j. gilbert kaufman parametric analyses of high-temperature data for aluminum alloys 2009

170
PARAMETRIC ANALYSES OF HIGH-TEMPERATURE DATA FOR ALUMINUM ALLOYS J. GILBERT KAUFMAN ASM International ® Materials Park, Ohio 44073-0002 www.asminternational.org Copyright © 2008 ASM International®. All rights reserved. Parametric Analyses of High-Temperature Data for Aluminum Alloys (#05202G) www.asminternational.org

Upload: lisa-doukakarou

Post on 15-Aug-2015

104 views

Category:

Documents


2 download

DESCRIPTION

Materials Aluminum Alloys

TRANSCRIPT

Page 1: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

PARAMETRIC ANALYSES OF HIGH-TEMPERATURE

DATA FOR ALUMINUM ALLOYS

J. GILBERT KAUFMAN

ASM International®

Materials Park, Ohio 44073-0002www.asminternational.org

5202 PA FM i-vi.qxd 10/21/08 9:41 PM Page i

Copyright © 2008 ASM International®. All rights reserved. Parametric Analyses of High-Temperature Data for Aluminum Alloys (#05202G) www.asminternational.org

Page 2: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Copyright © 2008by

ASM International®

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,mechanical, photocopying, recording, or otherwise, without the written permission of the copyright owner.

First printing, December 2008

Great care is taken in the compilation and production of this book, but it should be made clear that NO WARRANTIES, EX-PRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESSFOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this informa-tion is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this pub-lication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since theconditions of product or material use are outside of ASM’s control, ASM assumes no liability or obligation in connection withany use of this information. No claim of any kind, whether as to products or information in this publication, and whether ornot based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of whichdamages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OFBUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIALDAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As withany material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testingunder actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connec-tion with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copy-right, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of let-ters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.

Prepared under the direction of the ASM International Technical Book Committee (2007–2008), Lichun L. Chen, Chair.

ASM International staff who worked on this project include Scott Henry, Senior Manager of Product and Service Develop-ment; Charles Moosbrugger, Technical Editor; Ann Britton, Editorial Assistant; Bonnie Sanders, Manager of Production;Madrid Tramble, Senior Production Coordinator; Diane Grubbs, Production Coordinator; Patty Conti, Production Coordina-tor; and Kathryn Muldoon, Production Assistant

Library of Congress Control Number: 2008934668ISBN-13: 978-0-87170-715-4

ISBN-10: 0-87170-715-2SAN: 204-7586

ASM International®

Materials Park, OH 44073-0002www.asminternational.org

Printed in the United States of America

5202 PA FM i-vi.qxd 10/21/08 9:41 PM Page ii

Page 3: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Foreword and Acknowledgments..........................................................ivAbout the Author ....................................................................................v

Introduction and Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Theory and Application of Time-Temperature Parameters . . . . . . . . 3Rate Process Theory and the Development of Parametric

Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Larson-Miller Parameter (LMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Manson-Haferd Parameter (MHP) . . . . . . . . . . . . . . . . . . . . . . . . . . 3Dorn-Sherby Parameter (DSP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Observations on the LMP, MHP, and DSP. . . . . . . . . . . . . . . . . . . . 4

Illustrative Applications of LMP, MHP, and DSP . . . . . . . . . . . . . . . . 4Notes about Presentation Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Alloys 1100-O and H14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Alloy 2024-T851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Alloy 3003-O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Alloy 5454-O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Summary of Parametric Comparisons . . . . . . . . . . . . . . . . . . . . . . . 7

Factors Affecting Usefulness of LMP . . . . . . . . . . . . . . . . . . . . . . . . . 7Normal Rupture Test Reproducibility . . . . . . . . . . . . . . . . . . . . . . . 7Testing Laboratory Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Lot-to-Lot Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Effect of LMP Constant (CLMP) Selection . . . . . . . . . . . . . . . . . . . . 8Choice of Cartesian versus Semi-log Plotting . . . . . . . . . . . . . . . . . 9Choice of Scales and Precision of Plotting . . . . . . . . . . . . . . . . . . 10Effect of How the LMP Master Curves are

Fitted to the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Applications When Microstructural Changes

are Involved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Illustrations of Verification and Limitations of LMP . . . . . . . . . . . . . 11

Alloys 1100-O and H14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Alloy 5454-O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Alloy 6061-T651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Limitations of Parametric Analyses . . . . . . . . . . . . . . . . . . . . . . . . 12

Presentation of Archival Master LMP Curves . . . . . . . . . . . . . . . . . . 13Software Programs for Parametric Analyses of Creep

Rupture Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Application of LMP to Comparisons of Stress Rupture

Strengths of Alloys, Tempers, and Products. . . . . . . . . . . . . . . . . . . 15Comparisons of Stress Rupture Strengths of

Different Tempers of an Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Comparisons of Stress Rupture Strengths of Different

Products of an Alloy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Comparisons of Stress Rupture Strengths of Welds

with Parent Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Comparisons of Different Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Application of LMP to High-Temperature Tensile Data for Aluminum Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Application of LMP to Microstructural Changes and Corrosion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Wrought Alloys

1100-O, H14, H18—Stress Rupture Strength and, for the 0 Temper, Creep Strengths . . . . . . . . . . . . . . . . . . . . . . . . 23

2024-T851—Stress Rupture Strength . . . . . . . . . . . . . . . . . . . . . . 412219-T6, T851—Stress Rupture Strength . . . . . . . . . . . . . . . . . . . 503003-O, H12, H14, H18—Stress Rupture Strength . . . . . . . . . . . . 563004-O, H32, H34, H38—Stress Rupture Strength . . . . . . . . . . . . 645050-O—Stress Rupture Strength . . . . . . . . . . . . . . . . . . . . . . . . . 685052-O, H32, H34, H38, and H112—Stress

Rupture Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705083-H321 As-Welded with 5083 Filler Alloy—Stress

Rupture Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785154-O—Stress Rupture Strength . . . . . . . . . . . . . . . . . . . . . . . . . 825454-O, H32, H34, As-Welded H34—Stress Rupture

Strength and, for the O Temper, Strength at Minimum Creep Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5456-H321 As-Welded with 5556 Filler Alloy—Stress Rupture Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6061-T6, T651—Stress Rupture Strength, Creep Strength, and Strength at Minimum Creep Rate . . . . . . . 112

6063-T5, T6—Strength at Minimum Creep Rate . . . . . . . . . . . . 142Cast Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A201.0-T7—Stress Rupture Strengths. . . . . . . . . . . . . . . . . . . . . 144224.0-T63—Stress Rupture Strengths . . . . . . . . . . . . . . . . . . . . . 145249.0-T63—Stress Rupture Strengths . . . . . . . . . . . . . . . . . . . . . 147270.T7—0.2% Creep Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . 148354.0-T61—Stress Rupture Strengths . . . . . . . . . . . . . . . . . . . . . 148C355.0-T6—Stress Rupture Strengths. . . . . . . . . . . . . . . . . . . . . 149

Appendix 1: Aluminum Alloy and Temper Designation Systems......................................................151

Appendix 2: Terminology and Nomenclature ..................................153

Appendix 3: Nominal Compositions and Typical Mechanical Properties of Some Aluminum Alloys ..........................155

Appendix 4: SI/Metric Unit Conversions ..........................................159

Index ....................................................................................................161

Contents

iii

5202 PA FM i-vi.qxd 10/21/08 9:41 PM Page iii

Page 4: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

It is the objective of this book to describe the potential usefulness of parametric analyses in ana-lyzing and extrapolating the properties of aluminum alloys at high temperatures. It is also the intentto illustrate the use of such methods by presenting a broad spectrum of high-temperature creep datafor aluminum alloys generated from a single source and developed using consistent testing proce-dures and practices.

The author gratefully acknowledges the support of Alcoa, Inc., and in particular the efforts of Dr.Gwendolyn Dixon and her management in arranging and approving the release of the informationcontained herein. Alcoa, Inc. enabled the author to include many previously unpublished data andrelated information from Alcoa’s archives that add immeasurably to the depth and breadth of cover-age. The archival parametric analyses presented herein are illustrative examples typical and repre-sentative of the respective alloys and tempers, but have no statistical basis and therefore are not to beconsidered as the basis for design.

Foreword and Acknowledgment

iv

5202 PA FM i-vi.qxd 10/21/08 9:41 PM Page iv

Page 5: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

J.G. (Gil) Kaufman has a background of more than 50 years in the aluminum and materials infor-mation industries, and remains an active consultant in both areas. In 1997, he retired as Vice Presi-dent, Technology for the Aluminum Association, Inc., headquartered in Washington, D.C., and iscurrently president of his consulting company, Kaufman Associates.

Earlier in his career, he spent 26 years with the Aluminum Company of America, where he man-aged engineering properties and fabricating metallurgical research at Alcoa Laboratories. Many ofthe data presented in this volume were generated over the period when the author was active inand/or managing Alcoa Laboratories engineering properties research.

Kaufman spent 5 years with ARCO Metals, where he was Director of R&D and, later, Vice Presi-dent, Research & Engineering.

Kaufman also served for 9 years as President and CEO of the National Materials Property DataNetwork where, working with STN International and Chemical Abstracts Service, he established aworldwide online network of more than 25 numeric materials databases.

Gil is a Fellow and Honorary Member of ASTM and a Fellow and Life Member of ASM Interna-tional. He has published more than 130 articles, including five books, on aluminum alloys and mate-rials data systems.

About the Author

v

5202 PA FM i-vi.qxd 10/21/08 9:41 PM Page v

Page 6: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

The properties of aluminum alloys are dependent on both thetemperature to which they are exposed and also, for temperaturesabove room temperature, to the length of time of exposure at tem-perature. One consequence of this is a need for designers of struc-tures intended for very long-life service at high temperatures to beable to anticipate the combined effect of temperature and time attemperature on the properties for the entire service life based ondata from relatively shorter time experimental testing.

For relatively short-life structures, the need is addressed simplyby planning ahead and carrying out a test plan that replicates theintended service conditions. This is quite practical for structureswhose life may be as much as a year, or perhaps even 5 years, butdoes not generally cover rather typical design lives of 10, 20, or30 years, or longer.

The need for the ability to judge performance for relatively longservice lives has been addressed for more than 50 years (Ref 1–3)through the use of time-temperature parametric equations that per-mit the folding of data obtained over a variety of temperatures andexposure times into a single relationship. Once that relationship isestablished with adequate consistency and reliability, it is possibleto extrapolate the available data to anticipate service lives thatsubstantially exceed the range of test data. This must always bedone cautiously and with awareness of the extent of the extrapola-tion, but it provides a better perspective than simply extrapolatingindividual strength life curves.

The need for some sort of parametric relationship involvingstress, time, and temperature may be visualized readily by observ-ing a representative set of stress rupture strength data for 5454-O inFig. 5454-1 (Ref 4) plotted as rupture stress as a function of timeunder load at temperature. The data for each temperature appear asdiscrete lines of decreasing rupture stress with increasing time attemperature. Typically, such curves extend out to between 1000and 10,000 hours because that represents the practical limits oftesting time in advance of designing some commercial structure.

Despite the individual lines for each test temperature in Fig.5454-1, it appears intuitively that there is some relationshipamong these curves. It would be highly desirable and helpful inextrapolating to longer service lives if these curves could be com-bined and consolidated into a single relationship representing allof the data for all temperatures, as for example in Fig. 5454-2. It isprecisely such consolidation that parametric analyses try to ac-complish, and it is the background and application of such analy-ses that we discuss in this book.

The theoretical background and development of the time-tem-perature parametric relationships are covered in greater depth, but

it is appropriate to introduce those that are the focus of this vol-ume at this point. A number of fairly commonly used parametershave been developed over the years, and most are based on whatis termed “rate process theory.” Three versions of such time-temperature parameters are dealt with herein, notably:

The Larson-Miller parameter (Ref 1): LMP = T (C + log t)

The Dorn-Sherby parameter (Ref 7): DSP = t e�A/T

where T is the temperature, °R; t is the time at temperature; and ta,Ta, A, and C are constants defined by the respective experimenters.

These parameters have been applied with considerable successover the years, especially to stress rupture data for a variety ofmetals and, to a lesser extent, to creep rates and total accumulatedcreep of various amounts. While not necessarily showing a techni-cal advantage over the other two parameters, the Larson-MillerParameter (LMP) has become the most widely used, for alu-minum alloys at least, primarily in the author’s judgment becauseof its ease and simplicity of application. As a result, the bulk ofthe information presented herein focuses on the LMP.

It is timely and useful to consider the value of parametric rela-tionships not only for creep and stress rupture data but also for elevated temperature tensile property data and even for resistanceto stress-corrosion cracking. For this purpose we focus on data foraluminum alloys, notably those used for ASME Boiler & PressureVessel Codes and for other high-temperature applications and alsofor alloys subjected through service exposure to long-term high-temperature service.

Briefly, then, the scope of this book includes:

• Review of the theoretical basis for the parametric relationships• Some illustrations and comparisons of the application of three

parametric relationships for several aluminum alloys• Factors affecting the usefulness of time-temperature parameters • Illustrations of the verification and limitations of time-temper-

ature-parameters• Presentation of archival Larson-Miller parametric analyses to

stress-rupture data for a variety of aluminum alloys• Presentation of some new analyses of archival data• Application of LMP to comparisons of the stress rupture

strengths of aluminum alloys, tempers, and products

The Manson-Haferd parameter (Ref 5, 6): MHP =Log at t

T Ta

−−

log

Introduction and Background

Parametric Analyses of High-Temperature Data for Aluminum Alloys J. Gilbert Kaufman, p 1-2 DOI: 10.1361/paht2008p001

Copyright © 2008 ASM International® All rights reserved. www.asminternational.org

Page 7: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

2 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

• Application of the parametric relationships to high-tempera-ture tensile properties of aluminum alloys

• Applications of the parametric relationships for anticipatingmicrostructural changes in aluminum alloys

It is appropriate to note that throughout this volume, the Alu-minum Association alloy and temper designation systems are usedand that the compositions and tensile properties of the materialsfor which data are presented herein met all aluminum alloys spec-ifications of the Aluminum Association. Both the alloy and temperdesignation systems and the composition and tensile propertyspecifications for all aluminum alloys are presented in AluminumStandards and Data published by the Aluminum Association andupdated on a regular basis (the current issue at this writing waspublished in 2006) and also in the American National StandardsInstitute publications H35.1 and H35.2, published for ANSI by theAluminum Association.

A brief summary of the Aluminum Association Alloy and Tem-per Designation Systems is presented in Appendix 1.

A list of the aluminum industry terminology and nomenclatureused throughout the volume is presented in Appendix 2. Most ofthe industry terms are those from Aluminum Standards and Data.There are a few abbreviations used regularly in the text, tables,and figures:

• LMP, Larson-Miller parameter• MHP, Manson-Haferd parameter• DSP, Dorn-Sherby parameter• CLMP, the constant C in the Larson-Miller parameter• T, test temperature• t, time at test temperature• AW, as welded• HTAW, heat treated and aged after welding

Appendix 3 provides for background information the nominalcompositions and typical mechanical properties of all of the

aluminum alloys and tempers for which creep rupture data arepresented or referenced in this volume.

It is also appropriate to note that throughout most of this vol-ume, principal focus is placed on the calculation and presentationof mechanical properties in the English or engineering system,rather than the International Standard System of Units (SI) or met-ric units. This was done because all of the tabular and graphicaldata presented herein were generated using the English/engineer-ing system, calculated conversions other than when convenientwould have added the potential for distortion of the presentations.For those interested in a more in-depth discussion of SI/metricunits and their use in parametric analysis, see Appendix 4.

REFERENCES

1. F.R. Larson and J. Miller, A Time-Temperature Relationshipfor Rupture and Creep Stresses, Trans. ASME, Vol 74, July1952, p 765–771

2. F.C. Monkman and N.J. Grant, An Empirical Relationship between Rupture Life and Minimum Creep Rate in CreepRupture Tests, Transactions of 59th Annual Meeting of ASTM,ASTM, Philadelphia, PA, 1956, p 593–605

3. J.G. Kaufman, Discussion Ref 2 in Transactions of 59th An-nual Meeting of ASTM, Philadelphia, PA, 1956, p 606–612

4. K.O. Bogardus, R.C. Malcolm, and M. Holt, “Extrapolationof Creep-Rupture Data for Aluminum Alloys,” presented atthe 1968 ASM Materials Engineering Congress (Detroit, MI),D8-100, American Society for Metals, 1968, p 361–390

5. S.S. Manson, “Design Considerations for Long Life at Ele-vated Temperatures,” Technical Report TP-1-63, NASA, 1963

6. S.S. Manson and A.M. Haferd, “A Linear Time-TemperatureRelation for Extrapolation of Creep and Stress-Rupture Data,”Technical Note 2890, NACA, March, 1953

7. O.D. Sherby and J.E. Dorn, Creep Correlations in Alpha SolidSolutions of Aluminum, Transactions of AIME, Vol 194, 1952

Page 8: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Rate Process Theory and the Development of Parametric Relationships

Much of the early application and evolution of the high-temper-ature parametric relationships to data for aluminum alloys werecarried out during the 1950s and 1960s under the auspices of theMPC, then known as the Metals Properties Council (now the Ma-terials Properties Council). However, the real origins of the rela-tionships go back considerably further.

The “rate process theory” was first proposed by Eyring in 1936(Ref 1) and was first applied to metals by Kauzmann (Ref 2) andDushman et al. (Ref 3). It may be expressed mathematically as:

r �Ae�Q(S)/RT

where r is the rate for the process in question, A is a constant, Q(S)is the activation energy for the process in question, R is the gasconstant, and T is absolute temperature.

Over the years from 1945 to 1950, several investigators, includ-ing Fisher and McGregor (Ref 4, 5), Holloman (Ref 6–8), Zener(Ref 7), and Jaffe (Ref 8) were credited with recognizing that formetals high-temperature processes such as creep rupture perform-ance, tempering, and diffusion appear to obey rate process theo-ries expressible by the above equation.

In 1963, Manson and Haferd (Ref 9) were credited with show-ing that all three of the parametric relationships introduced in thesection “Introduction and Background” derive from:

where P is a parameter combining the effects of time, tempera-ture, and stress; s is stress, ksi; T is absolute temperature; and TA,log tA, Q, and R are constants dependent on the material.

Larson-Miller Parameter (LMP)

For the LMP, Larson and Miller (Ref 10) elected to use the fol-lowing values of the four constants in the rate process equation:

Q � 0

R ��1.0

TA ��460 °F or 0 °R

tA � the constant C in the LMP

Thus, the general equation reduces to:

P � (log t + C) (T) or LMP � T(C + log t)

This analysis has the advantage that log tAor C is the only constantthat must be defined by analysis of the data in question, and it is ineffect equal to the following at isostress values:

C � (LMP/T) � log t

In such a relationship, isostress data (i.e., data for the same stressbut derived from different time-temperature exposure) plotted asthe reciprocal of T versus log t should define straight lines, and thelines for the various stress values should intersect at a point where1/T � 0 and log t � the value of the unknown constant C.

Larson and Miller took one step further in their original pro-posal, suggesting that the value of constant C (referred to as CLMPhereinafter) could be taken as 20 for many metallic materials.Other authors have suggested that the value of the constant variesfrom alloy to alloy and also with such factors as cold work, ther-momechanical processing, and phase transitions or other struc-tural modifications.

From a practical standpoint, most applications of the LMP aremade by first calculating the value of CLMP that provides the bestfit in the parametric plotting of the raw data, and values for alu-minum alloys, for example, have been shown to range from about13 to 27.

Manson-Haferd Parameter (MHP)

For the MHP, Manson and Haferd (Ref 9, 11) chose the follow-ing values for the constants in the rate process equation:

Q � 0

R � 1.0

Pt t

T T

Q

R=

−−

(log ) log A

A

σ( )

Theory and Application of Time-Temperature Parameters

Parametric Analyses of High-Temperature Data for Aluminum Alloys J. Gilbert Kaufman, p 3-21 DOI: 10.1361/paht2008p003

Copyright © 2008 ASM International® All rights reserved. www.asminternational.org

Page 9: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

4 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Under these assumptions, the general equation reduces to:

In this case, there are two constants to be evaluated, log tA and TA.Manson and Haferd proposed that isostress data be plotted as Tversus log t and the coordinates of the point of convergence betaken as the values for log tA and TA.

It may be noted that the key difference between the LMP andMHP approaches is the selection of TA � absolute zero as the tem-perature where the isostress lines will converge in the LMP whilein the MHP TA is determined empirically, or in effect allowed to“float.”

Dorn-Sherby Parameter (DSP)

Dorn and Sherby (Ref 12) based their relationship more directlyon the Eyring rate-process equation:

DSP � te�A/T

where t is time, A is a constant based on activation energy, and T isabsolute temperature.

This relationship, like the others, implies that isostress tests re-sults at various temperatures should define straight lines when logt is plotted against the reciprocal of temperature. However, it dif-fers from the other approaches in that these straight-line plots areindicated to be parallel rather than converging at values of log tand 1/T.

Observations on the LMP, MHP, and DSP

The essential significance of the differences in the three pa-rameters described previously and applied herein may be illus-trated by the schematic representations in Fig. 1 based on the

relationship assumed of the relationships between log t and 1/T(Ref 6).

As noted in the previous discussions, the LMP assumes that theisostress lines converge on the ordinate of a log time versus in-verse temperature plot, while the MHP assumes convergence atsome specific value of both log t and 1/T. The DSP assumes theisostress lines are parallel rather than radiating from a specificvalue of coordinates log t and 1/T.

As representative data illustrated in this book show, the impactof the differences on the results of analyses with the three differ-ent parameters is not very great.

It is appropriate to note that a number of variations on the threeparameters described previously have been proposed, primarilyincluding such things as letting the values of the various con-stants, such as the C in the LMP and the activations energy A inthe DSP, “float.” None of these have seemed a useful extension ofthe originals. It is common practice to use the available raw datato calculate or determine graphically the values of the needed con-stants, but then once established to hold them constant. Allowingthe constants in any of the relationships to float, for example, theactivation energy in the DSP, results in a different type of analysisin which the isostress lines are curves, not straight lines, and con-siderably complicates its routine use.

