j. mater chem. c si22 figure s57 average lateral strain of e3-y and elastosil®film as a function of...

27
1 Supporting Information Synthesis of solvent-free processable and on-demand cross-linkable dielectric elastomers for actuators Philip Caspari, a,b Frank A. Nüesch, a,b Dorina M. Opris, a * P. Caspari, Dr. D. M. Opris, Prof. F. Nüesch Laboratory for functional polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf. Switzerland. [email protected] P. Caspari, Prof. F. Nüesch École Polytechnique Fédérale de Lausanne (EPFL), Institut des matériaux, Station 12, CH 1015, Lausanne, Switzerland. Figure S1 1 H NMR spectrum of P1 (M n = 2500 g/mol) (top) and (M n = 5600 g/mol) bottom in CDCl 3 . Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Upload: others

Post on 03-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

1

Supporting Information  

Synthesis of solvent-free processable and on-demand cross-linkable dielectric elastomers for actuators Philip Caspari,a,b Frank A. Nüesch,a,b Dorina M. Opris, a*  

P. Caspari, Dr. D. M. Opris, Prof. F. Nüesch Laboratory for functional polymers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf. Switzerland.  [email protected] P. Caspari, Prof. F. Nüesch École Polytechnique Fédérale de Lausanne (EPFL), Institut des matériaux, Station 12, CH 1015, Lausanne, Switzerland. 

 

Figure S1 1H NMR spectrum of P1 (Mn = 2500 g/mol) (top) and (Mn = 5600 g/mol) bottom in CDCl3. 

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.This journal is © The Royal Society of Chemistry 2019

Page 2: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

2

 

Figure S2 13C NMR spectrum of P1 (Mn = 2500 g/mol) (top) and (Mn = 5600 g/mol) in CDCl3.         

Page 3: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

3

 

 Figure S3 1H NMR spectrum of P3 (Mn = 3500 g/mol (top) and Mn = 10000 g/mol) in CDCl3.  

 Figure S4 

13C NMR spectrum of P3 (Mn = 3500 g/mol) in CDCl3. 

Page 4: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

4

   Figure S5 GPC elution curves of P3. Mn= 3000, Mw = 7000, PDI = 2.4. 

     Figure S6 GPC elution curves of P3.2. Mn=3000, Mw= 18000, PDI= 5.5   

Figure S7 GPC elution curves of P4. Mn= 150.000, Mw= 450.000, PDI= 2.4. 

Figure S8 GPC elution curves of the depolymerization of P4 under basic conditions.  

Figure S9 GPC elution curves of P5. Mn= 8500, Mw= 20000, PDI = 2.4.    

Page 5: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

5

 Figure S10 

1H NMR spectrum of R(SH)3 in CDCl3. 

 Figure S11 13C NMR spectrum of R(SH)3 in CDCl3.    

 Figure S12 GPC elution curves of R(SH)3.   

Page 6: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

6

 Figure S13 Viscosity of P3.2 measured in the frequency range of 1‐10 Hz. Five measurements were performed.  

 Figure S14 Viscosity of P3 measured in the frequency range of 1‐10 Hz. Five measurements were performed.  

 Figure S15 Viscosity of P3‐1 measured in the frequency range of 1‐10 Hz. Five measurements were performed. 

2 4 6 8 104.40

4.45

4.50

4.55

4.60

4.65

4.70

4.75

4.80

4.85

4.90

4.95

5.00 P3.2 P3.2 P3.2 P3.2 P3.2

h' [P

a-s]

Frequency [Hz]

2 4 6 8 102.60

2.65

2.70

2.75

2.80

2.85

2.90 P3 P3 P3 P3 P3

' [P

a s]

Frequency [Hz]

2 4 6 8 102.20

2.25

2.30

2.35

2.40 P3-1 P3-1 P3-1 P3-1 P3-1

' [P

a s]

Frequency [Hz]

Page 7: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

7

 Figure S16 Viscosity of P3‐2 measured in the frequency range of 1‐10 Hz. Five measurements were performed.  

 Figure S17 Viscosity of P3‐3 measured in the frequency range of 1‐10 Hz. Five measurements were performed.  

 Figure S18 Viscosity of P3‐4 measured in the frequency range of 1‐10 Hz. Five measurements were performed. 

2 4 6 8 101.80

1.85

1.90

1.95

2.00 P3-2 P3-2 P3-2 P3-2 P3-2

' [P

a s]

Frequency [Hz]

2 4 6 8 101.60

1.65

1.70

1.75

1.80 P3-3 P3-3 P3-3 P3-3 P3-3

' [P

a s]

Frequency [Hz]

Page 8: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

8

 Figure S19 Viscosity of α'ω-OH-PDMS (Mn = 28 kDa) measured in the frequency range of 1‐10 Hz. Five measurements were performed.  

