorcorrec*ngcodeusedforthelast25yearsisaReed

Solomoncodeinconjunc*onwithahardinputdecoder.

 –  ButLDPCcodesanditera*vedecodingareontheway!!

•  Thepurposeofthemodula*oncodeistopreventcertain

badsequencesfrombeingwri\en.

 –  Toaninforma*ontheorist,thisiscodingforthenoiselesschannel.

Page 35: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 35/120

Informa*onTheoristsLikeSimple

Models•  Thewritesignalisplainvanilla+1/-1basebandbinarydata.

(NoQAM,M-PSK,etc.)

•  AnAWGNchanneliso_enusedasafirstorder

approxima*onforthechannelmodel.Buttheactual

channelisreallymuchmorecomplex.

•  Atlowrecordingdensi*esthereisessen*allynoISIso

matchedfilter(bitbybit)detec*onisop*mal(foranAWGN

channel).

Page 36: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 36/120

SomeItemsofInteresttoan

Informa*onTheorist•  However,athigherrecordingdensi*es,theISIcannotbe

ignored.

•  Toachievehigherrecordingdensi*es,in1984theindustryabandonedbitbybitdetec*onandadoptedpar*alresponsesignalingwithViterbisequencedetec*ontocombatISI.

•  IBMcalleditPRML(sincetheywantedtoavoidtheuseofViterbi’sname).

•  EverydiskdrivetodayusessomeformofViterbidetec*on.

Page 37: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 37/120

WhySuchAmazingProgress?

•  Itdependsuponwhoyoutalkto.

 –  Physicistscreditadvancedmaterialsforheadsanddisks.

 –  Mechanicalengineerscreditadvancedmechanics.

 –  Informa*ontheoristscreditapplica*onsofShannontheory.

•  Onees*mateisthatabout20%ofthe“progress”wasduetoadvancesinsignalprocessing.

•  However,advancesinallfieldswererequiredtomakethesystemwork.

Page 38: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 38/120

ProgressasSeenByaPhysicist

2007NobelPrize

inPhysicswasawardedtotheinventorsofthe

GMRhead

Page 39: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 39/120

Page 40: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 40/120

TheTrueSourcesofProgress

•  Manydifferenttechnologicaladvancesledtothisamazingprogress.

•  Newinven*onsweretheenablingtechnology.

•  However,theconstantprogressbetweentheintroduc*onofthesenewinven*ons,wastheresultof scaling(i.e.,shrinkingthedimensionsofeverything).

Page 41: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 41/120

Longitudinal magnetic recording (LMR)

technology

Perpendicular magnetic recording (PMR)

technology

Limit was around 150 Gbit/in2

It was achieved by 500 Gbit/in2 today

PMRtechnology- Highanisotropymaterial

- Ver:calalignmentofmagne:za:on- Muchsmallerbitispossible

41 

Longitudinalvs.Perpendicular

Recording

Writing is due to flux leakingfrom the write head to the disk.

Reading is due from flux leakingfrom the disk to the read head.

Page 42: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 42/120

ShingledWriteProcess

disk 

100 nm

Gapis100nmbutbitsare25nm.Howcanthisbe??

100 nm

Page 43: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 43/120

Modula*onCodes

•  Thepurposeofmodula*oncodesisto prohibittheoccurrenceofcertaintroublesomesequencessuchassequenceswhichcauseexcessiveISIorwhichmake*mingrecoverydifficult.

•  Themostwellknownexampleofamodula*oncodeistheso-called(d,k )code,wherenorunof0’slongerthank orlessthand ispermi\ed.d andk arenonnega*veintegersforwhichk>d .

•  InearlyGbytedrives(circa1980),(2,7)and(1,7)codeswereused.Today,varia*onson(0,k )codesareused.

•  Shannondiscussedsuchcodesintheverybeginningofhis1948paperinasec*oncalleden*tled“TheDiscreteNoiselessChannel”.

Page 44: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 44/120

ShannonStatueatCMRR

Page 45: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 45/120

ClaudeShannon

•  Inhisclassic1948paper,Shannonshowedthatforlargen,thenumberoflengthnconstrainedsequences,N(n),isapproximately2Cn.Thequan*tyC iscalledthecapacityoftheconstrainedsystem.