Illustrative Applications of LMP, MHP, and DSP

Several interesting facets of the value and limitations of theparametric relationships may be seen from looking at representa-tive illustrations for the following four alloys and tempers whereall three parameters are applied to the same sets of data.

• 1100-O, commercially pure aluminum, annealed (O)• 2024-T851, a solution heat treated aluminum-copper (Al-Cu)

alloy, the series most widely used for high-temperature aero-space applications. The T851 temper is aged to peakstrength, so subsequent exposure at elevated temperaturesresults in overaging, and some microstructural changes maybe expected.

• 3003-O, a lightly alloyed non heat treatable aluminum-man-ganese (Al-Mn) alloy, widely used for heat exchanger applica-tions. It is annealed so no further transitions in structures areanticipated as it is further exposed to high temperatures.

• 5454-O, the highest strength aluminum-magnesium (Al-Mg)alloy recommended for applications involving high tempera-tures. Because of the higher alloying, there may be diffusionof constituent with high-temperature exposure even in the an-nealed temper.

Many other alloys and tempers are included in the group forwhich master parametric relationships are presented in the section“Presentation of Archival Master LMP Curves.”

It is appropriate to note that some components of the followingpresentations are based on the efforts of Bogardus, Malcolm, andHolt of Alcoa Laboratories, who first published their preliminaryassessment of these parametric relationships in 1968 (Ref 13).

Pt t

T T=

−−

log log A

A

σ1 < σ2 < σ3 < σ4

σ1

σ1

σ1

σ2

σ2

σ2

σ3

σ3

σ3

σ4

σ4

σ4

ta, Ta

0 0 01/T T 1/T

Fig. 1 Comparison of assumed constant stress versus temperature relationships for Larson-Miller (left), Manson-Haferd (center), and

Dorn-Sherby (right). T, exposure temperature, absolute; t, exposure time, h;σ, test/exposure stress.

Page 10: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Theory and Application of Time-Temperature Parameters / 5

Notes about Presentation Format

Generally, plots of stress rupture strength or any other propertyare presented with the property on the ordinate scale and the pa-rameter on the abscissa, as in Fig. 1100-8. From the descriptionsin Chapter 2, all three of the parameters discussed herein includeboth time and temperature, so it is useful to note that the para-metric plots can also be presented as in Fig. 2043-3, 2024-6, or2024-7, examples of the three parameters in which at the bottom,abscissa scales showing how the combination of temperature andtime are represented.

This type of presentation is often useful for individuals usingthe parameters for extrapolations, but it is not a necessary part ofthe presentation. Therefore, the multiple abscissa axes showingtime and temperature are not included as a general rule throughthis volume unless the archival version included them.

It is also appropriate to clarify at this stage that the valuesshown for the Larson-Miller parameter on the abscissas are inthousands and are presented as LMP/103; thus for example, in Fig.1100-8, the numbers from 13 to 21 on the abscissa are actually13,000 to 21,000. For the Manson-Haferd and Dorn-Sherby pa-rameters, the values are as shown.

Alloys 1100-O and H14

Table 1100-1 presents a summary of the stress rupture strengthdata for 1100-O and 1100-H14; the discussion immediately following focuses on the O temper data. This summary is forrather extensive tests of single lots of material. Other lots of 1100were also tested, as is illustrated later, but this material was thebasis of the best documented master curves for 1100-O and H14.The data are plotted in the format of stress rupture strength as afunction of rupture life in Fig. 1100-1 and Fig. 1100-2 for the Oand H14 tempers, respectively.

LMP for 1100-O. Figure. 1100-3 shows the archival masterLMP curve developed for 1100-O derived with a value of the Lar-son-Miller parameter constant CLMP of 25.3. The isostress calcula-tions leading to the selection of this value of CLMP no longer exist.Scatter and deviations are small, and the curve appears to representthe data reasonably well.

MHP for 1100-O. The isostress plot of log t and temperature isshown in Fig. 1100-4. The isostress lines are not straight nor dothey seem to converge as projected by Manson and Haferd, butvalues of the constants may be judged from projections of thestraight portions of the fitted lines as: log tA = 21.66 and TA =–500. The resultant master MHP curve is illustrated in Fig. 1100-5.With the exception of several points obtained in tests at 250 oF, thefit is reasonably good.

DSP for 1100-O. Calculations of the activation energy con-stant for the DSP resulted in a value of 44,100, and the resultantmaster curve is illustrated in Fig. 1100-6. With the exception ofthe data for the lower temperatures, the fit is reasonably good.

Comparisons of the Parameters. All three parametric rela-tionships represent data for 1100-O reasonably well. An addi-tional useful comparison test is the degree of agreement in extrapolated values for predicted rupture life after 10,000 and100,000 h:

There is fairly good agreement among the extrapolated valuesfor the three parameters, usually 1 ksi or less variation. It is no-table that the MHP usually provided the lowest extrapolatedvalue, while the LMP provided the highest, usually by less than0.5 ksi.

Alloy 2024-T851

Figures 2024-1 and 2024-2 provide graphical summaries of thestress rupture strengths of 2024-T851 over the temperature rangefrom room temperature (75 oF, or 535 oR) through 700 oF (1160oR). The data in Fig. 2024-1 are plotted as rupture strength as afunction of rupture time for each test temperature, and those ofFig. 2024-2 are plotted as a function of temperature. The raw testdata are tabulated in Table 2024-1, along with the archivalisostress calculations.

LMP for 2024-T851. Table 2024-1 summarizes the isostresscalculations to determine the LMP constant CLMP for 2024-T851.The calculations show quite a range of potential values for CLMP,ranging from about 13 through 26. It is to be expected thatchanges in rate-process-type reactions would be in evidence for2024-T851, as it had originally been aged to maximum strength;subsequent exposure to high temperatures results in increased pre-cipitation of alloying constituents at varying rates and, eventually,recrystallization.

The general tendency is for CLMP to decrease with both longerrupture life and also with increasing temperature. Since the long-life values tend to best represent the range into which extrapola-tions of data for design purposes are most likely to be needed,there is a general practice to place greater weight on the values ofCLMP for longer lives.

Figure 2024-3 is a master LMP curve for 2024-T851 based onan assumed value of CLMP�15.9. To facilitate interpretation,time-temperature pairs are shown along with the LMP values onthe abscissa.

Several observations can readily be made. The data for roomtemperature do not fit with the remainder of the data and are ignored in the analysis. In addition, for each test temperature,the higher shorter-life data plots create “tails” off of the resultantmaster curve; these fade into the master curve as rupture life in-creases. The longer-life and higher-temperature data fit ratherwell into a relatively smooth curve, not surprisingly, given theselection of a value of C deriving most heavily from the longer-life data.

Figure 2024-4 presents the “extrapolated” curves of stress ver-sus rupture life for 2024-T851 utilizing the value of CLMP = 15.9.

Additional discussion and illustrations of the effect of varyingthe values of C are included later.

Temperature, °FDesired servicerupture life, h

LMP rupturestrength, ksi

MHP rupturestrength, ksi

DSP rupturestrength, ksi

212 10,000 6.0 5.4 5.9100,000 5.3 4.0 5.0

300 10,000 3.7 3.0 3.2100,000 3.0 2.3 2.7

400 10,000 2.5 2.4 1.9100,000 2.1 1.4 1.5

500 10,000 1.1 1.1 1.0100,000 <1.0 <1.0 <1.0

Page 11: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

6 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

MHP for 2024-T851. A graphical presentation of the isostresslines of log t versus T plotted by the least squares method to deter-mine the MHP constant is shown in Fig. 2024-5. There is somevariability, especially at the highest and lowest stress values, but afair convergence of data at values of log t = 10.3, which becomesthe value of ta, and a value of temperature (TA) of 45 oF (505 oR).

Figure 2024-6 is a MHP master curve for 2024-T851. Asidefrom the data from room-temperature tests, which have been com-pletely ignored, the fit is quite good. There is no obvious evidenceof the “tails” for shorter-life data in the MHP curve.

DSP for 2024-T851. Calculations for the activation energyconstant in the DSP, shown in Table 2024-2, yielded a value of43,300. The resultant master curve derived from analysis with theDorn-Sherby parameter is illustrated in Fig. 2024-7. Even theroom-temperature data may be considered to fit reasonably well,but they were ignored in drawing the main part of the curve. Thereis some small evidence of shorter-time data resulting in “tails” offthe curve, but these are much less pronounced than those for theLMP master curve.

Comparisons for 2024-T851. The master curves for the LMP,MHP, and DSP in Fig. 2024-3, 6, and 7 are useful for makingsome extrapolations and seeing how they compare. For applica-tions like boilers and pressure vessels it is common to make thebest judgments possible for 100,000 h stress ruptures strengths,and so in Fig. 2024-8, values of 100,000 h rupture life are shownfor a variety of stresses for 2024-T851.

The first overall observation is that of fairly good agreementamong the extrapolations based on the three methods. There aresubtle differences, however. At higher stresses, the LMP projects2 to 3 ksi lower (more conservative) rupture stresses than theother two, while at lower stresses, the LMP and DSP provide 2 to3 ksi higher rupture stresses. Percentagewise, the significance ofthe differences at lower stresses is fairly substantial. The apparentagreement of the LMP and DSP in this range provides some basisfor putting greater faith in those values.

Alloy 3003-O

Figure 3003-1 and 3003-2 provide graphical summaries of thestress rupture strengths for 3003-O over the temperature rangefrom room temperature (75 °F, or 535 °R) through 600 °F (1060°R). The rupture strengths are plotted in Fig. 3003-1 as a functionof rupture time for each test temperature and in Fig. 3003-2 as afunction of test temperature.

LMP for 3003-O. The original isostress calculations to deter-mine the CLMP for 3003-O are no longer available. A value of CLMP� 16, the archival master LMP curve in Fig. 3003-3 was generated.There is some evidence of the “tails” associated with the short-lifetest results at lower temperatures, but in total the master curve looksreasonable and represents most of the data well. Another curve wasalso developed using CLMP � 17.5 illustrated in Fig. 3003-4, andthe “tails” largely disappear, and a smoother curve is generated.

MHP for 3003-O. Figure 3003-5 illustrates the isostress plotfor 3003-O. Convergence is far afield of the plotted data, but val-ues of the constants were judged to be TA��230 and log tA� 14.

Figure 3003-6 contains the MHP master curve for 3003-O cal-culated using the above constants. In this case, “tails” are verymuch in evidence for the MHP analysis as for the LMP analysis.Nevertheless, a seemingly useful master curve for long-life ex-trapolations is obtained.

DSP for 3003-O. A DSP activation energy constant of 35,000was calculated from the 3003-O data, and the derived master DSPcurve is presented in Fig. 3003-7. In this instance, the DSP curve,like the LMP and MHP curves, shows clearly the lack of fit ofshort-life data at several temperatures, but a useful master curvefor long-life extrapolation seems to be present.

Comparisons for 3003-O. Once again, the extrapolation to100,000 rupture life is used as a basis of comparing the results ofthe three parameters, as illustrated in Fig. 3003-8.

Initial inspection shows fairly good agreement; however, onceagain there are subtle but perhaps important differences. TheLMP and DSP show the best agreement, especially at lowerstresses, where the extrapolated values range from about 2 to 4ksi higher than the MHP extrapolations. There is some evidencethat at very low stresses (at or below 2 ksi), the differences are in-consequential.

Alloy 5454-O

Figure 5454-1 provides a graphical summary of the originalarchival stress rupture strengths for 5454-O as a function of rup-ture life for each test temperature.

LMP for 5454-O. Table 5454-1 summarizes the isostress cal-culations to determine the LMP for 5454-O. The range of valuesof CLMP is relatively narrow, about 11 through 15, and absent anylarge trends toward higher or lower values at long rupture lives. Inthis case, a value of CLMP of 14.3, close to the average of all calcu-lations, was used in developing the archival master LMP curve inFig. 5454-2.

The LMP master curve is relatively uniform and consistent,lacking any significant distortions. Figure 5454-3 presents the rawstress rupture strength versus life data extrapolated based on theLMP master curve in Fig. 5454-2.

MHP for 5454-O. Figure 5454-4 illustrates the isostress plotfor 5454-O needed to generate the MHP constants. In this case,there is considerable variation in the shape of the individualisostress lines, and only those for stresses of about 20 or abovestrongly suggest convergence. Giving more weight to those linesresults in values of TA ��161 and log tA �11.25.

Figure 5454-5 contains the MHP master curve for 5454-O cal-culated using the above constants. Despite the difficulties withconvergence of the isostress lines, the resulting MHP master curveis relatively uniform and consistent,

DSP for 5454-O. A DSP activation energy constant of 31,400was calculated, as in Table 5454-2, for the 5454-O data, and thederived master DSP curve is presented in Fig. 5454-6. In this instance, the DSP curve, like the LMP and MHP curves, providesa rather uniform and consistent fit with the data.

Comparisons for 5454-O. Extrapolations for both 10,000 and100,000 h for 5454-O based on the three parameters are:

Page 12: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Theory and Application of Time-Temperature Parameters / 7

As for the other alloys discussed previously, there is generallyfairly good agreement among values extrapolated from the threeparameters. However, once again the MHP master curve consis-tently yielded slightly lower rupture strengths than the othertwo, and the LMP-based values were generally the highest by asmall margin. The divergence was larger for 100,000 h valuesthan for 10,000 h values, as would be expected, and at 300 oF,the divergence was rather significant (a range of 3.4 ksi, about50%).

Summary of Parametric Comparisons

As noted previously, all three parameters (LMP, MHP, andDSP) provide generally relatively good overall fit to the rawdata, other than occasional “tails” resulting from deviations ofrelatively short-time tests at the lower temperatures from thebroader trends. Since the purpose of the parametric analyses islong-life extrapolation, it is most important that the longer-timetest data for various temperatures fit a reasonable and consistentpattern.

Also there was generally fair agreement in extrapolated servicestrengths for 10,000 and/or 100,000 h though the MHP rather con-sistently projected slightly lower long-time rupture strengths thanthe other two parameters.

Of the three parametric relationships described previously, theLarson-Miller Parameter (LMP) was chosen as the principal para-metric tool to be used by the experts, including those at AlcoaLaboratories, in developing the bases for extrapolations to projectcreep and rupture strengths for longer lives than practical basedon empirical testing. The primary reasoning was that since allthree approaches gave similar results within reasonable experi-mental error (see the section “Testing Laboratory Variability”), theLMP was significantly simpler to use both for calculations of theconstant CLMP and for subsequent iterations with different valuesof CLMP to see how curve fit with raw data was affected. Much ofthis work was carried out prior to the era of computer generationof master curves and was based on relatively tedious and repeti-tious hand calculations.

Such analyses were routinely used to generate design values foraluminum alloys for applications such as the ASME Boiler &Pressure Vessel Code (Ref 14).

Subsequently, the data presentations and discussion throughoutthe remainder of this volume focus on applications of the LMP,and will provide considerable insight into the sources and resultsof experimental and procedural variability.

Factors Affecting Usefulness of LMP

There are several very basic factors that can influence the vari-ability in the accuracy and precision of properties developed byparametric extrapolation over and above normal test reproducibil-ity. Some are experimental in nature; others are within the analyti-cal and graphical presentations of the data.

Among the most important are the following each of which isdiscussed in the following section:

• Normal rupture test reproducibility • Testing laboratory variability• Lot-to-lot variations for a given alloy/temper/product • The selection of the constant, CLMP, in the Larson-Miller para-

metric equation • The scales and precision of plotting the master curve• Microstructural changes that occur in the material as a result

of the time-temperature conditions to which it is exposed

The opportunity to examine all of these variables exists within thedata presented herein.

Normal Rupture Test Reproducibility

One of the most basic factors influencing extrapolations, nomatter how they are carried out, is the variability in creep rupturetest results run under presumably identical conditions, usually re-ferred to as scatter in test results. In creep rupture tests, the con-trolled variable is usually the applied stress, and the dependentvariable is rupture life at the applied stress.

Data for 5454-O, taken from the extended summary for a singlelot of plate of that alloy in Table 5454-4, provide some interestingrepresentative examples of the magnitude of this variation:

An additional opportunity for comparisons of replicate test vari-ability exists in the data for 6061-T651 in Table 6061-1. Some ex-amples from those data are:

Test temperature,°F

Appliedcreepstress,

ksi

Numberof

replicatetests Rupture lives, h

Averagerupturelife, h

Percentrange in life from average

350 14 3 64, 75, 106 82 ±26350 11 5 484, 510, 360, 391, 435 436 ±17400 9 7 158, 188, 170, 198, 132,

150, 164166 ±20

Test temperature,°F

Appliedcreep

stress, ksi

Number of replicate

tests Rupture lives, h

Averagerupturelife, h

PercentRange inlife fromaverage

350 21 2 1663, 1912 1788 ±14400 21 6 70, 74, 72, 67, 72, 69 71 ±6450 13 2 177, 257 217 ±24450 13 2 121, 182 152 ±20450 11 2 681, 941 811 ±16500 13 3 11, 23, 33 22 ±50550 8 2 76, 102 89 ±15600 6 2 38,45 234 ±8650 3 2 79, 115 97 ±19700 3 2 15, 20 18 ±14700 2.5 2 181, 227 204 ±11

Temperature, °FDesired servicerupture life, h

LMP rupturestrength, ksi

MHP rupturestrength, ksi

DSP rupturestrength, ksi

212 10,000 17 16 17100,000 14 10 13

300 10,000 10 8 9100,000 7.5 4.1 5.5

400 10,000 4.1 3.5 3.9100,000 3.2 2.1 2.5

500 10,000 2.3 2.0 2.1100,000 1.9 (a) (a)

(a) Data do not support extrapolation to this level.

Page 13: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

8 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

These two examples illustrate the fact that ranges in rupture lifeas great as about ±20% of the average rupture life are likely to beseen in replicate tests, and in some instances, even in very reliablelaboratories, ranges of ±50% may occasionally be observed.

These observations suggest that when extrapolating data bywhatever means, ranges in average rupture strength at a given rup-ture life of ±1 to 2 ksi should not be unexpected. This provides auseful yardstick for comparisons of other test variables and theprecision to be expected of extrapolations.

Testing Laboratory Variability

Data for 6061-T651 plate in Table 6061-1 provide a unique op-portunity to examine the result of having several different testinglaboratories involved in a single program, or in assessing the ef-fect of trying to compare results obtained from several laborato-ries. Three different experienced laboratories were involved in theprogram for which the results are presented in Table 6061-1; theyare designated simply A, B, and C for purposes of this publication.All three were deep in creep rupture testing experience, and allthree inputted data for consideration for design properties for theBoiler & Pressure Vessel Code of ASME (Ref 14).

Some direct comparisons of tests carried out at the same testtemperatures and applied creep rupture stresses are summarized inTable 6061-7, together with calculations of the average rupturelives and deviations of the individual values from the averages.For the 18 direct comparisons available for 6061-T651, the aver-age difference in individual tests from the average was 22%, withthe individual differences generally ranging from 1% to 41% withone extreme of an 81% difference.

This average difference of ±22% is in the same range as thevariation in replicate tests at a single laboratory from the section“Normal Rupture Test Reproducibility,” which makes it difficultto say these differences are related to the laboratories or just moreevidence of the scatter in replicate tests. At any rate, the use ofmultiple reliable laboratories does not seem to further increase thevariability in creep rupture test data.

One added note: in the lab-to-lab differences summarized inTable 6061-7, Lab A reported longer lives in 14 of the 17 caseswhere it was compared with Labs B and/or C, and the average dif-ference for those cases alone was ±25%, 3% more than the overallaverage, and possibly significant. It is impossible to say manyyears in hindsight whether this was related to any basic differencesin test procedures, and therefore which of the labs if any generatedmore or less reliable data. Possible reasons for differences from labto lab could include variables such as (a) differences in alignment(better alignment leading to longer rupture lives); (b) differences intemperature measurement precision, accuracy, and control; and (c)uniformity of conditions throughout the life of the test.

Lot-to-Lot Variability

Aluminum Association specifications for aluminum alloy prod-ucts published in Aluminum Standards & Data provide acceptableranges of both composition and tensile properties for each alloy,temper, and product defined therein. Just as multiple lots of thesame alloy, temper, and product have some acceptable variation inchemical composition and tensile properties within the appropriate

prescribed specification limits, those lots may also be expected tohave some variability in creep rupture properties. The variabilitymay be even greater when different products of the same alloy andtemper are included in the comparison.

This is illustrated by master LMP curves developed individuallyfor three lots of 5454-O, one of rolled and drawn rod and two ofplate, and illustrated in Fig. 5454-7, 8, and 9, respectively. A com-posite curve was also developed, and it is shown in Fig. 5454-10.The curves for the separate lots are largely similar in shape andrange for both stress and LMP values, but the LMP constants CLMPcalculated for the three, ranging from 13.954 to 17.554 (the preci-sion of the original investigators is retained here), with the com-posite CLMP being 15.375, resulting in three independent curvesfor the three lots.

Table 5454-6 provides an illustration of the variations in extrap-olated service lives of 10,000 and 100,000 h would be influencedby the use of data from any of the individual lots of 5454-O. De-spite the use of the three different sets of data for the three differ-ent lots, leading to differing CLMP values, it is very interesting anduseful to note that the 100,000 h. rupture strengths vary no morethan ±1 ksi from the composite value and are often much less divergent.

Effect of LMP Constant (CLMP ) Selection

A very logical concern to the materials data analyst is the effectof variations in the LMP constant selected for the analysis of aspecific set of data on the precision and accuracy of extrapolationsmade based on LMP. This is particularly important as the selec-tion of the LMP constant may be somewhat subjective, especiallywhen cold worked or heat treated tempers are involved.

While there are times when a single specific value of the con-stant may be indicated by the variety of isostress pairs availablefor a specific alloy and temper, more often there is a range of LMPvalues generated, sometimes varying in some manner with tem-perature and rupture life. The final selection of constant is oftenmade in consideration of the part of the LMP master curve mostclearly involved in the extrapolation(s) to be made. In particular,that is often a value of the constant that best fits the long-life datapoints.