 Figure S20 Viscosity of α'ω-OH-PDMS (Mn = 63 kDa) measured in the frequency range of 1‐10 Hz. Five measurements were performed.  

 Figure S21 Viscosity of α'ω-OH-PDMS (Mn = 139 kDa) measured in the frequency range of 1‐10 Hz. Five measurements were performed. 

2 4 6 8 100.80

0.85

0.90

0.95 PDMS/Mn: 28 kDa PDMS/Mn: 28 kDa PDMS/Mn: 28 kDa PDMS/Mn: 28 kDa PDMS/Mn: 28 kDa

' [P

a s]

Frequency [Hz]

2 4 6 8 10

7.65

7.70

7.75

7.80

7.85

7.90 PDMS/Mn: 63 kDa PDMS/Mn: 63 kDa PDMS/Mn: 63 kDa PDMS/Mn: 63 kDa PDMS/Mn: 63 kDa

' [P

a s]

w [Hz]

2 4 6 8 1060

65

70

75

80

85

90

95 PDMS/Mn: 139 kDa PDMS/Mn: 139 kDa PDMS/Mn: 139 kDa PDMS/Mn: 139 kDa PDMS/Mn: 139 kDa

' [P

a s]

Frequency [Hz]

Page 9: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

9

Figure S22 TGA curve of P3 in air. 

Figure S23 TGA curve of R(SH)3 in air. 

Figure S24 TGA curve of P5 in air.

Page 10: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

10

Figure S25 TGA curve of AB113729 in air. 

Figure S26 DMA of E3‐1. Four samples were measured.  

 

Page 11: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

11

Figure S27 DMA of E3‐2. Three samples were measured. 

Figure S28 DMA of E3‐3. Three samples were measured. 

 

700.0k

800.0k

900.0k

1.0M

1.1M

1.2M

0.0 0.5 1.0 1.5 2.00.00

0.01

0.02

0.03

0.04

0.05

E' [

Pa]

E2-2 E2-2 E2-2

tan(

d)

Frequency [Hz]

E2-2 E2-2 E2-2

400.0k

450.0k

500.0k

550.0k

600.0k

0.0 0.5 1.0 1.5 2.00.00

0.01

0.02

0.03

0.04

0.05

E' [

Pa]

E3-3 E3-3 E3-3

tan()

Frequency [Hz]

E3-3 E3-3 E3-3

Page 12: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

12

Figure S29 DMA of E3‐4. Three samples were measured. 

Figure S30 DMA of E5. Three samples were measured. 

300.0k

350.0k

400.0k

450.0k

500.0k

0.0 0.5 1.0 1.5 2.00.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E' [

Pa]

E3-4 E3-4 E3-4

tan

(

Frequency [Hz]

E3-4 E3-4 E3-4

Page 13: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

13

  

Figure S31 DMA of Elastosil®Film. Three samples were measured. 

Figure S32 DMA of E5 measured 24h/48h/72h after synthesis. The average curve of 3 measurements is given. The identical sample was measured.

 

Page 14: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

14

0 10 20 30 40 50 60 70 80 90 1000.0

0.1

0.2

0.3

0.4

0.5

0.6 average stress

stre

ss (

MP

a)

strain (%)

 Figure S33 Tensile tests of E3‐1. Three independent tests were performed. 

Figure S34 Tensile tests of E3‐2. Three independent tests were performed. 

Figure S35 Tensile tests of E3‐3. Three independent tests were performed. 

Figure S36 Tensile tests of E3‐4. Three independent tests were performed. 

0 10 20 30 40 50 60 70 80 90 1000.0

0.1

0.2

0.3

0.4

0.5

0.6 E3-1 E3-1 E3-1

stre

ss [M

Pa]

strain [%]

0 20 40 60 80 1000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 E3-2 E3-2 E3-2

stre

ss [

MP

a]

strain [%]

0 20 40 60 80 100 1200.0

0.1

0.2

0.3

0.4

E3-4 E3-4 E3-4

stre

ss [M

Pa

]

strain [%]

Page 15: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

15

Figure S37 Tensile tests of E5. Three independent tests were performed. 

Figure S38 Tensile tests of Elastosil®Film. Three independent tests were performed.  

Figure S39 DSC curves of E3-1.  

0 100 200 300 400 500 6000

2

4

6

8

10 Elastosil®Film Elastosil®Film Elastosil®Film

stre

ss [M

Pa]

strain [%]

Page 16: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

16

 Figure S40 DSC curves of E3-2.

Figure S41 DSC curves of E3-3.

 Figure S42 DSC curves of E3-4.