•  Saidinanotherway

•  Therateofacode,R,isthe(average)ra*oofthenumberofunconstraineddigitstoconstraineddigits.ShannonshowedthatthereexistscodesatrateR,ifandonlyif

R<C  .

Page 46: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 46/120

Compu*ngtheCapacity

•  Shannon(1948)gavetwoequivalentmethodsforcompu*ng

thecapacitywhichareapplicableto(d,k)codes.

Firstmethod:

•  Forfinitek,N(n)sa*sfiesthelineardifferenceequa*on:

N(n)=N(n-(d+1))+N(n-(d+2))+…+N(n-(k+1)).

Page 47: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 47/120

Compu*ngtheCapacity

•  Bystandardmethodsofsolvinglineardifferenceequa*onsShannonshowedthatCisequaltothebase2logarithmofthelargestrealrootoftheequa*on:

xk+2-xk+1-xk-d+1+1=0.

SecondMethod:

•  Shannonshowedthatthecapacityisequaltothebase2

logarithmofthelargesteigenvalueoftheadjacencymatrixofagraphwhichgeneratesthecodesymbols.

•  Weillustratethesetwomethodsfora(1,2)code(i.e.,d=1andk=2).

Page 48: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 48/120

Compu*ngtheShannonCapacityof

Binary(1,2)Codes Firstmethod

• 

Ifd=1andk=2,theequa*on xk+2-xk+1-xk-d+1+1=0

becomes

x4-x3-x2+1=0.

•  Thelargestrealrootofthisequa*onis1.3247andit’sbase2

logarithmis0.4057.

Page 49: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 49/120

Compu*ngtheShannonCapacityof

Binary(1,2)Codes SecondMethod

•  Aconstraintgraphthatgeneratescodewordsina(1,2)codeis:

•  Theadjacencymatrixofthisgraphis:

010

101

100.

0 0

11

Page 50: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 50/120

Page 51: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 51/120

Example:ARate1/2(2,7)Code

•  UsingeitherofShannon’smethods,thecapacity,C ,ofa(2,7)codeisfoundtobe0.5174.However,Shannondidnottellushowtoconstructcodesatratesnearoratcapacity.

•  Avariablelength,fixedrate,R=½,(2,7)code:

informa*onphrases codewords

10 0100

11 1000

000 000100

010 100100 011 001000

0010 00100100

0011 0000100000100011

000

1011

010011

01.

Thecodewords

formaprefix-freecodesocanbe

decoded.

Page 52: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 52/120

Example:(2,7)Codes

ThiscodewasusedtocombatISIinsystemsusingbitbybitdetec*on:

Nocoding:channelbitspacing=T

1011000

Withrate½(2,7)coding:channelbitspacing=T /2

01001000000100

Minimumsepara*on

between1’s=T

minimumsepara*on

between1’s=3T /2

Page 53: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 53/120

ConstrainedCodes(2-Dimensions)

•  Codingtheoristsarealsointerestedin2-dimensional

constrainedbinarycodes:i.e.,constrainedbinaryarrayswherethebinarydigitsarearrangedinanarrayofrowsand

columns.

•  Suchcodesmighthaveapplica*onin2-dimensionalstorage.

Page 54: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 54/120

ConstrainedCodes(2-Dimensions)

•  Wewilluseasanexample,a2-dimensionalarraywhere

everyrowandeverycolumnsa*sfiesa1-dimensional

(d,k)constraint.

•  Otherinteres*ngconstraintsexist.

Page 55: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 55/120

A2-Dimensional(1,2)Array

0100101001001... 1001010010010...

0010100100101...

0101001001010...

1010010010101... ...

Page 56: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 56/120

ConstrainedCodes(2-Dimensions)

•  Letthearrayhavemrowsandncolumns.

•  N(m,n):thenumberofarraysthatsa*sfythe2-

dimensionalconstraint.

•  Thenthe2-dimensionalcapacity,C2,isdefinedas:

Page 57: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 57/120

Capacityof(d,k)ConstrainedArrays

•  For2-dimensional(d,k)constraints,C 2existsbutShannon

didn’ttellushowtocomputeit.

•  Tothisday,forrectangularconstraints,theexactvalueofthe

capacityisunknownexceptforthetrivialcaseswhereC 2=0

orC2=1.