Thus it is useful to examine the effects of variations in the rangeof LMP constant utilized on the resultant extrapolations, and thereare several data sets available to allow that comparison, including1100-O, 5454-O and H34, and 6061-T6.

Alloy 1100-O. Figure 1100-7 illustrates the master LMPcurves for 1100-O plotted using several different values of CLMPbased on the calculations in Table 1100-2. Included in the range ofCLMP values are the extreme low value of 13.9 observed for 1100-Oto the highest value of 25.3 used in the archival plot (Fig. 1100-3).It is apparent from Fig. 1100-7 that on the scale used in this plot,the highest and lowest values of CLMP each lead to a “family” ofcurves, while the intermediate value, and especially the value of17.4, provides a relatively smooth relationship reasonably repre-sented by a single curve.

It is useful to see how these four LMP relationships based onthe different CLMP values would agree when used for extrapola-tion for 20 and 50 year service lives. Extrapolated estimated

Page 14: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Theory and Application of Time-Temperature Parameters / 9

creep rupture strengths for 1100-O based on these plots areshown in Table 1100-3. Considering the range in CLMP values,there is remarkable agreement among the extrapolated values, es-pecially for the 20 year values. More divergence is noted amongthe 50 year values, especially at 200 and 250 oF; at higher tem-peratures, even the 50 year values are usually within ±0.2 ksi(which is about 10% at the lower levels).

Alloy 2024-T851. It was noted in the section “Illustrative Ex-amples of LMP, MHP, and DSP” that the isostress calculationsfor 2024-T851 led to a fairly wide range of values of CLMP. Re-examination of the isostress calculations in Table 2024-1 illus-trates that there is a pattern to the variation, such that the valuesgenerated using isostresses at 37 ksi or higher averaged 21.8while at isostress below 37 ksi CLMP averaged 16 ksi. LMP mas-ter curves have been generated and are presented in Fig. 2024-9for the two extremes plus the overall average value of 18.4.

All three curves provide a reasonably good fit for the data, butas would be expected the fit at higher stresses is better with thehigher value of CLMP, while the fit at lower stresses is better withthe lower value of CLMP.

It is useful to see how this difference in selection of CLMP valueswould affect the extrapolated values for 10,000 and 100,000 hservice stresses:

While the extrapolated values depend to a considerable extenton how the master curves are drawn through the plotted points,several consistent trends are evident. While there is often fairlygood agreement, it can be seen that the extrapolated values trendhigher with the higher CLMP values. The good agreement betweenthe values extrapolated from Fig. 2024-T851 and those from thetable generated with CLMP � 16 is to be expected since thearchival calculations were made with of CLMP � 15.9. The othertrend, also to be expected, is that agreement is better at theshorter-range extrapolation for 10,000 h than for 100,000 h.

This illustrates the care required to generate CLMP values pro-viding optimum fit to the data and to apply great care in drawingthe master curve once the raw data are converted to LMP valuesand plotted.

Alloy 5454-H34. Stress rupture life data for 5454-H34 havebeen analyzed with two values on CLMP in Fig. 5454-17 and 5454-18. The original archival value of CLMP equal to 14.3 was used togenerate Fig. 5454-17, and a more recent review of all the datagenerated subsequently (and included in Table 5454-5) were usedto generate the CLMP � 17 used in Fig. 5454-18.

In this case, the projections for rupture strengths at 10,000 and100,000 h for 5454-H34 plate are:

The agreement in extrapolated rupture strengths is very reason-able, being ±1 ksi in all but one case.

Taken together, these examples illustrate that when using theLMP every attempt should be made to obtain the CLMP value pro-viding optimal fit to the data and drawing the master curves care-fully. While failure to do so is not likely to greatly mislead the investigator unless the process is pretty badly flawed, it should be recognized that the higher CLMP values are likely to provide theleast conservative projections.

Choice of Cartesian versus Semi-log Plotting

Historically, most plotting of parametric master curves has beencarried out, using Cartesian coordinates, i.e., with both the prop-erty of interest (e.g., stress rupture strength or creep strength) andLMP values on Cartesian coordinates. That was the style used indeveloping the archival plots included herein, and that focus hasbeen retained throughout most of the book.

However, in some instances investigators find that plotting theproperty of interest on a logarithmic scale adds precision in thelower values of the property. The potential value of its use may beseen by a comparison of the Cartesian and semi-logarithmic plotsfor 5454-O in Fig. 5454-13 and Fig. 5454-21, respectively, in bothcases using the value of CLMP of 13.9. In the latter, the strengths athigh values of LMP are more precisely defined. However, thismay have the effect of providing greater confidence than is justi-fied in the extrapolated values in that range.

It is of interest to see what differences are found in the extrapo-lation of the stress rupture strengths of 5454-O based on the selection of coordinate systems. Using the comparison referencedpreviously for Fig. 5454-13 and Fig. 5454-21, with the value ofCLMP of 13.9, we find the following values of extrapolated stressrupture strength at 10,000 and 100,000 h:

Temperature

°F °RDesired servicerupture life, h

LMP; CLMP = 14.3rupture strength, ksi

LMP: CLMP = 17rupture strength, ksi

212 672 10,000 21 20100,000 15 17

300 760 10,000 10 11100,000 7.5 8

400 860 10,000 4.1 (a)100,000 3.2 (a)

500 960 10,000 2.3 (a)100,000 1.9 (a)

(a) Data do not support extrapolation to this level.

Temperature

°F °RDesired service rupture life, h

Cartesian plotCLMP = 13.9, ksi

Semilog plot CLMP = 13.9, ksi

212 672 10,000 18.0 18.0100,000 14.0 14.5

1,000,000 11.0 11.0300 760 10,000 10.0 10.0

100,000 7.2 7.41,000,000 5.0 5.2

400 860 10,000 4.5 4.7100,000 3.4 3.4

1,000,000 2.6 2.5500 960 10,000 2.5 2.5

100,000 2.0 1.8

Temperature

°F °R

Desired servicerupturelife, H

CLMP � 16rupture

strength, ksi

CLMP � 18.4rupture

strength, ksi

CLMP � 21.8 rupture

strength, ksi

From Fig.2024-4(a),

ksi212 672 10,000 49.5 49.5 50.0 49.5

100,000 44.0 45.5 46.5 45.0300 760 10,000 34.0 35.0 36.5 35.0

100,000 26.0 28.0 31.0 26.0350 810 10,000 23.0 24.5 26.5 23.0

100,000 14.5 17.5 21 15.0400 860 10,000 13.0 15.0 17.5 14.0

100,000 8.0 9.0 12.0 8.0500 960 10,000 5.0 5.0 5.5 5.0

100,000 3.5 3.5 4.0 4.0

(a) Stress rupture strengths from archival curves generated with CLMP = 15.9

Page 15: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

10 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

In the case of such well-behaved data as generated for 5454-O,the semi-log plot does indeed seem to provide added precision tothe extrapolation, but the values themselves differ very littlefrom the two types of analyses.

As we see in the section “Software Programs for ParametricAnalyses of Creep Rupture Data,” the semi-logarithmic plottinghas been incorporated into some parametric creep analysis soft-ware. There is also an opportunity to see the impact when the datagenerated do not provide as fine a fit as do the data for 5454-O.

Choice of Scales and Precision of Plotting

Comparison of the curves in Fig. 1100-3 and 1100-7 also pro-vides an excellent illustration of how important the choices ofplotting scales and precision can be. The raw data that went intothese two plots are identical, but the differences are rather pro-found.

While the fit in Fig. 1100-3 looks quite reasonable, it is clearfrom looking at Fig. 1100-7 that the good appearance of Fig.1100-3 is based on the high level of compression of the ordinate.Figure 1100-7 illustrates that with CLMP = 25.3, the master curveis actually a series of parallel but offset lines for the individualtemperatures. This contrasts with the curve for CLMP = 17.4,which can be well represented as a single relationship at thesescales.

It is interesting to note also that extrapolation with the curve inFig. 1100-7 for CLMP = 25.3 (see Table 1100-3) provides rathergood agreement with the better-fitted curves if the extrapolation iscarried out using the individual curves for the temperature of in-terest and extends it parallel to the higher-temperature curves.

Effect of How the LMP Master Curves are Fitted to the Data

The final step in creating the master curve in any parametricanalysis of any type of data is drawing in the master curve itself.This can be done mathematically, based on least squares represen-tation or a polynomial equation providing best mathematical fit,but that may not provide the best curve for relatively long-timeextrapolation, as noted in the discussion of selection of the con-stant in the parametric equation.

Some examples of this are apparent in the master LMP curvesfor Fig. 2024-3 and 6061-3 for the aluminum alloys 2024-T851and 6061-T651, respectively. Any calculations based on all ofthe data points in either case would not have provided the de-sired effect of bringing the relatively longer-time data into goodrelationship for extrapolation. Fairing the curve with graphicaltools such as French curves is usually the step chosen in the finalanalysis.

However, fairing in the perceived best-fit curve is not always aneasy change, especially when the variation in the data, such as asingle value of the parametric constant, CLMP in this discussion,provides a smooth fit throughout. The investigator must recognizethose cases where it is possible to “shade” the master curve oneway or the other depending on the weight given individual datapoints when it is not clear which may be outliers. It is good prac-tice to examine the effect of different renderings of the mastercurve fit on the extrapolated values.

Applications When Microstructural Changes are Involved

As noted earlier, one of the challenges in using the Larson-Miller Parameter (and any other time-temperature parameter aswell) is dealing with high-temperature data for an alloy-tempercombination that undergoes some type of microstructural transi-tion during high-temperature exposure. Examples would includehighly strain-hardened alloys, such as non heat treatable alloy3003 in the H14 to H18 or H38 tempers (i.e. highly cold worked),or heat treated alloys, such as 2024 or 6061 in the T-type tempers(i.e. heat treated and aged).

Once again, there are some useful examples in the datasets in-cluded herein, namely, 2024-T851 and 6061-T651.

Alloy 2024-T851. As discussed in the section “Effect of LMPConstant (CLMP) Selection,” the isostress calculations included inTable 2024-1 show a fairly dramatic and consistent decrease inCLMP values with increasing temperature and time at temperature,effectively increasing LMP value. As illustrated in the right-handcolumn of Table 2024-1, at stresses at or above 37 ksi, an averagevalue of 21.8 represents the data well, but at lower stresses, a CLMPvalue of 16 is indicated; the overall average value is 18.4.

This is an illustration of the transition from a precipitation-hard-ened condition through a severely overaged condition to a nearfully annealed and recrystallized condition for 2024, with a signif-icant change in CLMP value associated with the initial and laterstages.

As illustrated in Fig. 2024-9, the use of the average or lowerCLMP values generally results in the best fit for extrapolations in-volving higher LMP values. Also, as illustrated in the discussion of2024-T851 in the section “Effect of LMP Constant (CLMP) Selec-tion,” the lower values of CLMP also result in the more conservativeand consistent extrapolated stress rupture strengths.

Alloy 6061-T651. Thanks to a cooperative program betweenAlcoa and the Metals Properties Council MPC, now known as theMaterials Properties Council, Inc.), the extensive set of data avail-able for 6061-T651 is also available to illustrate this point (Ref 5).

Table 6061-1 summarizes the stress rupture strength data fromthe creep rupture tests of 6061–T651 carried out over the rangefrom 200 through 750 oF, an unusually large range, and in severalinstances replicate tests were made to identify the degree of datascatter that might be expected. These data are plotted as a functionof time at temperature in Fig. 6061-1. The isostress calculationsfor these data are represented in Table 6061-2. Because of the ex-tensive range of data, an unusually large number of isostress cal-culations were possible and used.

As illustrated in Table 6061-2, a wide range of CLMP values wereindicated, and for 6061-T651 as for 2024-T851, there was a transi-tion in the range of values from an average of about 20 (range17–22) at higher isostresses to around 14 (range 9–18) for lowerisostresses, the transition occurring at isostresses of about 6–9 ksi,or around 600 oF. This is consistent with the fact that in this tem-perature range and above, 6061 would undergo a microstructuraltransition from the precipitation-hardened condition to that of anannealed condition (effectively going from T6 to O temper).

Once again, the challenge in such a situation is the selection ofwhat CLMP value to use. It is also reasonable to try an approach to

Page 16: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Theory and Application of Time-Temperature Parameters / 11

selection of the CLMP value that reflects the transition, that is, tocalculate the master curve using both the higher and lower CLMPvalues plus an overall average. From these data for 6061-T651,values of 20.3 and 13.9 were selected for the higher and lowerranges, respectively, and a value of 17.4 for the overall average.

The three master plots generated using the three values of CLMPare presented in Fig. 6061-3. Not surprisingly, the quality of theplots in terms of fit to the data varies, with the higher and mediumCLMP values illustrating better fit at higher stresses and the lowerCLMP value providing better fit at the lower stresses. Actually, thefit with the average CLMP value is reasonably good over the entirerange.

The next test of the approach becomes to see the effect on theextrapolated values of rupture strength for 6061-T651 for servicelives of 10,000 and 100,000 h at various temperatures. The resultsof the use of the three different CLMP values in extrapolating thestress rupture strengths of 6061-T651 plate are:

Several trends are evident:

• Extrapolated rupture strengths at 10,000 and 100,000 h tend toincrease with increase in CLMP value.

• The greatest range observed is for 100,000 h extrapolation at300 and 350 oF, about 4 ksi; for the 10,000 h extrapolations,the range is usually 2 ksi or less.

• Use of the average value of CLMP provides about a good esti-mate of the average extrapolated stress rupture strength.

How to Apply LMP with Microstructural Conditions. Theseillustrations suggest that despite the fact that microstructuralchanges take place as aluminum alloys are subjected to a widerange of time-temperatures exposures, and these changes lead to arelatively wide range or shift in CLMP values, the parametric ap-proach to analysis of the data is still potentially useful and may beapplied with care. The presence of such transitions does not elimi-nate the need to get all the help one can in extrapolating to verylong service lives; it in fact exaggerates the value of using this ad-ditional tool among others that may be available.

As noted previously, the greatest challenge in such cases is thedecision of which value of CLMP for should be used in the analysis.The examples cited previously provide two most useful options:

• Place the greatest emphasis on those values reflecting the tem-perature range for which predictions are needed. In otherwords, use the CLMP value that best fits the region in which theextrapolated values are likely to fall, i.e., the CLMP reflectinglonger times at the lower temperatures if extrapolations at 150,212, or 300 oF are involved, and the CLMP reflecting the higher

temperatures or extremely long times at intermediate tempera-tures if the extrapolations are at 350 oF or above.

• Use the average value of CLMP for all extrapolations; generallythe variations will be less than ±1 ksi.

Illustrations of Verification and Limitations of LMP

It is crucial to be able to characterize the usefulness of paramet-ric extrapolation via LMP or any other in terms of the expectedaccuracy for long service applications. Yet there is seldom the op-portunity to carry out creep rupture tests over the 10 to 20 yearsneeded to judge quantitatively how accurate are extrapolationsbased on tests carried out for only 100 to 5000 h.

Among the steps taken by Alcoa in cooperation with the Materi-als Properties Council and the Aluminum Association in the 1960swas the conduct of creep rupture tests anticipated to result in rup-ture lives at or beyond 10,000 h (Ref 13, 15). The tests were car-ried out at Alcoa Laboratories and at the University of Michiganusing carefully controlled procedures and protected surroundingssuch that the testing machines and strain recording equipmentwere minimally disturbed throughout the multiyear duration.

Several illustrations of the results of these studies are re-exam-ined below, with very interesting and useful results. In each caseillustrated, the short-time (<10,000 h rupture life) are analyzed in-dependently using the available isostress calculations to generatea value of CLMP that would have been determined if only thoseshort-life data had been available. Then the long-life data(>10,000 h rupture life are examined to determine the degree towhich extrapolation of the short-life data would have accuratelypredicted the very long-life results.

Alloys 1100-O and H14

Table 1100-4 summarizes the short-life (<10,000 h) rupturestrengths for 1100-O and H14, and Tables 1100-5 and 6 present theisostress calculations based on those short-life data for 1100-O andH14, respectively. With the exception of two apparent outliers forthe O temper associated with one test a 300 oF, a value of CLMP =18.2 is strongly indicated for both tempers. That value was used tocalculate the LMP values in Table 1100-7, and the master curves inFig. 1100-7 (O temper) and 1100-8 (H14 temper) were generated.

For 1100-O, the long-life data (>10,000 h rupture life) are pre-sented in Table 1100-8. Also included in the second block ofcolumns in Table 1100-8 are the LMP values and the extrapolatedstress rupture strengths for the observed long-time test results de-rived from the curve in Fig. 1100-7 that was based on only theshort-life data and CLMP = 18.2.

The very long time extrapolated rupture strengths for 1100-Oare in extremely good agreement with the actual stress rupturelives. To the precision available at the scales used, the extrapo-lated values were essentially equal to the original test values. Inthe worst cases, the predicted stress rupture strengths were within±1 ksi (±7 MPa).

It is useful to note that 1100-O represents a material that was an-nealed, i.e., fully recrystallized prior to any testing, and so it wouldnot undergo any significant microstructural changes during thespan of time-temperature tests, even at very high temperatures.

Temperature

°F °RDesired servicerupture life, H

CLMP = 13.9 rupture

strength, ksi

CLMP = 17.4rupture

strength, ksi

CLMP = 20.3 rupture

strength, ksi212 672 10,000 35.0 35.0 35.5

100,000 31.0 32.0 33.5300 760 10,000 23.0 24.0 25.0

100,000 16.4 18.0 20.0350 810 10,000 15.5 16.0 17.5

100,000 10.0 12.0 14.0400 860 10,000 10.0 11.0 12.5

100,000 6.5 8.5 9.5500 960 10,000 6.5 8.0 8.5

100,000 4.0 5.0 5.5

Page 17: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

12 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Therefore, to explore the degree to which short-life data extrap-olations for a strain-hardened temper of 1100 would correctly pre-dict long-life test results, parallel sets of calculations were per-formed for 1100-H14. The short-life data are presented in Table1100-5, the isostress calculations in Table 1100-6, and the masterLMP curve based on the calculated CLMP = 18.2 is presented inFig. 1100-8. The long-life data for 1100-H14 are summarized inTable 1100-9, along with the extrapolated values. In this case,there was perfect agreement between actual test stresses and ex-trapolated rupture strengths.

Thus, for moderately strain-hardened aluminum alloys as wellas annealed aluminum alloys it appears that the LMP approach toextrapolation is rather reliable.

Alloy 5454-O

The fairly extensive data set for stress rupture strength of 5454-Oin Table 5454-3 offers another opportunity to check the ability toproject long-life rupture strengths from relatively short-life test re-sults. In Table 5454-6, the data from stress rupture tests lasting lessthan 5000 h were used to generate the constant CLMP for the LMP; itwas 13.5, compared to the value of 14.3 used in the archival analy-sis or 13.9 in a more recent analysis. In the lower part of Table5454-6, the results of stress rupture test lasting 10,000 h or more aresummarized, along with the values that would have been predictedfor stress rupture strength by extrapolation using the LMP analysisgenerated solely from the short-time tests. The analysis is compli-cated a bit by the fact that about half of the long-life tests were dis-continued before failure was obtained.

As might have been expected, given the small variation in CLMPvalue (13.5 versus 13.9 or 14.3), there is generally very goodagreement between the actual and predicted long-life stress rupturestrengths, often less than ±1 ksi. The principal exception was thestress rupture life at 20 ksi, for which the extrapolations with allthree values of CLMP were about 17 ksi. This suggests that the testresult for 20 ksi was an outlier, not representative of the majority ofthe data. That assumption is supported by the fact that the test re-sult for 20 ksi at 212 oF was much longer than the comparable val-ues at 300 and 400 oF based on their LMP values.

Incidentally, it appears from the analysis that most of the teststhat were discontinued were relatively close to failure lives, thatis, of course, on a logarithmic scale, so several thousand morehours might have been involved.

Alloy 6061-T651

As illustrated in the section “Factors Affecting Usefulness ofLMP,” alloy 6061-T651, for which data are shown is one of manyaluminum alloys and tempers that would be expected to undergosome microstructural change over the range of time-temperaturetest conditions. Fortunately, the planners of the creep rupture pro-gram referenced here (Ref 13, 15) considered these factors andplanned tests to determine the stress rupture strengths for livesgreater than 10,000 h. Table 6061–1 includes those long-time testresults, along with LMP calculations for the three values of CLMPderived from the data considering the lower and higher test tem-peratures and the overall average value. Some of the long-timetests were discontinued for some reason, and these are includedwith the appropriate indicators.

For purposes of this study, values of CLMP were calculated usingonly the stress rupture lives from tests in which the time to rupturewas less that 10,000 h. LMP master curves were generated usingonly the short-life data (<10,000 h) and are presented in Fig. 6061-3 utilizing the three values of CLMP associated primarily with low-temperature test, high-temperature tests, and the overall average.

Table 6061-6 includes the extrapolated stresses from each of thethree LMP master curves obtained using the LMP values CLMP as-sociated with the long-time stress rupture life values. Comparisonof the values in the Test Stress column (the third column) with thethree Extrapolated Stress columns provides an indication of the de-gree of consistency between actual test results and extrapolationsbased on the shorter life data (mostly less than 1000 h). Actually aremarkable degree of agreement is found, seldom more than 1 ksidisagreement, and perhaps the best agreement is with the LMPmaster curve generated with the overall average values CLMP.

These results in general would indicate that the LMP approachhas some value as an indicator of long-time life expectations evenin situations where transitions in microstructure may occur overthe course of time-temperature conditions in the tests.

Limitations of Parametric Analyses

The principal limitations of parametric analyses of creep rup-ture data are of four types:

• Insufficient raw data to generate adequate isostress calcula-tions for CLMP

• Problems with compressed scale plotting• The tendency to extrapolate the extrapolation• Difficulties in getting a suitable fit for the parametric relation-

ship involved with the raw data

These are each discussed briefly below using the LMP analyses toillustrate the points.