Page 17: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

17

Figure S43 DSC curves of E5.

Figure S44 TGA curve of E3‐1 in air. 

Figure S45 TGA curve of E3‐2 in air. 

Page 18: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

18

Figure S46 TGA curve of E3‐3 in air. 

Figure S47 TGA curve of E3‐4 in air. 

Figure S48 TGA curve of E5 in air.  

Page 19: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

19

 Figure S49 Dielectric properties of P3 and R(SH)3.  

 Figure S50 Lateral strain in x-and y-direction (strain 1 and strain 2) of E3-1 as a function of the applied electric field.

Figure S51 Lateral strain in x-and y-direction (strain 1 and strain 2) of E3-2 as a function of the applied electric field.

Page 20: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

20

Figure S52 Lateral strain in x-and y-direction (strain 1 and strain 2) of E3-3 as a function of the applied electric field.

Figure S53 Lateral strain in x-and y-direction (strain 1 and strain 2) of E3-4 as a function of the applied electric field.

Figure S54 Lateral strain in x-and y-direction (strain 1 and strain 2) of E3-4 as a function of the applied electric field.

Page 21: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

21

 Figure S55 Lateral strain in x-and y-direction (strain 1 and strain 2) of Elastosil®Film as a function of the applied electric field.

 Figure S56 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 1 Hz. The electric field was 80 V/µm for Elastosil®Film, 30 V/µm for E3-1, 25 V/µm for E3-2/E3-3, and 20 Vµm for E3-4.

Page 22: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

22

Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm for Elastosil®Film, 30 V/µm for E3-1, 25 V/µm for E3-2/E3-3, and 20 Vµm for E3-4.  

 Figure S58 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 4 Hz. The electric field was 80 V/µm for Elastosil®Film, 30 V/µm for E3-1, 25 V/µm for E3-2/E3-3, and 20 Vµm for E3-4.

012345

012345

012345

0123456

02468

0 10 20 30 40 50 60012345

E3-4

E3-3

stra

in (

%)

E3-2

E3-1

E5

time (s)

Elastosil®Film

01234

01234

1234

2

4

2

4

6

0 5 10 15 20 25 30 35012345

E3-4

E3-3

stra

in (

%)

E3-2

E3-1

E5

time (s)

Elastosil®Film

Page 23: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

23

Figure S59 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 8 Hz. The electric field was 80 V/µm for Elastosil®Film, 30 V/µm for E3-1, 25 V/µm for E3-2/E3-3, and 20 Vµm for E3-4.  

0

1

2

3

0

1

2

3

012345

0123456

012345

0 5 10 15 200

1

2

3

E3-4

E3-3

stra

in(%

)

E3-2

E3-1

E5

time (s)

Elastosil®Film

Page 24: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

24

 Figure S60 10 x 10.000 operation cycles at 8 Hz at 25 V/µm of a circular DEA test device constructed from a 75 µm‐thin film of E3‐1 with an area diameter of 8 mm. Strain 1 is defined as the lateral strain in x‐direction. Strain 2 is defined as the lateral strain in y‐direction.     

0 500 1000 15000

1

2

3

4

50

1

2

3

4

5st

rain

1 (

%)

time (s)

strain 1 (%)

st

rain

2 (

%)

strain 2 (%)

 0 500 1000 1500

0

1

2

3

4

50

1

2

3

4

stra

in 1

(%

)

time (s)

strain 1 (%)

stra

in 2

(%

)

strain 2 (%)

 0 500 1000 1500

0

1

2

3

4

0

1

2

3

4

stra

in 1

(%

)

time (s)

strain 1 (%)

stra

in 2

(%

)

strain 2 (%)

0 500 1000 15000

1

2

3

4

0

1

2

3

4

stra

in 1

(%

)

time (s)

strain 1 (%)

stra

in 2

(%

)

strain 2 (%)

 0 500 1000 1500

0

1

2

3

4

0

1

2

3

4

stra

in 1

(%

)

time (s)

strain 1 (%)

stra

in 2

(%

)

strain 2 (%)

0 500 1000 15000

1

2

3

4

0

1

2

3

4

5

stra

in 1

(%

)

time (s)

strain 1 (%)

stra

in 2

(%

)

strain 2 (%)

 

0 500 1000 15000

1

2

3

4

0

1

2

3

4

5

stra

in 1

(%

)

time (s)

strain 1 (%)

stra

in 2

(%

)

strain 2 (%)

0 500 1000 15000

1

2

3

4

0

1

2

3

4

5

stra

in 1

(%

)

time (s)

strain 1 (%)

stra

in 2

(%

)

strain 2 (%)