Page 58: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 58/120

ECCCodes

•  ReedSolomoncodesareusedintoday’sharddiskdrives.

•  Weareonthevergeofseeingtheintroduc*onofLDPC

codeswithitera*vedecodinginHDD.

Page 59: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 59/120

PressReleaseAugust4,2010

•  …announcesitslow-densityparitycheck(LDPC)-based…deviceiscurrentlyshippinginmainstream2.5-inchmobileharddiskdriveproducts.…

•  Today’sHDDdatarecoveryarchitecturesaremostlybasedonconcatenatedcodingschemeswhichuseReedSolomonerrorcorrec*oncodes,inventedalmost50yearsago.…

•  Now,byusing…LDPC-basedsolu*ons,HDDvendorscancon*nuetodoublethestoragecapacityoftheirdrivesevery18months.…

•  currentLDPC-baseddevicereducesthenumberoferrors

readfromadiskfrom1in100to1in100Millionbitsofdata,rela*vetothepreviously-usedconcatenatedcodingschemes.

Page 60: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 60/120

TheFutureofHDD’s

•  Itispossiblethatthearealdensitywillsaturateverysoonusingthepresenttechnology.

•  Asthesizeofthestoredbitshrinks,thepresentmagne*cmaterialwillnotholdit’smagne*za*on.

•  Thisiscalledthesuperparamagne*ceffect.

•  Itisbelievedthataradicallynewsystemwillberequiredtoovercomethiseffect.

Page 61: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 61/120

TheFutureofDiskDrives

•  Twosolu*onsarebeingpursuedtoovercomethesuperparamagne*ceffect.

 –  Onesolu*onistouseamagne*cmaterialwithamuchhighercoercivity.Theproblemwiththissolu*onisthatyoucannotwriteonthematerialatroomtemperaturesoyouneedtoheatthemediatowrite.Thisisdonewithalaser

 –  Thesecondapproachiscalledpa\ernedmediawherebitsarestoredonphysicallyseparatedmagne*c“islands”separatedbyaseaofnon-magne*cmaterial.

Page 62: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 62/120

FutureTechnology?

HAMR-HeatAssisted

Magne*cRecording

Pa\ernedMedia

Page 63: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 63/120

Wri*ngonPa\ernedMedia

OrdinaryMediaPa\ernedMedia

Inordinarymedia,onecanwriteabitanywhereonthemagne*csurface.

Inpa\ernedmediaonemustwriteeachbitonamagne*cisland.Thisisa

difficulttasksinceonecannotreadandwritesimultaneously.

Page 64: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 64/120

ShingledRecordingforPa\erned

MediaTime Data Islands / Recorded Bits

0 __ x x x x x x x x x

1 0 0 0 0 0 x x x x x

2 1 0 1 1 1 1 x x x x

3 1 0 1 1 1 1 1 x x x

4 0 (wrtten late) 0 1 1 1 0 0 0 0 x

5 0 (written late) 0 1 1 1  0 0 0 0 0

Note that if the data bit written late is the same as the previous bit, thereis no error in the recorded bit!!!  

Page 65: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 65/120

Mathema*calModelAt*mei=1,2,3,...  X i databit{0,1}

Y i recordedbit {0,1}

Zistateofchannel {0,1}

 Z i =0ifdatabitiswri\enoncorrectisland  Z i=1ifdatabitiswri\enlate

Then: Y i = X i if Z i =0

Y i = X i-1if Z i=1.

Thus: Y i = X i ⊕( X i ⊕ X i-1) Z i 

Page 66: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 66/120

PreviousExample

 X  0 1 1 0 0 1 0 ...

Z 0 0 0 1 1 0 1 ...

Y  0 1 1 1 0 1 1 ...

Page 67: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 67/120

ASimpleRate½CodeandChannel

Capacity•  Considerthetrivialbinaryrate½codewhereeachdatabitMi is

recordedtwice.

•  Thatis,assumethat X 2i-1= X 2i =Mi ε{0,1}.Thensince

Y 2i = X 2i ⊕( X 2i ⊕ X 2i-1) Z 2i

Y 2i =Mi independentofthevalueof Z 2i .