Limitation 1: Insufficient Raw Data to Generate AdequateIsostress Calculations for CLMP. As described in the illustrationsof how to carry out parametric analyses in the sections “RateProcess Theory and the Development of Parametric Relation-ships” and “Illustrative Applications of LMP, MHP, and DSP,” thefirst requirement is for adequate data to carry out isostress calcula-tions to generate constants for the equations, CLMP in the case ofLMP. The most useful isostress calculations result from tests atthe same creep rupture stress at two or more different tempera-tures. However, the same effect can be obtained by having over-lapping test stresses at different temperatures so that isostressvalue may be judged by interpolation of data at two differentstresses. The optimum situation is to have multiple opportunitiesacross the whole temperature range over which tests were made,sufficient to see if a single value or narrow range of values willprovide a good fit for much of the data.

The inability to make at least such calculations can lead to dif-ficulties in moving forward with the analysis. In that event, theappropriate first step would be to try the nominal value of CLMP =20 as suggested in the original analysis by Larson and Miller. Ingeneral, the values of CLMP for creep and stress rupture data foraluminum alloys range from 13 to 17, so the value of 20 will pro-vide a good first step.

Page 18: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Theory and Application of Time-Temperature Parameters / 13

After the master LMP curve for CLMP = 20 has been generated,it is relatively easy to judge whether a higher or lower value ofCLMP would improve the fit. Reference to Fig. 1100-7 providessome guidance in this respect:

• If data for individual temperatures are more right-to-left inposition as test temperature increases, as for CLMP = 13.9 inFig. 1100-7, the value of CLMP is too low and a higher valueshould be tried.

• If data for individual temperatures are more left-to-right inposition as test temperature increases, as for CLMP = 25.3 inFig. 1100-7, the value of CLMP is too high and a lower valueshould be tried.

Limitation 2: Problems with Compressed Scale Plotting. Asnoted in the section “Factors Affecting Usefulness of LMP,”among the variables influencing the precision and accuracy ofLMP analyses is the scale of plotting the test results. Plotting onrelatively compressed scales for either creep or stress rupturestrengths or for the LMP values themselves will have the effect ofminimizing scatter in the plot, possibly obscuring the fact that thefit of the raw data is not very good. This tendency of compressingthe scatter may give the incorrect impression that good fit hasbeen achieved and introduce more variability in any extrapolatedvalues than desired.

To maximize the value of the analysis, it is best to use as ex-panded scales as possible given the range of test results and LMPvalues, giving the best opportunity to recognize temperature-to-temperature variations.

Limitation 3: The Tendency to Extrapolate the Extrapolation.The principal purpose of the development of a master curve is topermit extrapolations of raw data to time-temperature combina-tions not represented by the raw data themselves. With a good fit ofthe data, there is good evidence that is a reasonable thing to do.

What is not recommended is to extrapolate beyond the limits ofthe master curve itself, at least not significantly. To do so places theinvestigator in a position where there are no data to support the ex-trapolation, and one may miss a gradual positive or negativechange in slope of the extrapolated curve.

Limitation 4: Difficulties in Getting a Suitable Fit for theParametric Relationship Involved with the Raw Data. As notedin several points discussed previously, the principal challenge in de-veloping LMP master curves or any other type of master plot, is thegeneration of suitable constants for the parametric relationship,CLMP for the LMP function. While in some cases, reasonably uni-form values will be generated from isostress calculations (see Table5454-7), in other cases rather divergent values may be found (seeTable 6061-2).

Even in such cases, there often is a pattern that can be used tojudge the most useful value of CLMP. In the case of 6061-T651, itwas found that the overall average handled the data quite well ingeneral, as illustrated in Fig. 6061-3. In other cases, it may not beso clear.

Experience has shown that when it is difficult to establish agood average value of CLMP that fits all of the data well, it is bestto bias the value of constant to best fit the longer-time data at sev-eral test temperatures. This is especially true when the principalpurpose of the master curve is to extrapolate to longer times at the

individual temperatures, so the master curve is best based on datarepresenting the longest times and highest temperatures involved.Figure 6061-3 is also a good illustration of that point.

In cases where the extrapolations of principal interest are thoseat the lowest temperatures, say 150 to 212 oF (65 to 100 oC), it isprobably best to use a value of CLMP generated from that range oftemperatures if it differs much from the overall average value.

Presentation of Archival Master LMP Curves

Representative archival LMP master curves for the stress rup-ture strengths and, where available, the creep strengths at 0.1%,0.2%, 0.5%, and 1% creep strain for the alloys and tempers arepresented in the Data Sets at the end of this book.

Those master curves referred to as “archival” are from Alcoa’sarchives and are presented here as derived by Alcoa research per-sonnel: principally, Robert C. Malcolm III and Kenneth O. Bogar-dus, under the management of Alcoa Laboratories division chiefsFrancis M. Howell, Marshall Holt, and J. Gilbert Kaufman. This isthe group of Alcoa experts, most notably Malcolm, Bogardus, andHolt, who did much of the original analysis leading to the creep de-sign values for aluminum alloys used in publications such as theASME Boiler & Pressure Vessel Code (Ref 15). The majority of allof the calculations were performed by Malcolm, a heroic task inthe days before desktop computers and Lotus or Excel software.

It is appropriate to note that all creep rupture testing for whichdata are presented herein were carried out strictly in accordancewith ASTM E 139, “Standard Method of Conducting Creep,Creep Rupture, and Stress Rupture Tests of Metallic Materials,”Annual Book of ASTM Standards, Part 03.01.

Wrought Alloys

• 1100-O, H14, H18: stress rupture strength and, for the O tem-per, creep strengths

• 2024-T851: stress rupture strength• 2219-T6, T851: stress rupture strength• 3003-O, H12, H14, H18: stress rupture strength• 3004-O, H34, H38: stress rupture strength• 5050-O: stress rupture strength• 5052-O, H32, H34, H38: stress rupture strength• 5052-H112, as-welded with 5052 filler alloy: stress rupture

strength• 5083-H321, as-welded with 5083 filler alloy: stress rupture

strength• 5154-O: stress rupture strengths• 5454-O, H34, as-welded H34: stress rupture strength and, for

the O temper, strength at minimum creep rate • 5456-H321, as-welded with 5556 filler alloy: stress rupture

strength• 6061-T6 and T651: stress rupture strength, creep strengths,

and strength at minimum creep rate• 6061-T651, as-welded with 4043 filler alloy: stress rupture

strength• 6061-T651, heat treated and aged after welding with 4043:

stress rupture strength

Page 19: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

14 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

• 6061-T651, as-welded with 5356 filler alloy: stress rupturestrength

• 6063-T5 and T6: strength at minimum creep rate

Casting Alloys

• 224.0-T62: stress rupture strength• 249.0-T62: stress rupture strength• 270.0-T6: 0.2% creep strength• 354.0-T6: stress rupture strength• C355.0-T6: stress rupture strength

Where possible, the more significant sets of raw data used in theparametric analyses, especially for stress rupture strength, are alsopresented herein. It is important to recognize that data other thanthe tabular data presented here were also likely to have been con-sidered in the final decisions about design values for any purposes(Ref 14), and the data presented herein should be considered representative of the alloys and tempers but not the sole source ofinformation for any statistical or design application.

As noted earlier, in presenting the LMP master curves, the term“archival” is used in the titles when the curves being presented arereproductions of the results of the original analyses by the AlcoaLaboratories experts noted previously. In these presentations, theprecision of the values shown for the LMP constant CLMP are thoseused by the original experimenters and analysts; in some casesthese are round numbers (e.g., 19 or 20), while in others as muchas three decimal places (e.g., 17.751) are used. Generally, the cal-culations on which the original values of CLMP were based are nolonger available, and it should be recognized that new investigatorsusing the same data might elect to utilize different values of CLMP.

Also included with the archival curves for the alloys and tem-pers listed previously are some current LMP parametric plotsmade by the author using the archival raw data to illustrate somepoints about the usefulness and limitations of parametric analyses.Those curves are not referred to as “archival.” Those too shouldbe considered as representative of the respective alloys, not of anystatistical or design caliber.

As noted previously, the English/engineering system of units isgiven greater prominence in the tabular and graphical presenta-tions herein because all of these data and the archival plots weregenerated in that system. For those interested in more informationof the use of SI/metric units in parametric analysis, reference ismade to Appendix 4.

Software Programs for Parametric Analyses ofCreep Rupture Data

While the availability of spreadsheet software programs such asExcel make the calculations involved in the application of para-metric analyses such as the LMP to creep rupture data much moreefficient and effective than before such programs were available,there have been some significantly greater strides made in thisarea more recently. A specific example chosen to illustrate this ca-pability is the Granta MI program module known as the “CreepData Summary” within the MI:Lab database program (Ref 16).

Granta’s MI:Lab is a sophisticated material property data stor-age, analysis, and reporting program developed by Granta Design,Ltd. of Cambridge, England. Its application modules include tension, compression, relaxation, fracture toughness, and fatiguecrack propagation in addition to creep and stress rupture data, thefocus of this discussion. It encompasses statistics and graphicsamong its analytical tools and incorporates database componentssuitable for all structural materials including composites.

Focusing on the creep and stress rupture capability of GrantaMI:Lab, Fig. 2 illustrates which components of the system wouldbe employed, looking at the opening screen of the program. Thecreep test data are put into the database, and the data are analyzedwith the statistical programs with output to the creep summarybuilder. Users have the ability to use either the Larson-Miller Para-meter (LMP) or hyperbolic tangent fitting as models for analysis.For purposes of this volume, focus is given in the following infor-mation to the LMP option.

In order to illustrate the application of this program to actualdata for an aluminum alloy, data for 2219-T6 forgings, heattreated and aged at 420 °F, from Ref 17 were put through a repre-sentative analysis in the MI:Lab creep module. While the data inRef 17 are not raw test data, but rather typical values gleaned byanalysis of many individual test results as described previously inthis volume, the usefulness of the evaluation is clear.

To start the process, the stress rupture data for 2219-T6 forgingsfrom Ref 17 were imported via Excel spreadsheet to the MI:Labmodule from the ASM Alloy Center on the ASM Internationalwebsite (Ref 18). These same values are shown in Table 2219-1.The individual doing the analysis has several decisions to make tobegin the process, including (a) which model to use, LMP or hyperbolic tangent (tanh), (b) which creep rupture variable to use,in this case, stress at time to rupture, or stress rupture strength; (c)which CLMP value (called K in this software) to use, and (d) thenumber of terms desired in the polynomial equation for the fit.

Once these variables are set, the program proceeds with theanalysis and provides the user with the summary presentation ofthe information illustrated in Fig. 3. That summary includes:

• On the right is a summary of the numeric results of the analy-sis for the CLMP.

• Upper left shows plots of the stress rupture strength data foreach temperature as a function of time to rupture.

• Lower left shows plots of the LMP (called K in the program)for each temperature as a function of rupture life.

• In the center is the resultant master LMP curve, both averagebest fit parabolic equation with the requested number of terms,and minimum, based on the safety factor the user prescribes.Note that the Granta MI:Lab software presents the LMP mastercurve in semi-log coordinates, as discussed in the section“Choice of Cartesian versus Semi-log Plotting,” and the unitsused in the software are SI/metric.

This final semi-log LMP master curve from the Granta MI:Labsoftware is also presented on a larger scale as Fig. 2219-2. Herethe first of two limitations to this software are noted, as the scalesand lack of intermediate scale division lines make interpolationwithin the plot to any great precision rather difficult. The software

Page 20: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Theory and Application of Time-Temperature Parameters / 15

output would be better served to include a larger-scale plot withfiner scale division.

For comparison, the short-time (up to 1000 h rupture life) stressrupture data from which this plot was generated are summarizedin Table 2219-2, and isostress calculations were made to deter-mine if a better fit might be obtained with a value of CLMP otherthan the 20 used arbitrarily in the MI:Lab analysis. It is interestingto note that isostress analysis of the archival data for 2219-T6forgings in Table 2219-2 led to an average CLMP value of 24.7rather than the nominal value of 20 selected for the MI:Lab analy-sis. This illustrates the second shortcoming of the MI:Lab creepsoftware, as it would be a valuable enhancement to users for thesoftware to make the isostress calculations as part of the analysisand draw the master curve with an optimized value rather thanrely on the investigator’s judgment or separate analysis.

As an added comparison, Fig. 2219-3 includes semi-log mastercurve plots for values of CLMP of both 20 and 24.7. While theoverall fit is clearly better with the higher value of CLMP, it is alsoclear that neither takes very well into account the shorter-timetests at 700 °F. This is a good illustration of the point made in thesection “Choice of Cartesian versus Semi-log Plotting” of howextrapolated values will be impacted by the way the master curveis drawn in areas where several options are suggested by individ-ual data points. In the case of Fig. 2219-3, giving greater weight tothe 700 °F data will lead to more conservative (i.e., lower) extrap-olated values in this region of the curves.

A Cartesian master curve for 2219-T6 forgings was also gener-ated using a CLMP value of 25 (rounded from the calculated averageof 24.7 from the isostress calculation) and is presented in Fig.2219-4. A comparison of the extrapolated 10,000 and 100,000 hstress rupture strengths based on the two semi-log plots (Fig. 2219-3) and the Cartesian plot (Fig. 2219-4) is shown in the lower part ofTable 2219-2; overall there are generally only small differences.

In summary, software systems such as Granta MI:Lab are avail-able to aid investigators in their parametric analyses of propertiessuch a creep and stress rupture strengths. Investigators need to beaware of the strengths and limitations of such software and applytheir own judgment to the output. In addition, the illustration hereusing stress rupture data for 2219-T6 forgings seems to supportthe discussion in the section “Choice of Cartesian versus Semi-logPlotting” that semi-log plotting of master parametric curves doesnot seem to add appreciably to the consistency or precision of theextrapolation.

Application of LMP to Comparisons of Stress Rupture Strengths of Alloys, Tempers, and Products

While LMP analyses are usually aimed at the optimization ofextrapolation for a specific alloy and temper, they can also be use-ful for comparing the performance of different tempers, products,

Fig. 2 Initial computer screen of Granta MI:Lab Database Software System, introducing components of the Creep Summary Module

Page 21: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

16 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

or conditions of a given alloy, or for comparisons of different alloys. Several examples of such applications are described belowand included in the data sets to illustrate the following types ofcomparisons:

• Different tempers of the same alloy• Different products of the same alloy and temper• Parent metal and welds of compatible filler alloys• As-welded condition and heat treated and aged after welding• Different alloys

The critical difference between analyzing any type of numericaldata using LMP or any of the other parametric relationships is theapproach to the calculation of the constant for the Larson-Millerparameter, CLMP. In analyzing data for a given alloy, temper, andproduct, the challenge is to determine the value of CLMP that pro-vides the best fit of all of the available data for that particular mate-rial. On the other hand, in preparing for comparisons of any two ormore sets of data for different lots, alloys, tempers, or conditions,the challenge is to determine a value of CLMP that adequately fitsboth or all of the several sets involved.

As a result, in the latter case, it may sometimes be necessary touse a less-than-optimal value of CLMP for one or more of the indi-vidual materials included in the comparison, but one that providessufficiently good fit for the multiple sets involved and so providesa useful comparison.

In cases where it proves difficult or impossible to find suitablevalue of CLMP to fit the multiple sets of data for which a comparisonis being attempted, it is probably best to abandon this approach anduse direct strength-life plots at individual temperatures of interest.

Comparisons of Stress Rupture Strengths of Different Tempers of an Alloy

Several opportunities exist within the archival data to comparethe stress rupture strengths of two or more tempers of a single alloy.

Figure 1100-9—Comparison of 1100-O and H14. As onewould expect, the LMP master curves for 1100-O and 1100-H14converge rather smoothly at parameter values equivalent to rela-tively short times at 600 oF or higher and relatively long times atlower temperatures. This is associated with the gradual annealingof the 1100-H14. It is clear, however, that the H14 temper offersconsiderable advantage in stress rupture strength over the O tem-per over much of the range.

Figure 3003-12—Comparison of 3003-O, H12, H14, andH18. While the data for individual tempers of 3003 suggestedslightly different “best” values of CLMP, ranging from about 15 to20 (Table 3003-2), a value of 16.6) optimum for the O temper pro-vided a reasonable average for the group, leading to the compar-isons in Fig. 3003-12. Overall, as expected, 1100-H18 showed thesuperior relationship. Interestingly, there was little difference in theparametric relationships for the H12 and H14 tempers, but both

Fig. 3 Creep Summary Module presentation of stress rupture data and LMP master curve for 2219-T6 forging

Page 22: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Theory and Application of Time-Temperature Parameters / 17

were significantly superior to the O temper and about midwaybetween the O and H18 tempers. As expected the relationships forall four tempers converged at time-temperature conditions consis-tent with annealing of the strain-hardened tempers.

Figure 3004-4—Comparison of 3004-O, H34, and H38. Asfor 3003, the relationships for various tempers of 3004 suggestedsomewhat different optimal values of CLMP, but a value of 20 pro-vided suitable data fit and a useful comparison for all of the tem-pers, as in Fig. 3004-4. The comparison of 3004-O, H34, and H38differed somewhat from the other comparisons, however, in thatthe relationships for the three tempers converged at lower time-temperature combinations, and there was significant advantage ofthe H34 and H38 tempers over the O temper for a relatively nar-rower range. This suggests that perhaps the lot of 3004-O forwhich data were used in this study was not fully annealed to beginwith and through the test program underwent additional recrystal-lization and softening.

Figure 5052-5—Comparison of 5052-O, H32, H34, andH38. A value of CLMP of 16.0 appeared to reasonably characterizemost 5052 data, and Fig. 5052-5 was generated with that constant.Significant advantages for the strain-hardened tempers existedonly at relatively moderate time-temperature combinations, withconvergence of the curves occurring at mid-range of the data. Inthis instance there was little advantage for the H38 temper over theH34 temper under any condition, but both showed some advantageover the H32 and, of course, the O temper.

Figure 5454-20—Comparison of 5454-O and H34. Figure5454-20 shows the LMP master curve for 5454-O and H34 basedon the same value of CLMP as used for the O temper (CLMP =14.3).As would be expected, the master curve and individual data pointsfor the H34 temper blend into the original curve for the O temperas the LMP value increases, though the difference is not signifi-cant except at lower test temperatures.

Figure 6061-5—Comparison of 6061-O and T6. As withstrain-hardened tempers, the master parametric curves for stressrupture strength for T6-type tempers will converge with those forthe O temper as the time-temperature exposure increases. This isillustrated for 6061-T6 in Fig. 6061-5, as beyond LMP values ofabout 24,000, equivalent to exposures at 600 oF and above, thetwo curves are coincident.

Figure 6063-3—Comparison of 6063-T5 and T6. In the caseof 6063, the T5 temper refers to extruded shapes that are solutionheat treated and air or water quenched directly from the extrusionpress, while the T6 temper is intended to designate those extrudedshapes which, following extrusion, are given a separate furnaceheat treatment and subsequently water quenched before aging. Asillustrated in Fig. 6063-3, the T6 temper has consistently higherstrengths at minimum creep rate than those of the T5 temper, aswould be expected given the higher-quality heat treatment.

Comparisons of Stress Rupture Strengths of Different Products of an Alloy

Figure 6061-4—Comparison of 6061-T651 Plate and6061-T6 Sheet and Rod. Figure 6061-4 illustrates that there canbe significant differences in the stress rupture strengths of differ-ent products of some alloys. When all plotted together with a

LMP constant, CLMP, of 20.3, the stress rupture strengths of 0.064to 0.125 in thick sheet and 3/4 in. diam rolled and drawn rod wereconsistently higher than those of 1 to 11/2 in. thick 6061-T651plate. The differences were as much as about 10 ksi at the maxi-mum, and even at very high temperatures modest differences per-sisted. This magnitude of effect is unexpected since the sheet androd would likely recrystallize more than thicker plate, usuallyleading to lower static strengths at room temperature.

Comparisons of Stress Rupture Strengths of Welds with Parent Alloys

Figure 5052-9—Comparison of 5052 Welds in 5052-H112Plate with Various Tempers of 5052. The stress rupturestrengths of 5052 welds in 5052-H112 plate, tested as-welded, appear from Fig. 5052-9, plotted with a CLMP of 16, to be aboutthe same as those of 5052-H32 over the lower-temperature range.In the higher-temperature, longer-exposure time range, the rupturestrengths actually seem modestly higher than those of 5052 platein various tempers, but this is probably a reflection of lot-to-lotvariations more than any reliable trend. It does give confidencethat the rupture strengths of welds would be at least as high asthose of the parent metal over much of the higher LMP range.

Figure 5454-20—Comparison of 5554 Welds in 5454-H32Plate with Various Tempers of 5454. Plotted in Fig. 5454-20along with data for 5454-O and H34, the stress rupture strengths of5554 welds in 5454-H32 plate fall very close to the relationship for5454-O. This is as would be expected because of the softening inthe weld zone resulting from the melting and resolidification of theweld metal, plus the adjacent softening in the heat-affected zone.

Figure 6061-27—Comparison of 6061-T651 Plate and4043 Welds in 6061-T651 Plate. The stress rupture strengths of4043 welds in 6061-T651 are largely inferior to those of the parentmetal 6061-T651 plate itself, as illustrated in Fig. 6061-27. Thosecurves are plotted using CLMP of 17.4, less than optimal for the4043 welds, but it is nevertheless clear that as-welded 4043 jointshave significantly lower strengths than the parent plate, with somedifference (2–3 ksi) existing even to relatively high temperatures.

Figure 6061-28—Comparison of 4043 Welds in 6061-T651Plate, As-Welded and Heat Treated and Aged after Welding.Heat treating and artificially aging 4043 welds in 6061-T651 plateappears from the data in Fig. 6061-28 to only modestly improvethe stress rupture strength of the joints, and that effect appears sig-nificant only to relatively modest temperatures. The stress rupturestrengths of the heat treated 4043 welds still fall significantlybelow those of the parent 6061-T651 plate.