0 500 1000 15000

1

2

3

4

0

1

2

3

4

5

stra

in 1

(%

)

time (s)

strain 1 (%)

stra

in 2

(%

)

strain 2 (%)

0 500 1000 15000

1

2

3

4

0

1

2

3

4

5

stra

in 1

(%

)

time (s)

strain 1 (%)

stra

in 2

(%

)

strain 2 (%)

Page 25: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

25

 Figure S61 5 x 10.000 operation cycles + 1 x 20.0000 at 8 Hz at 29 V/µm of a circular DEA test device constructed from a 85 µm‐thin film of E3‐2 with an area diameter of 8 mm. Strain 1 is defined as the lateral strain in x‐direction. Strain 2 is defined as the lateral strain in y‐direction.            

0 500 1000 15000

1

2

3

4

0

1

2

3

4

5st

rain

1 (

%)

time (s)

strain 1 (%)

st

rain

2 (

%)

strain 2 (%)

0 1000 2000 30000

1

2

3

4

0

1

2

3

4

5

stra

in 1

(%

)

time (s)

strain 1 (%)

stra

in 2

(%

)

strain 2 (%)

0 500 1000 15000

1

2

3

4

5

0

1

2

3

4

5

stra

in 1

(%

)

time (s)

strain 1 (%)

stra

in 2

(%

)

strain 2 (%)

 

0 500 1000 15000

1

2

3

4

5

0

1

2

3

4

5

stra

in 1

(%

)

time (s)

strain 1 (%)

stra

in 2

(%

)

strain 2 (%)

0 500 1000 15000

1

2

3

4

0

1

2

3

4

5

stra

in 1

(%

)

time (s)

strain 1 (%)

stra

in 2

(%

)

strain 2 (%)

Page 26: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

26

 Figure S62 3 x 10.000 + 2 x 30.0000 DEA operation cycles at 8 Hz at 25 V/µm of a circular DEA test device constructed from a 90 µm‐thin film of E3‐3 with an area diameter of 8 mm. Strain 1 is defined as the lateral strain in x‐direction. Strain 2 is defined as the lateral strain in y‐direction. 

 Figure S63 1 x 10.000 DEA operation cycles at 8 Hz at 15 V/µm of a circular DEA test device constructed from a 100 µm‐thin film of E3‐4 with an area diameter of 8 mm.  Strain 1 is defined as the lateral strain in x‐direction. Strain 2 is defined as the lateral strain in y‐direction.  

0

1

2

3

4

5

0 500 1000 15000

1

2

3

4

st

rain

1 (

%)

strain 1 (%)st

rain

2 (

%)

time (s)

strain 2 (%)

 

0

1

2

3

4

5

0 500 1000 15000

1

2

3

4

stra

in 1

(%

)

strain 1 (%)

stra

in 2

(%

)

time (s)

strain 2 (%)0

1

2

3

4

5

0 500 1000 15000

1

2

3

4

stra

in 1

(%

)

strain 1 (%)

stra

in 2

(%

)

time (s)

strain 2 (%)

0

1

2

3

4

5

0 1000 2000 3000 40000

1

2

3

4

stra

in 1

(%

)

strain 1 (%)

stra

in 2

(%

)

time (s)

strain 2 (%)0

1

2

3

4

5

0 1000 2000 3000 40000

1

2

3

4

stra

in 1

(%

)

strain 1 (%)

stra

in 2

(%

)

time (s)

strain 2 (%)

 

Page 27: J. Mater Chem. C SI22 Figure S57 Average lateral strain of E3-Y and Elastosil®Film as a function of the applied electric field (DC) operated at 2 Hz. The electric field was 80 V/µm

27

 Figure S64 2 x 50.000 and 2 x 40.000 DEA operation cycles at 8 Hz at 25 V/µm of a circular DEA test device constructed from a 85 µm-thin film of E5 with an area diameter of 8 mm. Strain 1 is defined as the lateral strain in x-direction. Strain 2 is defined as the lateral strain in y-direction.   

0.0

0.5

1.0

1.5

2.0

0 1800 3600 54000.0

0.5

1.0

1.5

2.0

2.5

3.0

stra

in 1

(%

)

strain 1 (%)

stra

in 2

(%

)

time (s)

strain 2 (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1800 3600 5400

0.5

1.0

1.5

2.0

2.5

3.0

3.5

stra

in 1

(%

)

strain 1 (%)

stra

in 2

(%

)

time (s)

strain 2 (%)0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 1800 36000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

stra

in 1

(%

)

strain 1 (%)

stra

in 2

(%

)

time (s)

strain 2 (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1800 3600-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

stra

in 1

(%

)

strain 1 (%)

stra

in 2

(%

)

time (s)

strain 2 (%)