•  Adecodercandecodethisrate½codewithzeroerrorprobability

 justbyobservingthevaluesofY withevenindicesandthusthezeroerrorcapacityofthischannelisatleast½.

•  Asaresult,alowerboundtothecapacityofthechannelis½independentofthesta*s*calmodelassumedforthe Z process.

Page 68: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 68/120

TwoDifferentModelsfor Z 

•  Random Z

 –  { Z i }isBernouliwithparameter p:B( p)

 –  Thatis,{ Z i }arei.i.d.,and p=Pr [ Z i =1]

•  2-stateGilbertmodel Z :G( p0,1 ,p1,0 )

 Z i =0 Z i =1

 p0,1

 p1,0

1-p0,1

1-p1,0 

Page 69: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 69/120

ChannelCapacity

•  Foranymodelforthe Z process,thechannelcapacityis

definedintheusualmanner.

•  WecallthecapacityoftheBernoullistatemodelwith

parameter p,C B( p),andwecallthecapacityoftheGilbertstatemodelwithparameters( p0,1 ,p1,0 ),C G( p0,1 ,p1,0 ).

•  FortheBernoulistatemodelonecanprovethat:

C B( p)=C B(1-p)andforGilbertstatemodel,onecanprovethat:

C G( p0,1 ,p1,0 )=C G( p1,0 ,p0,1).

Page 70: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 70/120

ProofthatC B( p)=C B( p)=C B(1- p)

Details are given in the paper “Write Channel Model for Bit-Patterned Media Recording” which will appear in theIEEE Transactions of Magnetics.

Page 71: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 71/120

BernoulliModel

•  Theparameterspacecanthereforebereducedtothe

interval pε[0,1/2].

• 

Furthermorethesamesymmetryargumentholdsfornot justtherate-maximizinginputdistribu*on,butforallinput

distribu*ons.

•  ThecapacityoftheBernoullimodelisupperboundedby

theachievablerateforagenie-aideddecoder,i.e.,onewiththe{ Z }processrealiza*onknown.

Page 72: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 72/120

UpperBoundonCapacityforthe

BernouliModel•  Giventherealiza*onofthe Z process,whenever Z i−1=1and Z i =0 ,

thevalueof X i-1cannotbedeterminedfromtheY process.

•  ThustheBernoullistatechannelisequivalenttoacorrelated

symmetricerasurechannelwithaverageerasureratePr { Z i−1=1, Z i =0 }= p(1-p).

•  Theresul*ngerasurechanneliscorrelatedsince,erasuresbeing

dependenton1to0transi*onsinthe Z process,twoconsecu*ve

bitscannotbeerased.

Page 73: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 73/120

UpperBoundonCapacityforthe

BernouliModel

•  Thecapacityofacorrelatedsymmetricerasurechannelisthesameasthatofamemorylesssymmetricerasure

channelwiththesameerasureprobability.

•  Therefore,C B( p)<[1−p(1-p)].

Page 74: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 74/120

Page 75: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 75/120

Example

 Z  0 0 0 1 1 0 ...

Y  0 1 1 1 0 1 ...

 X  0

Page 76: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 76/120

Example

 Z  0 0 0 1 1 0 ...

Y  0 1 1 1 0 1 ...

 X  0 1

Page 77: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 77/120

Example

 Z  0 0 0 1 1 0 ...

Y  0 1 1 1 0 1 ...

 X  0 1 1

Page 78: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 78/120

Example

 Z  0 0 0 1 1 0 ...

Y  0 1 1 1 0 1 ...

 X  0 1 1 0

Page 79: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 79/120

Example

 Z  0 0 0 1 1 0 ...

Y  0 1 1 1 0 1 ...

 X  0 1 1 0 ? 1

Page 80: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 80/120

BernouliModel•  Theinputdistribu*onthatmaximizesthemutual

informa*onisunknownsonoclosedformexpressionhas

beenfoundforthecapacityoftheBernoulimodel.

•  Howeverlowerboundsonthecapacitycanbefoundby

assumingpar*cularformsfortheinputdistribu*on(e.g.,an

i.i.d.inputprocess).

•  Very*ghtupperandlowerboundshavebeenfoundforthe

symmetricinforma*onratewhentheinputisuniformandi.i.d.Anaccuratees*mateofthesymmetricinforma*on

ratehasbeenobtainedusingtheBCJRalgorithm.