Figure 6061-29—Comparison of 4043 and 5356 Welds in6061-T651 Plate. No optimum value of CLMP could be estab-lished permitting a completely satisfactory comparison of 4043and 5154 welds in 6061-T651 plate; a value of CLMP = 20.3 pro-vided the relationships in Fig. 6061-29. In this chart, welds madewith 5154 filler alloy appear significantly superior in stress rupturestrength to those of 4043 welds when tested at lower temperatures,but as temperature and time at temperature increase, the advantageseems to shift to the 4043 welds. At the highest temperature forwhich data are available for 5154 welds, 550 oF, the advantage for4043 welds was about 2 ksi, more than 25%.

Page 23: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

18 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Comparisons of Different Alloys

Figure 6061-30—Comparison of 6061-T651 and 5454-H34plate. A reasonable comparison of interest to designers may bewhether or not to use 6061-T651 plate or 5454-H34 plate for sometype of tankage that requires sustained high-temperature loading.While the optimal CLMP for the two alloys and tempers were notidentical, a value of CLMP of 16 provided reasonably good compar-isons and was used in producing Fig. 6061-30. As illustrated in thatfigure, alloy 6061-T651 maintains a significant margin of higherperformance over most of the high-temperature range.

Figure 5456-7—Comparison of Stress Rupture Strengths ofWelds in 5052, 5083, and 5456. A value of CLMP of 15 pro-vided reasonable parametric relationships for 5052 welds in 5052plate, 5183 welds in 5083 plate and 5556 welds in 5456 plate andso was used to produce Fig. 5456-7. As shown there, the stressrupture strengths of 5183 welds in 5083 and 5556 welds in 5456are about equal over the entire range, not surprising given theclose agreement in chemical compositions of these alloys. Thestress rupture strengths of 5052 welds in 5052 plate were signifi-cantly lower up to LMP values of about 14,000, but at more severe time-temperature combinations leading to higher LMPvalues there was little difference among the stress rupturestrengths of the three filler alloys. The ±1 ksi differences wouldnot be considered statistically significant without confirmationfrom much more extensive testing.

Application of LMP to High-Temperature Tensile Data for Aluminum Alloys

While the application of the Larson-Miller Parameter and time-temperature parameters to creep data, including rupture life andtimes to develop specific amounts of creep strain (i.e., 0.1%,0.2%, 1%, etc.), is fairly widespread, little use is generally madeof the parameters in analyzing other types of high-temperaturedata for aluminum alloys.

One obvious example of other high-temperature data to whichthe parameters might be applied is the tensile properties of alu-minum alloys at temperatures above room temperature. For alu-minum alloys, both the temperature and the time of exposure attemperature affect the resultant values, and the effects of time attemperature are cumulative if the exposure is alternating. As a re-sult, graphical presentations of such data usually include a family ofcurves, presenting either tensile ultimate and tensile yield strengthsas a function of temperature with a family of curves for different ex-posure time, e.g., 100, 1000, and 10,000 h, or those properties as afunction of exposure time with a family of curves for each tempera-ture. Illustrative examples of the two typical modes of graphicalpresentation are shown for the tensile strength and tensile yieldstrength of 5456-H321 in Fig. 5456-3 and 5456-4, respectively.

Since a family of curves is involved in each type of graphicalpresentation, a systematic means of consolidating the propertiesinto a single continuous master curve would be of value, espe-cially for extrapolation purposes, as with creep data.

Even before attempting such analyses, it is apparent from theplots in Fig. 5456-3 and 5456-4 that the parametric approach may

not prove useful throughout the whole range of exposure tempera-tures. That is primarily because, at relatively low temperatures (upto ~212 oF (100 oC) and at relatively higher temperatures espe-cially (above 450 oF, or 235 oC), the properties do not vary withexposure time. It is not clear, for example, that long-time exposureat 500 oF (260 oC) will ever result in strengths as low as exposureeven for short times at 600 oF (315 oC). Nevertheless, in themidrange of temperatures, there is reason to believe that the para-metric approach may be fruitful.

Based on isostress calculations of the data in Fig. 5456-3 and5456-4, which led to quite a wide range for CLMP (~28–65), valuesof 54 and 46 were chosen for tensile strength and yield strength,respectively. The calculations of CLMP led to the LMP mastercurves in Fig. 5456-5 and 5456-6 for tensile strength and yieldstrength, respectively.

The master curves for tensile strength (Fig. 5456-5) and tensileyield strength (Fig. 5456-6) look remarkably uniform and are con-sistent with most data points for intermediate temperatures; asexpected based on the previous observations, the major excep-tions were those for the relatively low and very high temperatures.It would appear that for the intermediate temperatures at least, theLMP may be a useful tool for long-exposure extrapolation, butthat it must be used with caution, and with careful comparisonswith other graphical means of extrapolations.

Application of LMP to Microstructural Changesand Corrosion Performance

While there has been little published on the application of parameters such as LMP to project likely microstructural changes,the usefulness of the parameters in extrapolating creep and rupture life data provide some basis for the logic that what is reallybeing forecast are changes in microstructure. In a recent study atSecat, Inc. (Ref 16), the authors made a useful study of that potential.

The potential value of such an approach is illustrated by theexperience by the U.S. Navy and Coast Guard in which ships sta-tioned for years in equatorial environments are subjected to end-less hours of on-deck temperatures approaching 150 oF (65 oC). Inbattle zones, high-temperature exposures are aggravated by tem-perature increases from gun turrets firing at regular intervals. Thenet result may be the equivalent of 20 to 30 years of exposure totemperatures averaging 150 oF (65 oC). Some aluminum alloysthought to be resistant to intergranular corrosion attack have expe-rienced failures as a result of such exposures.

Aluminum-magnesium alloys containing more than 3% Mg, suchas 5456-H321, were widely used in ship superstructures beforeabout 1980 and experienced the type of failure described above.Such exposures resulted in a gradual buildup of the magnesium-bearing beta-phase precipitates along the grain boundaries ofsuch alloys, in turn making them susceptible to grain boundary cor-rosion and exfoliation attack after many years of service (Ref 20).Around 1980, a new temper was developed for high-magnesium-bearing aluminum alloys, the H116 temper that was consideredmuch more resistant to such equatorial marine exposures and eas-ily met the requirements of applicable ASTM Standard Test

Page 24: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Theory and Application of Time-Temperature Parameters / 19

Methods such as G 66 (Ref 21) and G 67 (Ref 22), and the re-quirement for marine alloy plate in ASTM Standard B 928 (Ref23). However, in recent years, more evidence of continued fail-ures has been found.

As a result, there is a need for a more reliable means to predictthe performance effects of many years of exposure on the corro-sion performance of aluminum alloys. The use of LMP to projectpotential microstructural changes indicative of such susceptibilityappears to offer a means to achieve this.

In the initial study (Ref 16), the value of CLMP of 20 recom-mended by Larson and Miller and broadly supported in creeptesting on Al-Mg alloys was selected to determine short-term exposures that might predict the microstructural conditions after30 years of exposure at 150 oF (65 oC).

Using LMP, the exposure of about 30 years (e.g., 250,000 h) at150 oF (610 oR; 65 oC) becomes:

LMP = 610(20 + log 250,000) = 610 × 25.383 = 15,483

For an equivalent rapid-response test to be complete in 4 h, the ex-posure temperature must be:

15,483/(20 + log 4) = 15,483/20.598 = 752 oR or 292 oF (144 oC)

For an equivalent rapid-response test to be complete in 4 days(96 h), the exposure temperature must be:

15,483/(20 + log 96) = 15,483/21.976 = 705 oR or 245 oF (118 oC)

These calculations utilizing the LMP suggested that relativelyshort-time experimental exposures of either 4 h at 292 oF (144 oC)

or 96 h at 245 oF (118 oC) may be useful in predicting the effect ofmarine service exposures of 30 years at temperatures up to 150 oF(65 oC).

The results of the preliminary tests to explore this approach are il-lustrated by the micrographs in Fig. 4. Included is the microstructureof in. thick commercially produced 5456-H116 as producedand the microstructure after exposures of 4 and 96 h exposures at292 oF (144 oC) and 245 oF (117 oC), respectively.

The as-produced 5456-H116 shows some precipitation, but notconcentrated along the grain boundaries where it would likelylead to grain-boundary corrosion attack. On the other hand, afterexposure simulating 30 years at 150 oF (65 oC) per LMP analysis,there is continuous grain-boundary precipitation of the betaphase, indicating a high likelihood of some corrosion attack byeither exfoliation or stress-corrosion cracking on those grainboundaries.

Thus, the LMP approach to simulating long-life service expo-sures on the microstructures of aluminum alloys appears to bepreliminarily validated.

It appears that one step to usefully extend this study is to explorethe use of a value of CLMP more closely associated with tensileproperties at temperatures closer to those in the microstructuralstudy of interest, namely from 150 to 350 oF (65 175 oC). Theseconsiderations lead to values of CLMP around 50 rather than 20,providing the following simulations of 30 years at 150 oF (65 oF ):

The critical LMP value: LMP = 610(50 + log 250,000)

= 610 × 55.383 = 33,783

Therefore, for a 4 h test: 33,783/(50 + log 4) = 33,783/50.598

= 668 oR or 208 oF (98 oC)

14

Fig. 4 Microstructure of 5456-H161 as-fabricated and following LMP simulation of 30 years of exposure at 150 oF

Page 25: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

20 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

And for a 4 day test: 33,783/(50 + log 96) = 33,783/51.976

= 650 oR or 190 oF (87 oC)

Examinations of microstructures of 5456-H116 plate after expo-sure to these short-time test periods also illustrated the grain-boundary buildup.

Obviously, it will take many years to prove conclusivelywhether this approach is accurate and reliable. Nevertheless, inthe short term, it offers a means of estimating microstructuralchanges as a result of high-temperature exposures that mightyotherwise be completely unpredictable.

Conclusions

The usefulness of the parametric relationships such as the Larson-Miller Parameter (LMP) for the analysis and extrapolation of high-temperature data for aluminum alloys has been described herein,noting its considerable value for creep and stress rupture strengthprojections. Illustrations have been provided of the relatively goodaccuracy in using the Larson-Miller Parameter to project creepstrengths from data obtained in relatively short-term tests (<10,000h) to rupture lives as great as 1 × 106 h where actual long-termtesting was carried out to verify the extrapolations.

Some limitations that must be recognized in using time-tem-perature parametric relationships have also been illustrated. Whilemaster parametric representations of creep and stress rupture datafor aluminum alloys in tempers that do not undergo much mi-crostructural change under the scope of conditions in the testingare very uniform and represent the data quite well, the same maynot always be true for alloys in highly cold-worked or solutionheat treated tempers. In the latter case, considerable care must betaken to obtain sufficiently representative data over as wide arange of test conditions as possible and considerable judgment isrequired in selection of the appropriate constant for the parametricrelationship (CLMP for the Larson-Miller Parameter).

About 100 archival Larson-Miller Parametric master curvesoriginally developed for aluminum alloys at Alcoa Laboratoriesare included in this publication with Alcoa, Inc. permission. Theseare illustrative examples typical and representative of the respec-tive alloys and tempers, but have no statistical basis and thereforeare not to be considered as the basis for design.

An example of the application of LMP to the tensile propertiesof one alloy (5456-H321) has also been illustrated, indicating itslimitations at relatively low temperatures (near room temperatureup to ~212 oF, or 100 oC) or at very high temperatures (at or above500 oF, or 260 oC), but its potential value at intermediate tempera-tures, say 212 to 450 oF (~100 to 230 oC).

An illustration has also been provided that parametric relation-ships such as LMP may be used to develop simulations of the pos-sible effects of very long high-temperature service on the microstructure of aluminum alloys by defining what relativelyshort-term exposures might best project such changes. An exam-ple illustrating the ability to project the possible sensitization of5456-H321 to intergranular corrosion attack after many years ofservice exposure at temperatures in the range of 150 oF (65 oC)has also been presented.

REFERENCES

1. H. Eyring, Viscosity, Plasticity, and Diffusion as Examplesof Absolute Reaction Rates, J. Chem Phys., Vol 4, 1936, p 283

2. W. Kauzmann, Flow of Solid Metals from the Standpoint ofChemical Rate Theory, Trans. AIME, Vol 143, 1941, p 57

3. S. Dushmann, L.W. Dunbar, and H. Huthsteiner, Creep ofMetals, J. Appl. Phys., Vol 18, 1944, p 386

4. J.C. Fisher and C.W. McGregor, Tension Tests at ConstantStrain Rate, J. Appl. Mech., Trans. ASME, Vol 67, 1945, p A-824

5. J.C. Fisher and C.W. McGregor, A Velocity Modified Temper-ature for the Plastic Flow of Metals, J. Appl. Mech., Trans.ASME, Vol 68, 1946, p A-11

6. J.H. Holloman and J.D. Lubahn, The Flow of Metals at HighTemperatures, General Electric Review, Vol 50, Feb 1947, p28–32; April 1947, p 44–50

7. J.H. Holloman and C. Zener, Problems in Non-Elastic Defor-mation of Metals, J. Appl. Phys., Vol 17, Feb 1946, p 69-82

8. J.H. Holloman and L.C. Jaffe, Time-Temperature Relations inTempering Steel, Trans. AIME, Iron and Steel Div., Vol 162,1945, p 223–249

9. S.S. Manson and A.M. Haferd, “A Linear Time-TemperatureRelation for Extrapolation of Creep and Stress-Rupture Data,”Technical Note 2890, NACA, March, 1953

10. F.R. Larson and J. Miller, A time-Temperature Relationshipfor Rupture and Creep Stresses, Trans. ASME, Vol 74, July1952, p 765–771

11. S.S. Manson, “Design Considerations for Long Life at Ele-vated Temperatures,” Technical Report TP-1-63, NASA, 1963

12. O.D. Sherby and J.E. Dorn, Creep Correlations in Alpha SolidSolutions of Aluminum, Trans. AIME, Vol 194, 1952

13. K.O. Bogardus, R.C. Malcolm, and M. Holt, “Extrapolationof Creep-Rupture Data for Aluminum Alloys,” presented at1968 ASM Materials Engineering Congress, (Detroit, MI),D8-100, American Society for Metals, 1968, p 361–390

14. ASME Boiler and Pressure Vessel Code, ASME, updated peri-odically.

15. W.C Leslie, J.W. Jones, and H.R. Voorhees, Long Term CreepRupture Properties of Aluminum Alloys, ASTM Proc., 1980, p32–41

16. Granta MI:Lab, product and trademark of Granta Design Ltd.,Cambridge, England

17. J. Gilbert Kaufman, Properties of Aluminum Alloys—HighTemperature Creep and Fatigue Data, ASM International,2001

18. Alloy Center, ASM International, http://products.asminterna-tional.org/alloycenter/index.jsp

19. J.G. Kaufman, Zh. Long, S. Ningileri, Application of Para-metric Analyses to Aluminum Alloys, Proc. TMS Light MetalsSymposium, TMS, Warrendale, PA, 2007

20. Corrosion of Aluminum and Aluminum Alloys, Corrosion:Materials, Vol 13B, ASM Handbook, ASM International,2006

21. “Test Method for Visual Assessment of Exfoliation CorrosionSusceptibility of 5XXX Series Aluminum Alloys (ASSET

Page 26: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Theory and Application of Time-Temperature Parameters / 21

Test),” G 66, Annual Book of ASTM Standards, Vol 03.02,ASTM International

22. “Test Method for Determining Susceptibility to IntergranularCorrosion of 5XXX Series Aluminum Alloys by Mass Lossafter Exposure to Nitric Acid (NAMLT Test),” G 67 AnnualBook of ASTM Standards, Vol 03.02, ASTM International

23. “Specification for High-Magnesium Aluminum Alloy Sheetand Plate for Marine Service or Similar Environments,” B928, Annual Book of ASTM Standards, Vol 02.02, ASTM International

ADDITIONAL SUPPORT REFERENCES

On Aluminum and Aluminum Alloys

• The Aluminum Association Alloy and Temper RegistrationsRecords: Designations and Chemical Composition Limits forAluminum Alloys in the Form of Castings and Ingot, The Alu-minum Association, Inc., Washington, DC, Jan 1996

• The Aluminum Association Alloy and Temper RegistrationsRecords: Tempers for Aluminum and Aluminum Alloy Prod-ucts, The Aluminum Association, Inc., Washington, DC, Feb1995

• Aluminum Casting Technology, 2nd ed., The AmericanFoundrymens’ Society, Inc., D. Zalenas, Ed., Des Plaines, IL,1993

• The Aluminum Design Manual, The Aluminum Association,Arlington, VA, 2005

• Aluminum Standards and Data, English and Metric Editions,The Aluminum Association, Arlington, VA, 2005

• American National Standard Alloy and Temper DesignationSystems for Aluminum, ANSI H35.1-1997, American NationalStandards Institute (ANSI), The Aluminum Association, Inc.,Secretariat, Washington, DC, 1997

• Applications of Aluminum Alloys, The Aluminum Association,Arlington, VA, 2001

• Application of Aluminum to Fast Ferries, Alumitech 97, TheAluminum Association, Arlington, VA, 1997

• D.G. Altenpohl, Aluminum: Technology, Applications and En-vironment, The Aluminum Association Inc., and TMS, 1999

• International Accord on Wrought Aluminum Alloy Designa-tions, The Aluminum Association, Inc., Washington, DC, pub-lished periodically.

• “NADCA Product Specification Standards for Die CastingsProduced by the Semi-Solid and Squeeze Casting Processes,”Publication No. 403, 2nd ed., North American Die CastingAssociation (NADCA), Rosemont, IL 1999

• NFFS Directory of Non-Ferrous Foundries, Non-FerrousFounders Society, Des Plaines, IL, 1996-7 (published periodi-cally)

• The NFFS Guide to Aluminum Casting Design: Sand and Per-manent Mold, Non-Ferrous Founders Society, Des Plaines, IL,1994

• Product Design for Die Casting in Recyclable Aluminum,Magnesium, Zinc, and ZA Alloys, Die Casting DevelopmentCouncil, La Grange, IL, 1996

• Standards for Aluminum Sand and Permanent Mold Casting,The Aluminum Association, Inc., Washington, DC, Dec 1992

On Corrosion Resistance of Aluminum Alloys

• Aluminum, K.R. Van Horn, Ed., Three-volume set, AmericanSociety For Metals, 1960

• Handbook of Corrosion Data, 2nd ed., ASM International1995

On Test Methods

• “Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Test of Metallic Materials,” E 139, Annual Book ofASTM Standards, Vol 03.01, ASTM International (updated periodically)

• “Test Methods for Tension Testing of Metallic Materials,” E 8,Annual Book of ASTM Standards, Vol 03.03, ASTM Interna-tional (updated periodically)

• “Test Methods for Tension Testing Wrought and Cast Alu-minum and Wrought and Cast Magnesium Alloy Products, B557, Annual Book of ASTM Standards, Vol 02.02, ASTM International (updated periodically)

Page 27: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Wrought Alloys

1100-O, H14, H18

Data Sets

Table 1100-1 Stress rupture strengths of 1 in. thick 1100 plate at various temperaturesTemperature (T) Stress, Temperature (T) Stress, Temperature (T) Stress,°F °R ksi t, h log t °F °R ksi t, h log t °F °R ksi t, h log t

1100-O plate 3.5 45.3 1.656 7.0 4386 3.642150 610 8.0 2033 3.308 375 835 3.2 116 2.063 6.0 15,190 4.182

7.0 28,560 4.456 3.0 224 2.351 5.0 52,610 4.721200 660 8.0 47.7 1.679 4.0 3.4 0.533 4.8 85,400 4.932

7.0 549 2.739 400 860 3.5 11.1 1.045 4.7 102,500 5.0116.5 1735 3.239 3.2 29.8 1.474 4.0 400,500 5.6036.0 6093 3.785 3.0 56 1.748 350 810 7.0 197 2.2945.8 10,650 4.027 2.7 174.5 2.242 6.0 631 2.8005.7 16,180 4.209 2.6 254 2.405 4.8 3189 3.5045.5 21,390 4.330 2.5 357 2.553 4.7 3782 3.5785.0 80,550 4.906 2.4 552 2.742 4.0 13,590 4.1334.9 106,500 5.027 2.3 1107 3.044 3.2 88,750 4.9484.5 336,700 5.527 2.0 4955 3.649 3.1 114,600 5.0594.0 1,618,000 6.209 1.9 8700 3.940 3.0 148,000 5.170

250 710 7.0 15 1.176 1.8 16,450 4.219 2.5 488,500 5.6896.5 40 1.602 1.7 36,930 4.567 375 835 6.0 148 2.1716.0 172 2.237 1.6 84,710 4.929 400 860 5.0 114 2.0565.8 290 2.462 1.5 189,100 5.277 4.8 175 2.2425.5 1082 3.034 3.0 4.5 0.657 4.7 205 2.312

300 760 7.0 0.96 –0.016 450 910 2.7 13.1 1.119 3.2 4002 3.6026.5 2.62 0.418 2.6 18.7 1.272 3.1 5093 3.7076.0 7.8 0.892 2.4 39 1.591 3.0 6481 3.8125.8 12.7 1.103 2.0 28.1 2.448 2.7 12,660 4.1025.5 23.5 1.371 1.9 529 2.723 2.6 15,680 4.1955.0 73.4 1.866 1.8 970 2.987 2.5 19,950 4.3004.9 93.6 1.971 1.5 9701 3.987 2.0 62,620 4.7974.5 254 2.405 1.9 89,360 4.9514.0 994 2.997 1100-H14 Plate 15.0 86.4 1.936 1.8 120,000 5.0793.5 4128 3.616 200 660 13.0 1509 3.179 450 910 3.2 254 2.4043.2 11,570 4.063 12.0 6534 3.815 3.1 319 2.5033.1 16,640 4.221 11.5 13,590 4.133 3.0 400 2.6023.0 23,930 4.379 11.0 27,310 4.436 2.7 753 2.8772.7 85,420 4.932 10.5 56,830 4.755 2.5 1158 3.0642.6 130,600 5.116 10.2 83,410 4.921 2.0 3268 3.5142.5 193,600 5.287 10.1 99,300 4.997 1100-H18 plate

350 810 4.5 12 1.079 10.0 114,200 5.058 212 672 20.0 1.5 0.1784.0 48.5 1.686 8.0 2,066,000 6.315 15.0 12.8 1.1073.5 185 2.267 13.0 6.5 0.814 300 760 14.0 1.75 0.2433.2 489 3.689 250 710 12.0 105.5 2.032 10.0 44.5 1.6483.0 966 2.985 11.5 280 2.448 8.0 194 2.2882.7 3189 3.504 10.0 2629 3.420 350 810 12.0 1 0.0002.6 4748 3.677 12.0 1.94 0.287 8.0 22.5 1.3522.5 6871 3.837 300 760 11.5 6.7 0.826 6.0 116 2.0642.4 10,830 4.035 11.0 18 1.255 400 860 9.0 1.1 0.0412.3 17,560 4.244 10.1 88.1 1.945 7.0 6.5 0.8132.3 22,680 4.356 10.0 98.5 1.993 5.0 29 1.4622.0 99,430 4.998 8.0 1229 3.0891.9 202,400 5.301

Parametric Analyses of High-Temperature Data for Aluminum Alloys J. Gilbert Kaufman, p 23-150 DOI: 10.1361/paht2008p023

Copyright © 2008 ASM International® All rights reserved. www.asminternational.org

Page 28: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

24 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 1100-2 Stress rupture strengths of 1100-O plate with LMP values for four values of CLMP

Temperature (T) CLMP = 13.9 CLMP = 17.4 CLMP = 20.3 CLMP = 25.3

°F °R Stress, ksi t, h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

150 610 8.0 2033 3.308 17.2 10,497 20.7 12,632 23.6 14,401 28.6 17,451610 7.0 28,560 4.456 18.4 11,197 21.9 13,332 24.8 15,101 29.8 18,151

200 660 8.0 47.7 1.679 15.6 10,282 19.1 12,592 22.0 14,506 27.0 17,806660 7.0 549 2.739 16.6 10,982 20.1 13,292 23.0 15,206 28.0 18,506660 6.5 1735 3.239 17.1 11,312 20.6 13,622 23.5 15,536 28.5 18,836660 6.0 6093 3.785 17.7 11,672 21.2 13,982 24.1 15,896 29.1 19,196660 5.8 10,650 4.027 17.9 11,832 21.4 14,142 24.3 16,056 29.3 19,356660 5.7 16,180 4.209 18.1 11,952 21.6 14,262 24.5 16,176 29.5 19,476660 5.5 21,390 4.330 18.2 12,032 21.7 14,342 24.6 16,256 29.6 19,556660 5.0 80,550 4.906 18.8 12,412 22.3 14,722 25.2 16,636 30.2 19,936660 4.9 106,500 5.027 18.9 12,492 22.4 14,802 25.3 16,716 30.3 20,016660 4.5 336,700 5.527 19.4 12,822 22.9 15,132 25.8 17,046 30.8 20,346660 4.0 1,618,000 6.209 20.1 13,272 23.6 15,582 26.5 17,496 31.5 20,796

250 710 7.0 15 1.176 15.1 10,704 18.6 13,189 21.5 15,248 26.5 18,798710 6.5 40 1.602 15.5 11,006 19.0 13,491 21.9 15,550 26.9 19,100710 6.0 172 2.237 16.1 11,457 19.6 13,942 22.5 16,001 27.5 19,551710 5.8 290 2.462 16.4 11,617 19.9 14,102 22.8 16,161 27.8 19,711710 5.5 1082 3.034 16.9 12,023 20.4 14,508 23.3 16,567 28.3 20,117

300 760 7.0 0.96 –0.016 13.9 10,552 17.4 13,212 20.3 15,416 25.3 19,216760 6.5 2.62 0.418 14.3 10,882 17.8 13,542 20.7 15,746 25.7 19,546760 6.0 7.8 0.892 14.8 11,242 18.3 13,902 21.2 16,106 26.2 19,906760 5.8 12.7 1.103 15.0 11,402 18.5 14,062 21.4 16,266 26.4 20,066760 5.5 23.5 1.371 15.3 11,606 18.8 14,266 21.7 16,470 26.7 20,270760 5.0 73.4 1.866 15.8 11,982 19.3 14,642 22.2 16,846 27.2 20,646760 4.9 93.6 1.971 15.9 12,062 19.4 14,722 22.3 16,926 27.3 20,726760 4.5 254 2.405 16.3 12,392 19.8 15,052 22.7 17,256 27.7 21,056760 4.0 994 2.997 16.9 12,842 20.4 15,502 23.3 17,706 28.3 21,506760 3.5 4128 3.616 17.5 13,312 21.0 15,972 23.9 18,176 28.9 21,976760 3.2 11,570 4.063 18.0 13,652 21.5 16,312 24.4 18,516 29.4 22,316760 3.1 16,640 4.221 18.1 13,772 21.6 16,432 24.5 18,636 29.5 22,436760 3.0 23,930 4.379 18.3 13,892 21.8 16,552 24.7 18,756 29.7 22,556760 2.7 85,420 4.932 18.8 14,312 22.3 16,972 25.2 19,176 30.2 22,976760 2.6 130,600 5.116 19.0 14,452 22.5 17,112 25.4 19,316 30.4 23,116760 2.5 193,600 5.287 19.2 14,582 22.7 17,242 25.6 19,446 30.6 23,246

350 810 4.5 12 1.079 15.0 12,133 18.5 14,968 21.4 17,317 26.4 21,367810 4.0 48.5 1.686 15.6 12,625 19.1 15,460 22.0 17,809 27.0 21,859810 3.5 185 2.267 16.2 13,095 19.7 15,930 22.6 18,279 27.6 22,329810 3.2 489 2.689 16.6 13,437 20.1 16,272 23.0 18,621 28.0 22,671810 3.0 966 2.985 16.9 13,677 20.4 16,512 23.3 18,861 28.3 22,911810 2.7 3189 3.504 17.4 14,097 20.9 16,932 23.8 19,281 28.8 23,331810 2.6 4748 3.677 17.6 14,237 21.1 17,072 24.0 19,421 29.0 23,471810 2.5 6871 3.837 17.7 14,367 21.2 17,202 24.1 19,551 29.1 23,601810 2.4 10,830 4.035 17.9 14,527 21.4 17,362 24.3 19,711 29.3 23,761810 2.3 17,560 4.244 18.1 14,697 21.6 17,532 24.5 19,881 29.5 23,931810 2.25 22,680 4.356 18.3 14,787 21.8 17,622 24.7 19,971 29.7 24,021810 2.0 99,430 4.998 18.9 15,307 22.4 18,142 25.3 20,491 30.3 24,541810 1.9 202,400 5.301 19.2 15,553 22.7 18,388 25.6 20,737 30.6 24,787

375 835 3.5 45.3 1.656 15.6 12,989 19.1 15,912 22.0 18,333 27.0 22,508835 3.2 116 2.063 16.0 13,329 19.5 16,252 22.4 18,673 27.4 22,848835 3.0 224 2.351 16.3 13,570 19.8 16,492 22.7 18,914 27.7 23,089

400 860 4.0 3.4 0.533 14.4 12,412 17.9 15,422 20.8 17,916 25.8 22,216860 3.5 11.1 1.045 14.9 12,853 18.4 15,863 21.3 18,357 26.3 22,657860 3.2 29.8 1.474 15.4 13,222 18.9 16,232 21.8 18,726 26.8 23,026860 3.0 56 1.748 15.6 13,457 19.1 16,467 22.0 18,961 27.0 23,261860 2.7 174.5 2.242 16.1 13,882 19.6 16,892 22.5 19,386 27.5 23,686860 2.6 254 2.405 16.3 14,022 19.8 17,032 22.7 19,526 27.7 23,826860 2.5 357 2.553 16.5 14,150 20.0 17,160 22.9 19,654 27.9 23,954860 2.4 552 2.742 16.6 14,312 20.1 17,322 23.0 19,816 28.0 24,116860 2.25 1107 3.044 16.9 14,572 20.4 17,582 23.3 20,076 28.3 24,376860 2.0 4955 3.649 17.5 15,092 21.0 18,102 23.9 20,596 28.9 24,896860 1.9 8700 3.940 17.8 15,342 21.3 18,352 24.2 20,846 29.2 25,146860 1.8 16,450 4.219 18.1 15,582 21.6 18,592 24.5 21,086 29.5 25,386860 1.7 36,930 4.567 18.5 15,882 22.0 18,892 24.9 21,386 29.9 25,686860 1.6 84,710 4.929 18.8 16,193 22.3 19,203 25.2 21,697 30.2 25,997860 1.5 189,100 5.277 19.2 16,492 22.7 19,502 25.6 21,996 30.6 26,296

(continued)

Page 29: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 25

Table 1100-2 (continued)Temperature (T) CLMP = 13.9 CLMP = 17.4 CLMP = 20.3 CLMP = 25.3

°F °R Stress, ksi t, h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

450 910 3.0 4.5 0.657 14.6 13,247 18.1 16,432 21.0 19,071 26.0 23,621910 2.7 13.1 1.119 15.0 13,667 18.5 16,852 21.4 19,491 26.4 24,041910 2.6 18.7 1.272 15.2 13,807 18.7 16,992 21.6 19,631 26.6 24,181910 2.4 39 1.591 15.5 14,097 19.0 17,282 21.9 19,921 26.9 24,471910 2.0 28.1 2.448 16.3 14,877 19.8 18,062 22.7 20,701 27.7 25,251910 1.9 529 2.723 16.6 15,127 20.1 18,312 23.0 20,951 28.0 25,501910 1.8 970 2.987 16.9 15,367 20.4 18,552 23.3 21,191 28.3 25,741910 1.5 9701 3.987 17.9 16,277 21.4 19,462 24.3 22,101 29.3 26,651

500 960 2.0 23.5 1.371 15.3 14,660 18.8 18,020 21.7 20,804 26.7 25,604960 1.9 48.2 1.683 15.6 14,960 19.1 18,320 22.0 21,104 27.0 25,904960 1.8 76.4 1.883 15.8 15,152 19.3 18,512 22.2 21,296 27.2 26,096960 1.6 330 2.519 16.4 15,762 19.9 19,122 22.8 21,906 27.8 26,706960 1.5 678 2.831 16.7 16,062 20.2 19,422 23.1 22,206 28.1 27,006

550 1010 2.0 2.53 0.404 14.3 14,447 17.8 17,982 20.7 20,911 25.7 25,9611010 1.9 4.48 0.651 14.6 14,697 18.1 18,232 21.0 21,161 26.0 26,2111010 1.8 7.75 0.889 14.8 14,937 18.3 18,472 21.2 21,401 26.2 26,4511010 1.6 31.1 1.493 15.4 15,547 18.9 19,082 21.8 22,011 26.8 27,0611010 1.5 35 1.544 15.4 15,598 18.9 19,133 21.8 22,062 26.8 27,112

600 1060 1.5 7 0.845 15.3 16,187 18.8 19,897 21.7 22,971 26.1 27,714

Page 30: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

26 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Tabl

e 11

00-3

Effe

ct o

f LM

P co

nsta

nt v

alue

on

long

-tim

e ex

trap

olat

ed s

tres

ses

for

1100

-OC

LM

P=

13.8

CL

MP

= 17

.4C

LM

P=

20.3

CL

MP

= 25

.3D

esir

ed e

xtra

pola

tion

Ext

rapo

late

dE

xtra

pola

ted

Ext

rapo

late

dE

xtra

pola

ted

Tem

pera

ture

(T

)T

ime

(t)

stre

ss,

stre

ss,

stre

ss,

stre

ss,

°F°R

yrh

log

tC

+ lo

g t

T(C

+ lo

g t)

ksi

C+

log

tT

(C+

log

t)ks

iC

+ lo

g t

T(C

+ lo

g t)

ksi

C+

log

tT

(C+

log

t)ks

i

200

660

2017

5,00

05.

243

19.0

12,5

689.

122

.614

,944

9.0

25.5

16,8

589.

030

.520

,158

9.0

5044

0,00

05.

643

19.4

12,8

326.

123

.015

,208

6.0

25.9

17,1

227.

230

.920

,422

7.2

250

710

2017

5,00

05.

243

19.0

13,5

219.

122

.616

,077

9.0

25.5

18,1

369.

030

.521

,686

9.0

5044

0,00

05.

643

19.4

13,8

056.

123

.016

,361

6.0

25.9

18,4

207.

230

.921

,970

7.2

300

760

2017

5,00

05.

243

19.0

14,4

733.

922

.617

,209

3.8

25.5

19,4

133.

930

.523

,213

3.9

5044

0,00

05.

643

19.4

14,7

773.

023

.017

,513

2.6

25.9

19,7

172.

830

.923

,517

2.8

350

810

2017

5,00

05.

243

19.0

15,4

252.

822

.618

,341

2.5

25.5

20,6

902.

630

.524

,740

2.6

5044

0,00

05.

643

19.4

15,7

492.

223

.018

,665

2.1

25.9

21,0

142.

130

.925

,064

2.1

400

860

2017

5,00

05.

243

19.0

16,3

772.

222

.619

,473

2.0

25.5

21,9

672.

130

.526

,267

2.1

5044

0,00

05.

643

19.4

16,7

212.

023

.019

,817

1.9

25.9

22,3

112.

030

.926

,611

2.0

Page 31: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 27

Temperature (T) Stress,°F °R ksi t, h log t

1 in. thick 1100-O plate150 610 8.0 2033 3.308200 660 8.0 47.7 1.679

7.0 549 2.7396.5 1735 3.2396.0 6093 3.785

250 710 7.0 15 1.1766.5 40 1.6026.0 172 2.2375.8 290 2.4625.5 1082 3.034

300 760 7.0 0.96 –0.0166.5 2.62 0.4186.0 7.8 0.8925.8 12.7 1.1035.5 23.5 1.3715.0 73.4 1.8664.9 93.6 1.9714.5 254 2.4054.0 994 2.9973.5 4128 3.616

350 810 4.5 12 1.0794.0 48.5 1.6863.5 185 2.2673.2 489 3.6893.0 966 2.9852.7 3189 3.5042.6 4748 3.6772.5 6871 3.837

375 835 3.5 45.3 1.6563.2 116 2.0633.0 224 2.351

400 860 4.0 3.4 0.5333.5 11.1 1.0453.2 29.8 1.4743.0 56 1.7482.7 174.5 2.2422.6 254 2.4052.5 357 2.5532.4 552 2.7422.3 1107 3.0442.0 4955 3.6491.9 8700 3.940

450 910 3.0 4.5 0.6572.7 13.1 1.1192.6 18.7 1.2722.4 39 1.5912.0 28.1 2.4481.9 529 2.7231.8 970 2.9871.5 9701 3.987

500 960 2.0 23.5 1.3711.9 48.2 1.6831.8 76.4 1.8831.6 330 2.5191.5 678 2.831

550 1010 2.0 2.53 0.4041.9 4.48 0.6511.8 7.75 0.8891.6 31.1 1.4931.5 35 1.544

600 1060 1.5 7 0.845

Temperature (T) Stress,°F °R ksi t, h log t

1 in. thick 1100-H14 plate

200 660 15.0 86.4 1.93613.0 1509 3.17912.0 6534 3.815

250 710 13.0 6.5 0.81412.0 105.5 2.03211.5 280 2.44810.0 2629 3.420

300 760 12.0 1.94 0.28711.5 6.7 0.82611.0 18 1.25510.1 88.1 1.94510.0 98.5 1.9938.0 1229 3.0897.0 4386 3.642

350 810 7.0 197 2.2946.0 631 2.8004.8 3189 3.5044.7 3782 3.578

375 835 6.0 148 2.171400 860 5.0 114 2.056

4.8 175 2.2424.7 205 2.3123.2 4002 3.6023.1 5093 3.7073.0 6481 3.812

450 910 3.2 254 2.4043.1 319 2.5033.0 400 2.6022.7 753 2.8772.5 1158 3.0642.0 3268 3.514

500 960 2.7 60.1 1.7792.6 72.9 1.8632.5 90.4 1.9562.0 242 2.3831.9 346 2.5401.8 451 2.6541.5 1265 3.102

550 1,010 2.7 6.16 0.7912.6 7.4 0.8691.9 32.6 1.5131.8 41.9 1.622

Table 1100-4 Short-life (<10,000 h) stress rupture strengths of 1100 plate at various temperatures

Page 32: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

28 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 1100-5 Isostress calculations for 1100-O plate based on short-life data (<10,000 h)

Isostress, Temperature (T1) Temperature (T2) (T1 log t1) –ksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP

8.0 200 660 47.7 1.679 1108.0 150 610 2033 3.308 2018.0 –910.0 –50 18.27.0 250 710 15 1.176 835.0 200 660 549 2.739 1807.7 –972.8 –50 19.57.0 300 760 0.96 –0.016 –12.2 250 710 15 1.176 835.0 –847.1 –50 16.97.0 300 760 0.96 –0.016 –12.2 200 660 549 2.739 1807.7 –1819.9 –100 18.26.5 250 710 40 1.602 1137.4 200 660 1735 3.239 2137.7 –1000.3 –50 20.06.5 300 760 2.62 0.418 317.7 250 710 40 1.602 1137.4 –819.7 –50 16.46.5 300 760 2.62 0.418 317.7 200 660 1735 3.239 2137.7 –1820.1 –100 18.26.0 250 710 172 2.237 1588.3 200 660 6093 3.785 2498.1 –909.8 –50 18.26.0 300 760 7.8 0.892 677.9 250 710 172 2.237 1588.3 –910.4 –50 18.26.0 300 760 7.8 0.892 677.9 200 660 6093 3.785 2498.1 –1820.2 –100 18.25.5 300 760 23.5 1.371 1042.0 250 710 1082 3.034 2154.1 –1112.2 –50 22.24.5 350 810 12 1.079 874.0 300 760 254 2.405 1827.8 –953.8 –50 19.14.0 350 810 48.5 1.686 1365.7 300 760 994 2.997 2277.7 –912.1 –50 18.24.0 400 860 3.4 0.533 458.4 350 810 48.5 1.686 1365.7 –907.3 –50 18.14.0 400 860 3.4 0.533 458.4 300 760 994 2.997 2277.7 –1819.3 –100 18.23.5 350 810 185 2.267 1836.3 300 760 4128 3.616 2748.2 –911.9 –50 18.23.5 375 835 45.3 1.656 1382.8 300 760 4128 3.616 2748.2 –1365.4 –75 18.23.5 375 835 45.3 1.656 1382.8 350 810 185 2.267 1836.3 –453.5 –25 18.13.5 400 860 11.1 1.045 898.7 300 760 4128 3.616 2748.2 –1849.5 –100 18.53.5 400 860 11.1 1.045 898.7 350 810 185 2.267 1836.3 –937.6 –50 18.83.5 400 860 11.1 1.045 898.7 375 835 45.3 1.656 1382.8 –484.1 –25 19.43.0 375 835 224 2.351 1963.1 350 810 966 2.985 2417.9 –454.8 –25 18.23.0 400 860 56 1.748 1503.3 375 835 224 2.351 1963.1 –459.8 –25 18.43.0 400 860 56 1.748 1503.3 350 810 966 2.985 2417.9 –914.6 –50 18.33.0 450 910 4.5 0.657 597.9 400 860 56 1.748 1503.3 –905.4 –50 18.13.0 450 910 4.5 0.657 597.9 375 835 224 2.351 1963.1 –1365.2 –75 18.23.0 450 910 4.5 0.657 597.9 350 810 966 2.985 2417.9 –1820.0 –100 18.22.0 450 910 28.1 2.448 2227.7 400 860 4955 3.849 3310.1 –1082.5 –50 21.62.0 500 960 23.5 1.371 1316.2 450 910 28.1 2.448 2227.7 –911.5 –50 18.22.0 500 960 23.5 1.371 1316.2 400 860 4955 3.849 3310.1 –1994.0 –100 19.92.0 550 1010 2.53 0.404 408.0 500 960 23.5 1.371 1316.2 –908.1 –50 18.22.0 550 1010 2.53 0.404 408.0 450 910 28.1 2.448 2227.7 –1819.6 –100 18.22.0 550 1010 2.53 0.404 408.0 400 860 4955 3.849 3310.1 –2902.1 –150 19.31.5 500 960 678 2.831 2717.8 450 910 9701 3.987 3628.2 –910.4 –50 18.21.5 550 1010 35 1.544 1559.4 500 960 678 2.831 2717.8 –1158.3 –50 23.21.5 550 1010 35 1.544 1559.4 450 910 9701 3.987 3628.2 –2068.7 –100 20.71.5 600 1060 7 0.845 895.7 550 1010 35 1.544 1559.4 –663.7 –50 13.31.5 600 1060 7 0.845 895.7 500 960 678 2.831 2717.8 –1822.1 –100 18.21.5 600 1060 7 0.845 895.7 450 910 9701 3.987 3628.2 –2732.5 –150 18.2

Average CLMP = 18.1

Table 1100-6 Isostress calculations for 1100-H14 plate based on short-life data (<10,000 h)

Isostress, Temperature (T1) Temperature (T2) (T1 log t1) – CLMPksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP avg

13.0 250 710 6.5 0.814 577.9 200 660 1509 3.179 2098.1 –1520.2 –50 30.412.0 300 760 1.94 0.287 218.1 250 710 105.5 2.032 1442.7 –1224.6 –50 24.5

300 760 1.94 0.287 218.1 200 660 6534 3.815 2517.9 –2299.8 –100 23.0250 710 105.5 2.032 1442.7 200 660 6534 3.815 2517.9 –1075.2 –50 21.5

10.0 300 760 98.5 1.993 1514.7 250 710 2629 3.420 2428.2 –913.5 –50 18.37.0 350 810 197 2.294 1858.1 300 760 4386 3.642 2767.9 –909.8 –50 18.2 Overall

20.36.0 375 835 148 2.171 1812.8 350 810 631 2.800 2268.0 –455.2 –25 18.24.7 400 860 205 2.312 1988.3 350 810 3782 3.576 2896.6 –908.2 –50 18.23.0 450 910 400 2.602 2367.8 400 860 6481 3.812 3278.3 –910.5 –50 18.2 For