Page 81: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 81/120

BernouliModel

SymmetricInforma*onRate

Page 82: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 82/120

BernouliModel

SymmetricInforma*onRate

•  Notethatonthepreviousslide,forsomevaluesof p,an

upperboundtothesymmetricinforma*onrateisstrictly

lessthan½.

•  Butweknowthatthetruecapacityisgreaterthanorequal

to½forallvaluesof p.

•  Thisshowsthatforthesevaluesof p,thecapacityachieving

inputprocessisnoti.u.d.

Page 83: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 83/120

BernouliModel

•  Toexplorethelossinachievablerateduetoani.i.d.input

weconsideredasymmetricfirstorderbinaryMarkovinput

wherePr { X i =1| X i-1=0 }=Pr { X i =0 | X i-1=1}=β.

•  Upperandlowerboundswerefoundforthemutual

informa*onforaMarkovianinputasafunc*onofβand p.

Page 84: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 84/120

BernouliModelwithMarkovianInput

Page 85: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 85/120

ComparisonoftheSymmetric

Informa*onRateandtheInforma*onRateforaMarkovianSource

Page 86: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 86/120

SummaryforBernouliStateModel

•  ItwasfoundthatfortheBernoulimodelfor Z ,considerablegainsinthereliabletransferratearepossiblebyusingan

inputwithmemory.

Page 87: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 87/120

GilbertModel

•  Weknowlessaboutcompu*ngthecapacityforthismodel

thanfortheBernoulimodel

•  ByusingagenietoinformthedecoderoftheZprocesswe

canobtainanupperboundtothecapacity.Againtheresult

isacorrelatederasurechannelwithaverageerasure

probabilityPr { Z i-1=1,Z i =0 }= p1,0 p0,1/( p1,0 +p0,1)resul*nginthe

upperboundforthecapacity:

C G( p0,1 ,p1,0 )<1–[ p1,0 p0,1/( p1,0 +p0,1)].

Page 88: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 88/120

Inser*onsandDele*ons

•  Foranymodelfor Z onecaninterprettheeffectsofthe

channelintermsofinser*onsanddele*ons.

•  If Z i-1

=0and Z i =1,thenY 

i-1=Y 

i =X 

i-1sothereisaninser*onof

 X i-1intheY sequence.Ifontheotherhand Z  j-1=1and Z  j =0,

thenY  j-1=X  j-2andY  j =X  jsothereisadele*onof X  j-1intheY 

sequence.

•  Notethatinthismodel,inser*onsanddele*onsalternateinoccurrenceandinser*onsarearepeatofthepreviousdata

digit.

Page 89: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 89/120

Inser*onsandDele*ons

•  Example

 X  0 1 1 0 0 1 0 ...

 Z  0 1 1 1 1 0 0

Y  0 0 1 1 0 1 0 ...

inser*ondele*on

Page 90: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 90/120

SomeFinalRemarksONHDD’s

•  Peoplehavebeenpredic*ngthedeathofmagne*charddisk

drivesformanyyears.

•  Lackinga“prognos*scope”,itisdifficulttopredicthowlong

theHDDwillremainthestoragedeviceofchoice.

•  However,magne*charddiskdrivesseemstobea“catwith

ninelives”havingbeatoutallcompe*torsinthepast.

Page 91: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 91/120

91

CodingforFlashMemories

Page 92: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 92/120

92

FlashMemory

•  Flashisanon-vola*lememorywhichisfast,powerefficient

andhasnomovingparts.

•  Electricallyprogrammedanderased.

•  Usedin:

 –  Digitalcameras

 –  LowcapacityIPODS

 –  Mobilephones –  Laptopcomputers

 –  Hybriddrives

Page 93: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 93/120

FlashMemoriesStructure

Arrayofcellsmadefromfloa*nggatetransistors.

Cellsaresubdividedintoblocksandthenintopages.

Thecellsareprogrammedbypulsingelectronsviahot-electron

injec*on.

Page 94: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 94/120

94

FlashMemoriesStructure

Arrayofcellsmadefromfloa*nggatetransistors.

Cellsaresubdividedintoblocksandthenintopages.

Thecellsareprogrammedbypulsingelectronsviahot-electron

injec*on.