0–10 ksi2.5 500 960 90.4 1.956 1877.8 450 910 1158 3.064 2788.2 –910.5 –50 18.2 18.22.0 500 960 242 2.383 2287.7 450 910 3266 3.514 3197.7 –910.1 –50 18.21.9 550 1010 32.6 1.513 1528.1 500 960 346 2.540 2438.4 –910.3 –50 18.21.8 550 1010 41.9 1.622 1638.2 500 960 451 2.654 2547.8 –909.6 –50 18.2

Page 33: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 29

Table 1100-7 LMP calculations based on short-life stress rupture strengths of 1100-O and H14 plate at various temperaturesTemperature (T ) Stress, C + log t°F °R ksi t, h log t CLMP = 18.2 T(C + log t)

1 in. thick 1100-O plate150 610 8.0 2033 3.308 21.51 13,120200 660 8.0 47.7 1.679 19.88 13,120

7.0 549 2.739 20.94 13,8206.5 1735 3.239 21.44 14,1506.0 6093 3.785 21.99 14,510

250 710 7.0 15 1.176 19.38 13,7576.5 40 1.602 19.80 14,0596.0 172 2.237 20.44 14,5105.8 290 2.462 20.66 14,6705.5 1082 3.034 21.23 15,076

300 760 7.0 0.96 –0.016 18.18 13,8206.5 2.62 0.418 18.62 14,1506.0 7.8 0.892 19.09 14,5105.8 12.7 1.103 19.30 14,6705.5 23.5 1.371 19.57 14,8745.0 73.4 1.866 20.07 15,2504.9 93.6 1.971 20.17 15,3304.5 254 2.405 20.61 15,6604.0 994 2.997 21.20 16,1103.5 4128 3.616 21.82 16,580

350 810 4.5 12 1.079 19.28 15,6164.0 48.5 1.686 19.89 16,1083.5 185 2.267 20.47 16,5783.2 489 3.689 21.89 17,7303.0 966 2.985 21.19 17,1602.7 3189 3.504 21.70 17,5802.6 4748 3.677 21.88 17,7202.5 6871 3.837 22.04 17,850

375 835 3.5 45.3 1.656 19.86 16,5803.2 116 2.063 20.26 16,9203.0 224 2.351 20.55 17,160

400 860 4.0 3.4 0.533 18.73 16,1103.5 11.1 1.045 19.25 16,5513.2 29.8 1.474 19.67 16,9203.0 56 1.748 19.95 17,1552.7 174.5 2.242 20.44 17,5802.6 254 2.405 20.61 17,7202.5 357 2.553 20.75 17,8482.4 552 2.742 20.94 18,0102.3 1107 3.044 21.24 18,2702.0 4955 3.649 21.85 18,7901.9 8700 3.940 22.14 19,040

450 910 3.0 4.5 0.657 18.86 17,1602.7 13.1 1.119 19.32 17,5802.6 18.7 1.272 19.47 17,7202.4 39 1.591 19.79 18,0102.0 28.1 2.448 20.65 18,7901.9 529 2.723 20.92 19,0401.8 970 2.987 21.19 19,2801.5 9701 3.987 22.19 20,190

500 960 2.0 23.5 1.371 19.57 18,788500 960 1.9 48.2 1.683 19.88 19,088500 960 1.8 76.4 1.883 20.08 19,280500 960 1.6 330 2.519 20.72 19,890500 960 1.5 678 2.831 21.03 20,190550 1010 2.0 2.53 0.404 18.60 18,790

1.9 4.48 0.651 18.85 19,0401.8 7.75 0.889 19.09 19,2801.6 31.1 1.493 19.69 19,8901.5 35 1.544 19.74 19,941

600 1060 1.5 7 0.845 19.05 20,188

Temperature (T) Stress, C + log t°F °R ksi t, h log t CLMP = 18.2 T(C + log t)

1 in. thick 1100-H14 plate200 660 15.0 86.4 1.936 20.14 13,290

13.0 1509.0 3.179 21.38 14,11012.0 6534 3.815 22.02 14,530

250 710 13.0 6.5 0.814 19.01 13,50012.0 105.5 2.032 20.23 14,36511.5 280 2.448 20.65 14,66010.0 2629 3.420 21.62 15,350

300 760 12.0 1.94 0.287 18.49 14,05011.5 6.7 0.826 19.03 14,46011.0 18 1.255 19.46 14,78610.1 88.1 1.945 20.15 15,31010.0 98.5 1.993 20.19 15,3478.0 1229 3.089 21.29 16,1807.0 4386 3.642 21.84 16,600

350 810 7.0 197 2.294 20.49 16,6006.0 631 2.800 21.00 17,0104.8 3189 3.504 21.70 17,5804.7 3782 3.578 21.78 17,640

375 835 6.0 148 2.171 20.37 17,010400 860 5.0 114 2.056 20.26 17,420

4.8 175 2.242 20.44 17,5804.7 205 2.312 20.51 17,6403.2 4002 3.602 21.80 18,7503.1 5093 3.707 21.91 18,8403.0 6481 3.812 22.01 18,930

450 910 3.2 254 2.404 20.60 18,7503.1 319 2.503 20.70 18,8403.0 400 2.602 20.80 18,9302.7 753 2.877 21.08 19,1802.5 1158 3.064 21.26 19,3502.0 3268 3.514 21.71 19,760

500 960 2.7 60.1 1.779 19.98 19,1802.6 72.9 1.863 20.06 19,2602.5 90.4 1.956 20.16 19,3502.0 242 2.383 20.58 19,7601.9 346 2.540 20.74 19,9101.8 451 2.654 20.85 20,0201.5 1265 3.102 21.30 20,450

550 1,010 2.7 6.16 0.791 18.99 19,1812.6 7.4 0.869 19.07 19,2601.9 32.6 1.513 19.71 19,9101.8 41.9 1.622 19.82 20,020

Page 34: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

30 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 1100-9 Comparison of actual long-life test results with extrapolated values for stress rupture strengths of 1100-H14 based on short-life (<10,000 h) stress rupture tests

Actual test results CLMP = 18.2

Temperature (T) Test stress, Actual rupture life C + log t Extrapolated stress,°F °R ksi (t), h log t (18.2 + log t) T(C + log t) ksi

200 660 10.0 114,200 5.058 23.26 15,350 10.08.0 206,600 6.315 24.52 16,180 8.0

300 760 6.0 15,190 4.182 22.38 17,010 6.05.0 52,610 4.721 22.92 17,420 5.04.8 85,400 4.932 23.13 17,580 4.84.7 102,500 5.011 23.21 17,640 4.74.0 400,500 5.603 23.80 18,090 4.0

350 810 4.0 13,590 4.133 22.33 18,090 4.03.2 88,750 4.948 23.15 18,750 3.23.1 114,600 5.059 23.26 18,840 3.13.0 148,000 5.170 23.37 18,930 3.02.5 488,500 5.689 23.89 19,350 2.5

400 860 2.7 12,660 4.102 22.30 19,180 2.72.6 15,680 4.195 22.40 19,260 2.62.5 19,950 4.300 22.50 19,350 2.52.0 62,620 4.797 23.00 19,777 2.01.9 89,360 4.951 23.15 19,910 1.91.8 120,000 5.079 23.28 20,020 1.8

Table 1100-8 Comparison of actual long-life test results with extrapolated values for stressrupture strengths of 1100-O based on short-life (<10,000 h) stress rupture tests

Actual test results CLMP = 18.2

Temperature (T) Test stress, Actual rupture life C + log t Extrapolated stress,°F °R ksi (t), h log t (18.2 + log t) T(C + log t) ksi

150 610 7.0 28,560 4.456 22.66 13,820 7.0200 660 5.8 10,650 4.027 22.23 14,670 5.8

5.7 16,180 4.209 22.41 14,790 5.65.5 21,390 4.330 22.53 14,870 5.55.0 80,550 4.906 23.11 15,250 5.04.9 106,500 5.027 23.23 15,330 4.94.5 336,700 5.527 23.73 15,660 4.54.0 1,618,000 6.209 24.41 16,110 4.0

300 760 3.2 11,570 4.063 22.26 16,920 3.23.1 16,640 4.221 22.42 17,040 3.13.0 23,930 4.379 22.58 17,160 3.02.7 85,420 4.932 23.13 17,580 2.72.6 130,600 5.116 23.32 17,720 2.62.5 193,600 5.287 23.49 17,850 2.5

350 810 2.4 10,830 4.036 22.24 18,011 2.42.3 17,560 4.244 22.44 18,180 2.32.2 22,680 4.356 22.56 18,270 2.22.0 99,430 4.998 23.20 18,790 2.01.9 210,000 5.301 23.50 19,036 1.9

400 860 1.8 16,540 4.219 22.42 19,280 1.81.7 36,930 4.567 22.77 19,580 1.71.6 84,710 4.928 23.13 19,890 1.61.5 189,100 5.276 23.48 20,189 1.5

Page 35: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 31

Table 1100-10 Stress rupture strengths of 1100-H18 rolled and drawn rod at various temperatures and isostress calculationsof CLMP

Temperature (T)

°F °R Stress, ksi t, h log t

212 672 20.0 15.5 1.190672 15.0 130 2.114

300 760 13.0 1.68 0.199760 10.0 44.5 1.648760 8.0 190 2.279

350 810 12.0 1 0.000810 8.0 22 1.342810 6.0 110 2.041

400 860 9.0 1.05 0.021860 6.0 6.5 0.813860 5.0 19 1.279

500 960 3.5 0.73 –0.137960 2.5 26 1.415960 2.0 800 2.902

Isostress, Temperature (T1) Temperature (T2) (T1 log t1) –ksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP

15.0 300 760 0.9 –0.046 –35.0 212 672 110 2.041 1371.6 –1406.5 –88 16.010.0 350 810 5 0.699 566.2 300 760 44.5 1.648 1252.5 –686.3 –50 13.79.0 350 810 9 0.954 772.7 300 760 100 2.000 1520.0 –747.3 –50 14.9

400 860 1.05 0.021 18.1 300 760 100 2.000 1520.0 –1501.9 –100 15.0400 860 1.05 0.021 18.1 350 810 9 0.954 772.7 –754.7 –50 15.1

8.0 350 810 22 1.342 1087.0 300 760 190 2.279 1732.0 –645.0 -50 12.9400 860 3 0.477 410.2 300 760 190 2.279 1732.0 –1321.8 –100 13.2400 860 3 0.477 410.2 350 810 22 1.342 1087.0 -676.8 –50 13.5

6.0 350 810 110 2.041 1653.2 300 760 1000 3.000 2280.0 –626.8 –50 12.5400 860 13 1.114 958.0 300 760 1000 3.000 2280.0 –1322.0 –100 13.2400 860 13 1.114 958.0 350 810 110 2.041 1653.2 –695.2 –50 13.9

5.0 400 860 29 1.462 1257.3 350 810 300 2.477 2006.4 –749.1 –50 15.0Average CLMP = 14.1

Page 36: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

32 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

0

8

7

6

2

1

3

5

4

0.5 101 102 103 104 105

Elapsed time, h

Stre

ss ru

ptur

e s

treng

th, k

si

(Testdiscontinued)

(disc.)

(disc.)275 °F

375 °F

200 °F200 °F250 °F

300 °F

350 °F

500 °F

550 °F600 °F

400 °F450 °F

Metal Properties Council Program. + Symbol with represents test discontinued without rupture.

600 1060 550 1010 500 960 450 910 400 860 375 835

350 810 300 760 275 735 250 710 212 672 200 660 °F °R °F °R Test temperature Test temperatureU of M data U of M dataAlcoa data Alcoa data

Fig. 1100-1 Stress rupture strengths of 1 in. 1100-O plate at various temperatures. Stress versus rupture time. Dashed lines represent extrapolations of Alcoadata using the Larson-Miller Parameter.

Page 37: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 33

0

2

4

6

8

16

14

12

10

Elapsed time, h102 1041 10310 105

Stre

ss ru

ptur

e st

reng

th, k

si

212 °F

250 °F

200 °F

300 °F

350 °F

500 °F550 °F

375 °F

400 °F

450 °F

350 810 300 760 250 710 212 672 200 660

550 1010 500 960 450 910 400 860 375 835

Symbol with represents test discontinued without rupture.

°F °R °F °R Test temperature Test temperatureU of M data U of M dataAlcoa data Alcoa data

Fig. 1100-2 Stress rupture strengths of 1 in. 1100-H14 plate at various temperatures. Stress versus rupture time

Page 38: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

34 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

0

2

4

6

8

0 1817 19 20 21 22 23 24 25 26 27 28 29Larson-Miller Parameter (LMP)/103

Stre

ss ru

ptur

e st

reng

th, k

si

600 1060 550 1010 500 960 450 910 400 860 375 835

350 810 300 760 275 735 250 710 212 672 200 660 °F °R °F °R Test temperature Test temperatureU of M data U of M dataAlcoa data Alcoa data

Fig. 1100-3 Archival Larson-Miller parametric master curve for 1100-O plate. CLMP = 25.3

Fig. 1100-4 Isostress plot of stress rupture strengths for 1100-O plate to determine Manson-Haferd constants

Page 39: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 35

Fig. 1100-5 Archival Manson-Haferd parametric master curve for stress rupture strengths of 1100-O plate. Ta = –500 °F; log ta = 21.66

Fig. 1100-6 Archival Dorn-Sherby parametric master curve for stress rupture strengths of 1100-O plate. ΔH = 44,100

Page 40: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

36 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 1100-7 Larson-Miller parametric master curves for stress rupture strengths of 1100-O plate with varying CLMP

Fig. 1100-8 Larson-Miller parametric master curves for stress rupture strengths of 1100-O plate based on short-life data (<10,000 h). CLMP = 18.2

Page 41: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 37

Fig. 1100-9 Larson-Miller parametric master curves for stress rupture strengths of 1100-H14 plate based on short-life data (<10,000 h). CLMP = 18.2

Fig. 1100-10 Archival Larson-Miller parametric master curve for 0.1% creep strengths of 1100-O rolled and drawn rod. CLMP =17.6

Page 42: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

38 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 1100-11 Archival Larson-Miller parametric master curve for 0.2% creep strengths of 1100-O plate. CLMP = 20.4

Fig. 1100-12 Archival Larson-Miller parametric master curve for 0.5% creep strengths of 1100-O plate. CLMP = 20.4

Page 43: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 39

Fig. 1100-13 Archival Larson-Miller parametric master curve for 1% creep strengths of 1100-O plate. CLMP = 20.4

Fig. 1100-14 Archival Larson-Miller master curve for 1100-H18 rod. CLMP = 12.8

Page 44: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

40 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 1100-15 Archival Larson-Miller master curve for 1100-H18 plate. CLMP = 14

Page 45: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 41

Table 2024-1 Stress rupture strengths of 2024-T851 plate with isostress calculations

Testtemperature Applied Rupture CLMP = 16.0 CLMP = 18.4 CLMP = 21.8

oF oR stress, ksi life (t), h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

212 672 61.0 4 0.602 16.6 11,157 19.0 12,769 22.4 15,05459.5 6.5 0.813 16.8 11,298 19.2 12,911 22.6 15,19658.5 14 1.146 17.1 11,522 19.5 13,135 22.9 15,42056.0 77 1.886 17.9 12,019 20.3 13,632 23.7 15,91755.0 400 2.602 18.6 12,501 21.0 14,113 24.4 16,39852.0 2665 3.426 19.4 13,054 21.8 14,667 25.2 16,952

300 760 52.0 1.8 0.255 16.3 12,354 18.7 14,178 22.1 16,76248.0 60 1.778 17.8 13,511 20.2 15,335 23.6 17,91944.0 365 2.562 18.6 14,107 21.0 15,931 24.4 18,51542.0 870 2.94 18.9 14,394 21.3 16,218 24.7 18,802

350 810 47.0 1.8 0.255 16.3 13,167 18.7 15,111 22.1 17,86543.0 13 1.114 17.1 13,862 19.5 15,806 22.9 18,56038.0 130 2.114 18.1 14,672 20.5 16,616 23.9 19,37032.0 1000 3.000 19.0 15,390 21.4 17,334 24.8 20,088

400 860 42.0 1.25 0.097 16.1 13,843 18.5 15,907 21.9 18,83137.0 11 1.041 17.0 14,655 19.4 16,719 22.8 19,64328.0 200 2.301 18.3 15,739 20.7 17,803 24.1 20,72722.0 771 2.887 18.9 16,243 21.3 18,307 24.7 21,231

500 960 26.0 2 0.301 16.3 15,649 18.7 17,953 22.1 21,21719.0 18 1.255 17.3 16,565 19.7 18,869 23.1 22,13313.0 82.5 1.916 17.9 17,199 20.3 19,503 23.7 22,7678.0 594 2.774 18.8 18,023 21.2 20,327 24.6 23,5916.0 2020 3.206 19.2 18,438 21.6 20742 25.0 24,006

550 1010 8.0 85 1.929 17.9 18,108 20.3 20,532 23.7 23,9666.0 304 2.483 18.5 18,668 20.9 21,092 24.3 24,526

600 1060 13.0 1 0.000 16.0 16,960 18.4 19,504 21.8 23,1088.0 10.25 1.010 17.0 18,031 19.4 20,575 22.8 24,1795.0 139 2.143 18.1 19,232 20.5 21,776 23.9 25,3804.0 435 2.638 18.6 19,756 21.0 22,300 24.4 25,904

650 1110 5.0 19 1.279 17.3 19,180 19.7 21,844 23.1 25,6183.0 433 2.646 18.6 20,697 21.0 23,361 24.4 27,135

700 1160 2.0 80 1.903 17.9 20,767 20.3 23,551 23.7 27,495

Archival isostress calculations for CLMP for 2024-T851 plate

Isostress, Temperature (T1) Temperature (T2) (T1 log t1) – CLMPksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP avg

52.0 212 672 2665 3.426 2302.3 300 760 1.8 0.255 193.8 2108.5 88 24.047.0 300 760 94 1.973 1499.5 350 810 1.8 0.255 206.6 1292.9 50 25.944.0 300 760 365 2.562 1947.1 350 810 13 1.114 902.3 1044.8 50 20.943.0 300 760 560 2.748 2088.5 350 810 21 1.322 1070.8 1017.7 50 20.442.0 300 760 870 2.940 2234.4 350 810 34 1.531 1240.1 994.3 50 19.942.0 300 760 870 2.940 2234.4 400 860 1.25 0.097 83.4 2151.0 100 21.5 Average

350 810 34 1.531 1240.1 400 860 1.25 0.097 83.4 1156.7 50 23.1 for stress38.0 350 810 156 2.193 1776.3 400 860 7.1 0.851 731.9 1044.5 50 20.9 ≥37 ksi37.0 350 810 220 2.342 1897.0 400 860 11 1.041 895.3 1001.8 50 20.0 21.832.0 350 810 970 2.940 2381.4 400 860 66 1.820 1565.2 816.2 50 16.326.0 400 860 320 2.505 2154.3 500 960 2 0.301 289.0 1865.3 100 18.722.0 400 860 771 2.887 2482.8 500 960 7.4 0.869 834.2 1648.6 100 16.513.0 500 960 82.5 1.916 1839.4 600 1060 1 0.000 0.0 1839.4 100 18.48.0 500 960 594 2.774 2663.0 600 1060 10.25 1.010 1070.6 1592.4 100 15.96.0 500 960 2020 3.305 3172.8 600 1060 45 1.653 1752.2 1420.6 100 14.28.0 500 960 594 2.774 2663.0 550 1010 85 1.929 1948.3 714.8 50 14.36.0 500 960 2020 3.305 3172.8 550 1010 304 2.483 2507.8 665.0 50 13.38.0 550 1010 85 1.929 1948.3 600 1060 10.25 1.010 1070.6 877.7 50 17.66.0 550 1010 304 2.483 2507.8 600 1060 45 1.653 1752.2 755.7 50 15.1 Average 5.0 600 1060 139 2.143 2271.6 650 1110 19 1.279 1419.7 851.9 50 17.0 for stress4.0 600 1060 435 2.638 2796.3 650 1110 62 1.792 1989.1 807.2 50 16.1 <37 ksi3.0 650 1110 433 2.636 2926.0 700 1160 79.5 1.900 2204.0 722.0 50 14.4 16.0

Overall average = 18.4

2024-T851

Page 46: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

42 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 2024-1 Stress rupture strengths of 2024-T851 plate at various temperatures. Stress versus rupture time. Broken lines represent extrapolations using Larson-Miller Parameter.

Table 2024-2 Archival calculations of activation energy for Dorn-Sherby parameter of 2024-T851 plate

Temperature combination, oF Isostress, ksi T1,

oR t1, h T2, oR t2, h Activation energy ΔH

212–300 52.0 460 2665 460 1.8 46,800300–350 47.0 460 94 460 1.8 52,400

44.0 507 365 554 13 44,20043.0 504 560 825 21 43,50042.0 503 870 1020 34 43,000

300–400 42.0 460 870 460 1.25 48,200350–400 42.0 460 34 460 1.25 54,700

38.0 502 156 494 7.1 51,20037.0 498 220 616 11 49,60032.0 497 970 680 66 44,500

400–500 26.0 460 320 460 2 45,80022.0 486 771 780 7.4 42,000

500–600 13.0 460 82.5 460 1 48,7008.0 473 594 542.5 10.25 44,8006.0 468 2020 1054 45 42,000

500–550 8.0 460 594 460 85 38,7006.0 468 2020 1054 304 37,500

550–600 8.0 460 85 460 10.25 52,6006.0 468 304 545 45 47,600

600–650 5.0 460 139 460 19 49,4004.0 465 435 599 62 48,300

650–700 3.0 460 433 460 79.5 47,900Overall average = 46,518

Page 47: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 43

Fig. 2024-2 Stress rupture strengths of 2024-T851 plate at various temperatures. Stress versus temperature

Fig. 2024-3 Archival Larson-Miller parametric master curve for stress rupture strengths of 2024-T851. CLMP = 15.9

Page 48: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

44 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 2024-4 Stress rupture strengths of 2024-T851 plate at various temperatures following LMP analysis. Stress versus rupture time. Broken lines representextrapolations using Larson-Miller Parameter.