Page 95: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 95/120

95

FlashMemoriesStructure

Eachcellcanhaveqlevels,

representedbydifferent

amountsofelectrons.

Intoday’sproducts,q=2,4,8or16. 

Inordertoreduceacelllevel,

allthecellsinthatblockmustbe

resettolevel0beforerewri*ng.

 –AVERYEXPENSIVEOPERATION  

Arrayofcellsmadefromfloa*nggatetransistors.

Cellsaresubdividedintoblocksandthenintopages.

Thecellsareprogrammedbypulsingelectronsviahot-electron

injec*on.

Page 96: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 96/120

96

FlashMemoryStructure

•  Thememoryconsistsofblocks

 –  Thesizeofeachblockis128(or256) KB.

 –  Eachblockconsistsof64 (or128)pages.

 –  Thesizeofeachpageis2KB.

•  Wri*ng–Writesequen*allytothenextavailable

page.

•  Erasing–Canonlyeraseanen*reblock!

Page 1

Page 2

Page 3

Page 63

Page 64

! ! ! ! ! ! !  ! ! ! ! ! ! !  ! ! ! ! ! ! !  ! ! ! ! ! ! ! ! ! ! ! ! 

Page 97: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 97/120

97

FlashMemoryConstraints

•  Theenduranceofflashmemoriesisrelatedtotothenumber

of*mestheblocksareerased.

•  Insinglelevelflashwithq=2,ablockcantolerate~104-105

erasuresbeforeitstartsproducingexcessiveerrors.

 –  SLC:SingleLevelCell

•  Thelargerthevalueofq,thelesstheendurance.

 –  MLC:Mul*LevelCell

•  TheGoal:Represen*ngthedataefficientlysuchthatblock

erasuresarepostponedasmuchaspossible.

Page 98: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 98/120

98

ExperimentDescrip*on

•  Foreachblockthefollowingstepswererepeated:

•  Theblockwaserased.

•  Pseudo-randomdatawaswri\entotheblock.

•  Thedatawasreadandcomparedtofinderrors.

•  Remark:

•  Theexperimentwasdoneunderlabcondi*ons.Otherfactorssuchas

temperaturechange,intervalsbetweenerasuresandmul*plereadings

beforeerasureswerenotconsidered.

Page 99: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 99/120

99

RawBERforSLCblock

!106

!10-4

Guaranteedlife*mebythemanufacturer

Page 100: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 100/120

100

RawBERforMLCblock

!105

!10-3

Guaranteedlife*mebythemanufacturer

Page 101: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 101/120

AnIntroduc*ontoWOM-codes

•  WOM-codesallowustowriteseveral*mestothesameblockofmemorywithouterasing.

•  Example:In1982,RivestandShamirfoundawaytowrite2

bitsofinforma*ontwiceusingonly3cells.

•  WedenoteaWOMcodethatwritesk*mestoncellsasa<V 1,V 2,…,V k >/ncodewhereV i isthenumberofmessageswri\enontheithwrite.

•  ThustheRivestShamircodeisa<4,4>/3codewithk =2.

101

Page 102: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 102/120

TheRivest-ShamirCode

102

DataBits FirstWrite SecondWrite

00 000 111

01 001 110

10 010 101

11 100 011

Example1:FirstWrite:Wantto

storedata01:

Write001tomemory.

SecondWrite:Wanttostoredata

10:

Write101tomemory.

Ifwewanttowritethesamedataonthe

secondwrite,wedonotchangewhatiswri\enonthefirstwrite.

Example2:FirstWrite:Wantto

storedata01

Write001tomemory.

SecondWrite:Wanttostoredata

01:Leave001inmemory.

Notethatwhengoingfromfirstwrite

tosecondwrite,no1’sareerased.

Page 103: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 103/120

RateofaWOM-code

•  Therateoftheithwriteis:

Bitsofinforma*on

Totalnumberofbits

log2(V i)

n

•  ThetotalrateofaWOM-codeisR=∑(Ri).

•  TheRivestShamircodehasR1=R2=2/3andR=4/3.

Ri=

Ri=

103

Page 104: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 104/120

WOMCapacityRegion

ThecapacityregionofabinaryWOMcodewithtwowritesis

C WOM={(R1,R2)|∃ p∈[0,0.5],R1≤h( p),R2≤1– p}

whereh( p)=- plog2( p)–(1- p)log2(1- p).

R=R1+R2<h( p)+1–p.

Therighthandsideismaximizedfor p=1/3yielding

Rmax=log2(3)=1.58…104

Our Construc*on for a 2 Write WOM

Page 105: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 105/120

OurConstruc*onfora2-WriteWOM

Code•  Choosealinearcode(n,k )withparitycheckmatrixH.Letr=n-k 

sothatH isanr -rowbyn-columnmatrixofrankr.

•  Foravectorv ϵ{0,1}n,letH (v )bethematrixH with0’sreplacing

thecolumnsthatcorrespondtotheposi*onsofthe1’sinv .

•  Onfirstwrite,writeonlythosevectorsv suchthatrank(H (v ))=r .

LetV 1={v ϵ{0,1}n|rank(H (v ))=r }.

•  ThenR1=log2|V 1| /n.

Our Construc*on for a 2 Write WOM

Page 106: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 106/120

OurConstruc*onfora2-WriteWOM

Code•  Assumethate1isvectorwri\enonthefirstwrite.

•  Secondwrite: –  Consideradatavectors2ofr bits.

 – 

Finde2suchthatH (e1)⋅e2=s1⊕s2,wheres1=H 

⋅e1. –  Asolu*one2existssincerank(H (e1))=r .

 –  Writee1⊕e2tomemory.

•  Decodingonthesecondwrite: –  Mul*plythestoredvectore1⊕e2byH :

H ⋅(e1⊕e2)=He1⊕He2=s1⊕(s1⊕s2)=s2

•  Thus,R2=(n-k)/nandR=R1+R2=[log2|V 1|+(n-k)]/n.

Page 107: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 107/120

WOM-CodeConstruc*on:AnExample

•  LetH betheparitycheckmatrixofa(7,4)Hammingcode.

 –  For a vectorv ϵ{0,1}n

,letH (v )bethematrixH with0’sinthecolumnsthatcorrespondtotheposi*onsofthe1’sinv .

•  Onthefirstwrite,weprogramonlyvectorsv suchthatrank(H (v ))=3,

V 1={v ϵ{0,1}n|rank(H (v ))=3}.

•  ForHasshownabove,|V 1

|=1+7+21+35+(35-7)=92.Thus,wecanwriteoneof92messagesatthefirstwrite.

•  Encodinganddecodingofthefirstwritearedonewithalookuptable.

•  Saywewritee1=0101100.

1110100

1011010

1101001

H =n=#ofcolumns=7

r =#ofrows=3

Page 108: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 108/120

WOM-CodeConstruc*on:AnExample

e1=0101100•  Notethats1=H ⋅e1=010.

•  Insert0’sinthecolumnsofH thatcorrespondto1’sinthefirstwrite.ThisnewmatrixisH (e1):

H =

•  Wecannowwriteamessageoflengthr =3bits.Saywewanttostores2=011onsecondwrite.

•  Wanttofindavectore2suchthatH (e1)·e2=s1⊕s2.

•  s1⊕s2=001

•  Choosee2=0000001.

•  Thenwewritee1⊕e2=0101101

1110100

1011010

1101001

1010000

1010010

1000001

1010000

10100101000001

=H(e1 )

Page 109: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 109/120

WOM-CodeConstruc*on:AnExample

•  Notethatwecandecodebymul*plyingbyH :

 –  Wecanwrite92messagesatthefirstwritesoV 1=92and

R1=log2(92)/7=0.932,R2=3/7=0.429andR=1.361whichisbe\er

thantheRivest-Shamirconstruc*on.

 –  However,R1=R2fortheRivest-Shamirconstruc*on.

1110100

10110101101001

0

1

0

11

0

1

. =

0

11

= s2

Page 110: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 110/120

SomeMoreResults

•  ThebestvalueofRpreviouslyachievedfortwowriteswasbyWuwhoobtainedR=1.371.Weobtainedmanycodesthatbe\eredthisresult.

•  FortheGolay(24,12)code,weobtainedR=1.4547.

•  FortheGolay(23,11)code,weobtainedR=1.4632.

•  ChoosingthecodeasthedualoftheReed-Muller(4,2)code,weobtainedR=1.4566.

•  IfR1>R2,wecanlimitthenumberofmessagesusedonthefirstwritesothatR1=R2

andR=2R1.DoingthisforthedualoftheReed-Muller(4,2)code,weobtainedR=1.375.

110

Computer Search for Good 2-Write

Page 111: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 111/120

ComputerSearchforGood2-Write

WOMCodes

•  Constructarandommatrixofsizen×r andrankr.

•  CyclethroughallvectorsoflengthnandHammingweightat

mostn-r .

•  Foreachvectorv ,zerooutcolumnsofthematrixwhere1’s

existinv.

•  Computetherankofthematrix.Ifitisthesameasthe

originalrank,addoneto|V 1|.

•  Onceweknow|V1|,wecancomputetheratewith

R=(1/n)(log2|V 1|+r )

111

Page 112: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 112/120

TimeSharing

•  Ifweknowtwocodeswithrates(R1 ,R2)and(R3 ,R4),wecan

achieveanyratepair

(t*R1+(1-t )*R3 ,t*R2+(1-t )*R4)

fortara*onalnumberbetween0and1.

112

Page 113: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 113/120

SomeAchievableRatePairsandCapacity

forWOMWithTwoWrites

113

Page 114: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 114/120

114

MoreAchievableRatePairsandCapacityfor

WOMWithTwoWrites

Page 115: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 115/120

CodesforMorethan2Writes

t -#ofWrites LowerBoundOur

Construc*onUpperBound

3 1.58 1.66 log4=2

4 1.75 1.95 log5=2.32

5 1.75 1.99 log6=2.58

6 1.75 2.14 log7=2.8

7 1.82 2.15 log8=3

8 1.88 2.23 log9=3.17

9 1.95 2.23 log10=3.32

10 2.01 2.27 log11=3.46

Page 116: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 116/120

Ifyouhaven’tguessedalready,theanswerto

theques*on:

Can an Informa*on Theorist Be Happy in a

CenterforInforma*onStorage?

isaresoundingyes.

Page 117: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 117/120

MyCollaboratorsonthisTalk

PaulSiegel AravindIyengar EitanYaakobi

withSco\Kayser

Page 118: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 118/120

SomeoftheRestoftheCastatCMRR

AndaSpecialThankstoAllofMy

Page 119: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 119/120

Ph.D.Students

Altekar,ShirishA.

Armstrong,AlanJ.

Aviran,SharonBaggen,ConstantP.M.J.

Barndt,RichardD.

Bender,Paul

Bernal,RobertW.

Bridwell,JohnD.Bunin,BarryJ.

Caroselli,JosephP.

Chiang,Chung-Yaw

Demirkan,Ismail

Dorfman,VladimirEddy,ThomasW.

Ergul,FarukR.

Fitzpatrick,James

Fredrickson,L.J.French,CatherineAnnFriedmann,ArnonA.

Goldberg,JasonS

Gupta,DevVart

Hartman,PaulD.

Ho,KelvinK.Y.Karakulak,Seyhan

Kerdock,AnthonyM.

Kim,ByungGuk

Klein,TheodoreJ.

Knudson,KellyJ.Kurkoski,BrianM.

Lee,Patrick

Levi,Karl

Liff,AllanI.

Lin,YinyiMa,HowardH.

Ma,JoongS.

MacDonald,CharlesE.

Mangano,DennisT.Marrow,MarcusMasnick,Burt

McEwen,PeterA.

Miller,John

Milstein,LaurenceB.

Padovani,RobertoPanwar,ShivendraS.

Pasternack,Gerald

Paerson,JohnD.

Philips,ThomasK.

Prohazka,CraigG.

Raghavan,SreenivasaA.

Ritz,Mordechai

Rodriguez,ManoelA.

Schiff,Leonard

Souvignier,ThomasV.Trismen,Robert

Wainberg,Stanley

Walvick,Edward

Weathers,AnthonyD.Zehavi,EphraimZhang,Wenlong

Page 120: Jack Wolf Lecture

8/3/2019 Jack Wolf Lecture

http://slidepdf.com/reader/full/jack-wolf-lecture 120/120

Thankyouforyourkinda\en*on.