Page 49: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 45

Fig. 2024-5 Isostress plot of stress rupture strengths for 2024-T851 plate to determine Manson-Haferd constants. Ta = 45 °F; log ta = 10.3

Page 50: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

46 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 2024-6 Archival Manson-Haferd parametric master curve for stress rupture strengths of 2024-T851. Ta = 45; log ta = 10.3

Page 51: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 47

Fig.

202

4-7

Arc

hiva

l Dor

n-Sh

erby

par

amet

ric

mas

ter

curv

e fo

r st

ress

rup

ture

str

engt

hs o

f 202

4-T8

51 (Δ

H =

43,

300)

Page 52: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

48 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 2024-8 Archival extrapolations of stress rupture strength to 100,000 h for 2024-T851 based on the LMP, MHP, and DSP relationships

Fig. 2024-9 Larson-Miller parametric master curve for stress rupture strengths of 2024-T851 plate with varying CLMP

Page 53: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 49

Fig. 2024-10 Semi-log Larson-Miller parametric master curve for stress rupture strengths of 2024-T851 plate from archival data. CLMP = 18.4

Page 54: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

50 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Isostress calculations for 2219-T851 plate

Isostress, Temperature (T1) Temperature (T2) (T1 log t1) – CLMPksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP avg

18.0 450 910 430 2.623 2386.9 550 1010 10 1.000 1010.0 1376.9 100 13.814.0 450 910 7400 3.869 3520.8 550 1010 168 2.225 2247.3 1273.5 100 12.7

13.3

Table 2219-1 Stress rupture data for 2219-T851 plate with isostress calculations

Testtemperature Applied Rupture CLMP = 12.7 CLMP = 13.3 CLMP = 13.8

oF oR stress, ksi life (t), h log t C + log t T(C + log t) C + log t T(C + log t) C+log t T(C + log t)

450 910 30.0 0.95 –0.022 12.7 11,537 13.3 12,083 13.8 12,53826.0 9 0.954 13.7 12,425 14.3 12,971 14.8 13,42623.0 62 1.792 14.5 13,188 15.1 13,734 15.6 14,18918.0 430 2.623 15.3 13,944 15.9 14,490 16.4 14,94514.0 7400 3.869 16.6 15,078 17.2 15,624 17.7 16,079

550 1010 20.0 1.4 0.146 12.8 12,974 13.4 13,580 13.9 14,08518.0 10 1.000 13.7 13,837 14.3 14,443 14.8 14,94815.0 90 1.954 14.7 14,801 15.3 15,407 15.8 15,91214.0 168 2.225 14.9 15,074 15.5 15,680 16.0 16,18512.5 455 2.658 15.4 15,512 16.0 16,118 16.5 16,62310.0 1250 3.097 15.8 15,955 16.4 16,561 16.9 17,0667.5 5950 3.775 16.5 16,640 17.1 17,246 17.6 17,751

2219-T6, T851

Page 55: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 51

Test

tem

pera

ture

App

lied

stre

ss, k

siR

uptu

re li

fe (

t), h

log

tC

+ lo

g t

T(C

+ lo

g t)

C

+ lo

g t

T(C

+ lo

g t)

C

+ lo

g t

T(C

+ lo

g t)

°F

°R

212

672

50.0

0.1

–1.0

0019

.012

,768

23.7

15,9

2624

.016

,128

48.0

10.

000

20.0

13,4

4024

.716

,598

25.0

16,8

0046

.010

1.00

021

.014

,112

25.7

17,2

7026

.017

,472

44.0

100

2.00

022

.014

,784

26.7

17,9

4227

.018

,144

42.0

1000

3.00

023

.015

,456

27.7

18,6

1428

.018

,816

300

760

44.0

0.1

–1.0

0019

.014

,440

23.7

18,0

1224

.018

,240

40.0

10.

000

20.0

15,2

0024

.718

,772

25.0

19,0

0038

.010

1.00

021

.015

,960

25.7

19,5

3226

.019

,760

35.0

100

2.00

022

.016

,720

26.7

20,2

9227

.020

,520

32.0

1000

3.00

023

.017

,480

27.7

21,0

5228

.021

,280

400

860

35.0

0.1

–1.0

0019

.016

,340

23.7

20,3

8224

.020

,640

32.0

10.

000

20.0

17,2

0024

.721

,242

25.0

21,5

0028

.010

1.00

021

.018

,060

25.7

22,1

0226

.022

,360

25.0

100

2.00

022

.018

,920

26.7

22,9

6227

.023

,220

23.0

1000

3.00

023

.019

,780

27.7

23,8

2228

.024

,080

500

960

26.0

0.1

–1.0

0019

.018

,240

23.7

22,7

5224

.023

,040

23.0

10.

000

20.0

19,2

0024

.723

,712

25.0

24,0

0020

.010

1.00

021

.020

,160

25.7

24,6

7226

.024

,960

17.0

100

2.00

022

.021

,120

26.7

25,6

3227

.025

,920

14.0

1000

3.00

023

.022

,080

27.7

26,5

9228

.026

,880

600

1,06

018

.00.

1–1

.000

19.0

20,1

4023

.725

,122

24.0

25,4

4015

.01

0.00

020

.021

,200

24.7

26,1

8225

.026

,500

12.0

101.

000

21.0

22,2

6025

.727

,242

26.0

27,5

609.

010

02.

000

22.0

23,3

2026

.728

,302

27.0

28,6

206.

510

003.

000

23.0

24,3

8027

.729

,362

28.0

29,6

80

700

1,16

08.

50.

1–1

.000

19.0

22,0

4023

.727

,492

24.0

27,8

407.

01

0.00

020

.023

,200

24.7

28,6

5225

.029

,000

5.0

101.

000

21.0

24,3

6025

.729

,812

26.0

30,1

603.

410

02.

000

22.0

25,5

2026

.730

,972

27.0

31,3

202.

410

003.

000

23.0

26,6

8027

.732

,132

28.0

32,4

80

Forg

ings

age

d 14

h a

t 420

o F (

215

o C)

CL

MP

= 20

CL

MP

= 24

.7C

LM

P=

25

Tabl

e 22

19-2

Stre

ss r

uptu

re d

ata

for

2219

-T6

forg

ings

wit

h is

ostr

ess

calc

ulat

ions

and

ext

rapo

late

d st

ress

rup

ture

str

engt

hs

Page 56: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

52 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Isos

tres

s ca

lcul

atio

ns fo

r 22

19-T

851

plat

e

Isos

tres

sks

i

Tem

pera

ture

(T

1)

t 1, h

log

t 1T

1 lo

g t 1

Tem

pera

ture

(T

2)

t 2, h

log

t 2T

2 lo

g t 2

(T1 lo

g t 1)

(T2 lo

g t 2)

T2 –

T1

CL

MP

o Fo R

o Fo R

44.0

212

672

100

2.00

013

44.0

300

760

0.1

–1.0

00–7

60.0

2104

.088

23.9

35.0

300

760

100

2.00

015

20.0

400

860

0.1

–1.0

00–8

60.0

2380

.010

023

.832

.030

076

010

003.

000

2280

.040

086

01

0.00

00.

022

80.0

100

22.8

23.0

400

860

1000

3.00

025

80.0

500

960

10.

000

0.0

2580

.010

025

.814

.050

096

010

003.

000

2880

.060

010

603

0.47

750

5.6

2374

.410

023

.76.

560

010

6010

003.

000

3180

.070

011

602

0.30

134

9.2

2830

.810

028

.3O

vera

ll av

erag

e =

24.

7

Extr

apol

ated

long

-life

str

ess

rupt

ure

stre

ngth

s

Test

tem

pera

ture

Rup

ture

life

(t),

hlo

g t

Fro

m s

emilo

g pl

ots,

Fig

. 221

9-4

Fro

m C

arte

sian

plo

t, F

ig 2

219-

3

CL

MP

= 20

CL

MP

= 24

.7C

LM

P=

25

C+

log

tT

(C+

log

t)

Rup

ture

stre

ss, k

siC

+ lo

g t

T(C

+ lo

g t)

R

uptu

rest

ress

, ksi

C+

log

tT

(C+

log

t)

Rup

ture

stre

ss, k

sio F

o R21

267

210

,000

4.00

024

.016

,128

38.0

28.7

19,2

8639

.029

.019

,488

39.0

100,

000

5.00

025

.016

,800

35.0

29.7

19,9

5836

.030

.020

,160

36.8

300

760

10,0

004.

000

24.0

18,2

4027

.528

.721

,812

29.0

29.0

22,0

4029

.510

0,00

05.

000

25.0

19,0

0024

.029

.722

,572

26.5

30.0

22,8

0027

.040

086

010

,000

4.00

024

.020

,640

18.0

28.7

24,6

8220

.029

.024

,940

20.2

100,

000

5.00

025

.021

,500

15.0

29.7

25,5

4217

.530

.025

,800

17.5

500

960

10,0

004.

000

24.0

23,0

4010

.028

.727

,552

10.0

29.0

27,8

4011

.210

0,00

05.

000

25.0

24,0

007.

029

.728

,512

8.1

30.0

28,8

008.

560

010

6010

,000

4.00

024

.025

,440

3.9

28.7

30,4

224.

429

.030

,740

3.8

100,

000

5.00

025

.026

,500

2.9

29.7

31,4

823.

030

.031

,800

2.8

Page 57: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 53

Fig. 2219-1 Larson-Miller parametric master curve for stress rupture strengths of 2219-T851 plate from archival data. CLMP = 13.3

Page 58: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

54 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig

2219

-2Se

milo

g La

rson

-Mill

er p

aram

etri

c m

aste

r cu

rve

from

Gra

nta

MI:L

ab s

oftw

are

for

stre

ss r

uptu

re s

tren

gths

of 2

219-

T6 fo

rgin

gs. C

LMP

= 2

0

Page 59: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 55

Fig. 2219-3 Semi-log Larson-Miller parametric master curve for stress rupture strengths of 2219-T6 forgings from archival data. CLMP = 20 and 24.7

Fig. 2219-4 Cartesian Larson-Miller parametric master curve for stress rupture strengths of 2219-T6 forgings from archival data. CLMP = 25

Page 60: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

56 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 3003-1 Stress rupture data for 3003

Test Applied RuptureAlloy and temperature Testing stress, life (t), CLMP = 15.0 CLMP = 16.6 CLMP = 20.1

temper oF oR source ksi h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

3003-O 212 672 A 13.0 0.47 –0.328 14.7 9860 16.3 10,935 19.8 13,287212 672 A 12.0 3.6 0.556 15.6 10,454 17.2 11,529 20.7 13,881212 672 A 10.0 135 2.130 17.1 11,511 18.7 12,587 22.2 14,939212 672 A 9.0 730 2.863 17.9 12,004 19.5 13,079 23.0 15,431300 760 A 10.0 0.783 –0.106 14.9 11,319 16.5 12,535 20.0 15,195300 760 A 10.0 0.58 –0.237 14.8 11,220 16.4 12,436 19.9 15,096300 760 A 8.0 14.2 1.152 16.2 12,276 17.8 13,492 21.3 16,152300 760 A 7.5 27 1.431 16.4 12,488 18.0 13,704 21.5 16,364300 760 A 6.0 312 2.494 17.5 13,295 19.1 14,511 22.6 17,171300 760 A 6.0 634 2.802 17.8 13,530 19.4 14,746 22.9 17,406300 760 A 5.0 2180 3.338 18.3 13,937 19.9 15,153 23.4 17,813350 810 A 7.3 6 0.778 15.8 12,780 17.4 14,076 20.9 16,911400 860 A 7.5 0.15 –0.824 14.2 12,191 15.8 13,567 19.3 16,577400 860 A 6.5 1.05 0.021 15.0 12,918 16.6 14,294 20.1 17,304400 860 A 5.0 12.5 1.097 16.1 13,843 17.7 15,219 21.2 18,229400 860 A 5.0 13 1.114 16.1 13,858 17.7 15,234 21.2 18,244400 860 A 4.5 26 1.415 16.4 14,117 18.0 15,493 21.5 18,503400 860 A 4.5 40.8 1.611 16.6 14,285 18.2 15,661 21.7 18,671400 860 A 4.0 200 2.301 17.3 14,879 18.9 16,255 22.4 19,265400 860 A 3.4 764 2.883 17.9 15,379 19.5 16,755 23.0 19,765400 860 A 3.0 1877 3.273 18.3 15,715 19.9 17,091 23.4 20,101400 860 A 3.0 2310 3.364 18.4 15,793 20.0 17,169 23.5 20,179

15.0 0 16.6 0 20.1 0500 960 A 3.0 21.1 1.324 16.3 15,671 17.9 17,207 21.4 20,567500 960 A 2.0 1112 3.046 18.0 17,324 19.6 18,860 23.1 22,220

3003-H12 212 672 A 17.0 0.083 –1.081 13.9 9354 15.5 10,429 19.0 12,781212 672 B 17.0 1.45 0.161 15.2 10,188 16.8 11,263 20.3 13,615212 672 B 16.5 14.2 1.152 16.2 10,854 17.8 11,929 21.3 14,281212 672 B 16.0 67.2 1.827 16.8 11,308 18.4 12,383 21.9 14,735212 672 A 14.0 35.5 1.550 16.6 11,122 18.2 12,197 21.7 14,549212 672 A 13.0 322 2.508 17.5 11,765 19.1 12,841 22.6 15,193300 760 B 14.0 0.15 –0.824 14.2 10,774 15.8 11,990 19.3 14,650300 760 B 14.0 1.44 0.158 15.2 11,520 16.8 12,736 20.3 15,396300 760 A 13.0 27.7 1.442 16.4 12,496 18.0 13,712 21.5 16,372300 760 A 12.0 3.35 0.525 15.5 11,799 17.1 13,015 20.6 15,675300 760 A 12.0 3.75 0.574 15.6 11,836 17.2 13,052 20.7 15,712300 760 B 12.0 161 2.207 17.2 13,077 18.8 14,293 22.3 16,953300 760 B 11.5 946 2.976 18.0 13,662 19.6 14,878 23.1 17,538300 760 A 11.0 16 1.204 16.2 12,315 17.8 13,531 21.3 16,191300 760 A 10.5 34 1.531 16.5 12,564 18.1 13,780 21.6 16,440300 760 A 9.5 115 2.061 17.1 12,966 18.7 14,182 22.2 16,842300 760 A 9.0 235 2.371 17.4 13,202 19.0 14,418 22.5 17,078300 760 A 8.5 464 2.667 17.7 13,427 19.3 14,643 22.8 17,303300 760 A 8.0 1037 3.015 18.0 13,691 19.6 14,907 23.1 17,567300 760 A 8.0 849 2.929 17.9 13,626 19.5 14,842 23.0 17,502400 860 A 10.0 0.25 –0.602 14.4 12,382 16.0 13,758 19.5 16,768400 860 B 10.0 0.82 –0.086 14.9 12,826 16.5 14,202 20.0 17,212400 860 B 8.0 15.8 1.199 16.2 13,931 17.8 15,307 21.3 18,317400 860 B 7.5 8.5 0.929 15.9 13,699 17.5 15,075 21.0 18,085400 860 A 7.0 12 1.079 16.1 13,828 17.7 15,204 21.2 18,214400 860 A 7.0 20 1.301 16.3 14,019 17.9 15,395 21.4 18,405400 860 B 7.0 88.5 1.947 16.9 14,574 18.5 15,950 22.0 18,960400 860 A 6.5 54 1.732 16.7 14,390 18.3 15,766 21.8 18,776400 860 A 6.0 142 2.152 17.2 14,751 18.8 16,127 22.3 19,137400 860 B 6.0 624 2.795 17.8 15,304 19.4 16,680 22.9 19,690400 860 A 5.0 250 2.398 17.4 14,962 19.0 16,338 22.5 19,348400 860 A 5.0 504 2.702 17.7 15,224 19.3 16,600 22.8 19,610

3003-O, H12, H14, H18

(continued)

Page 61: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 57

Table 3003-1 (continued)Test Applied Rupture

Alloy and temperature Testing stress, life (t), CLMP = 15.0 CLMP = 16.6 CLMP = 20.1

temper oF oR source ksi h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

3003-H14 212 672 A 20.0 0.17 –0.770 14.2 9563 15.8 10,638 19.3 12,990212 672 A 17.0 18.8 1.274 16.3 10,936 17.9 12,011 21.4 14,363212 672 A 17.0 20 1.301 16.3 10,954 17.9 12,029 21.4 14,381212 672 A 17.0 234 2.369 17.4 11,672 19.0 12,747 22.5 15,099212 672 A 15.0 354 2.549 17.5 11,793 19.1 12,868 22.6 15,220

300 760 A 15.0 0.67 –0.174 14.8 11,268 16.4 12,484 19.9 15,144300 760 A 15.0 0.73 –0.137 14.9 11,296 16.5 12,512 20.0 15,172300 760 A 15.0 0.92 –0.036 15.0 11,373 16.6 12,589 20.1 15,249300 760 A 13.0 6.2 0.792 15.8 12,002 17.4 13,218 20.9 15,878300 760 A 13.0 12 1.079 16.1 12,220 17.7 13,436 21.2 16,096300 760 A 13.0 62 1.792 16.8 12,762 18.4 13,978 21.9 16,638300 760 A 11.0 74 1.869 16.9 12,820 18.5 14,036 22.0 16,696300 760 A 10.0 192 2.283 17.3 13,135 18.9 14,351 22.4 17,011300 760 A 10.0 208 2.318 17.3 13,162 18.9 14,378 22.4 17,038300 760 A 10.0 255 2.407 17.4 13,229 19.0 14,445 22.5 17,105

400 860 A 6.0 12.6 1.100 16.1 13,846 17.7 15,222 21.2 18,232400 860 A 6.0 51 1.708 16.7 14,369 18.3 15,745 21.8 18,755400 860 A 5.0 741 2.870 17.9 15,368 19.5 16,744 23.0 19,754

15.0 0 16.6 0 20.1 0500 960 A 4.0 17.25 1.237 16.2 15,588 17.8 17,124 21.3 20,484500 960 A 3.0 181 2.258 17.3 16,568 18.9 18,104 22.4 21,464

3003-H18 212 672 A 28.0 0.015 –1.824 13.2 8854 14.8 9929 18.3 12,281212 672 A 23.0 2.58 0.412 15.4 10,357 17.0 11,432 20.5 13,784212 672 A 23.0 12.4 1.093 16.1 10,814 17.7 11,890 21.2 14,242212 672 A 21.0 126 2.100 17.1 11,491 18.7 12,566 22.2 14,918212 672 A 21.0 159 2.201 17.2 11,559 18.8 12,634 22.3 14,986212 672 A 20.5 659 2.819 17.8 11,974 19.4 13,050 22.9 15,402212 672 A 20.0 339 2.530 17.5 11,780 19.1 12,855 22.6 15,207

300 760 B 23.0 0.06 –1.222 13.8 10,471 15.4 11,687 18.9 14,347300 760 B 22.0 0.185 –0.733 14.3 10,843 15.9 12,059 19.4 14,719300 760 A 20.0 0.9 –0.046 15.0 11,365 16.6 12,581 20.1 15,241300 760 A 19.0 2.35 0.371 15.4 11,682 17.0 12,898 20.5 15,558300 760 A 17.0 16.9 1.228 16.2 12,333 17.8 13,549 21.3 16,209300 760 B 16.0 6.1 0.785 15.8 11,997 17.4 13,213 20.9 15,873300 760 B 16.0 23.2 1.365 16.4 12,437 18.0 13,653 21.5 16,313300 760 A 16.0 62 1.792 16.8 12,762 18.4 13,978 21.9 16,638300 760 A 15.6 60.4 1.781 16.8 12,754 18.4 13,970 21.9 16,630300 760 A 15.0 14 1.146 16.1 12,271 17.7 13,487 21.2 16,147300 760 A 15.0 158 2.199 17.2 13,071 18.8 14,287 22.3 16,947300 760 A 14.0 591 2.772 17.8 13,507 19.4 14,723 22.9 17,383300 760 A 13.0 65 1.813 16.8 12,778 18.4 13,994 21.9 16,654300 760 A 13.0 100 2.000 17.0 12,920 18.6 14,136 22.1 16,796300 760 A 12.0 545 2.736 17.7 13,479 19.3 14,695 22.8 17,355300 760 A 11.0 454 2.657 17.7 13,419 19.3 14,635 22.8 17,295300 760 A 9.8 1390 3.143 18.1 13,789 19.7 15,005 23.2 17,665

400 860 A 13.0 0.5 –0.301 14.7 12,641 16.3 14,017 19.8 17,027400 860 A 10.0 6 0.778 15.8 13,569 17.4 14,945 20.9 17,955400 860 B 10.0 13 1.114 16.1 13,858 17.7 15,234 21.2 18,244400 860 A 9.0 8.5 0.929 15.9 13,699 17.5 15,075 21.0 18,085400 860 B 9.0 60.6 1.782 16.8 14,433 18.4 15,809 21.9 18,819400 860 A 8.5 16 1.204 16.2 13,935 17.8 15,311 21.3 18,321400 860 B 8.0 199 2.299 17.3 14,877 18.9 16,253 22.4 19,263400 860 A 7.5 35 1.544 16.5 14,228 18.1 15,604 21.6 18,614400 860 B 7.0 737 2.867 17.9 15,366 19.5 16,742 23.0 19,752400 860 A 6.5 110 2.041 17.0 14,655 18.6 16,031 22.1 19,041400 860 A 6.0 85 1.929 16.9 14,559 18.5 15,935 22.0 18,945400 860 A 6.0 328 2.516 17.5 15,064 19.1 16,440 22.6 19,450400 860 A 5.8 286 2.456 17.5 15,012 19.1 16,388 22.6 19,398400 860 A 5.2 863 2.936 17.9 15,425 19.5 16,801 23.0 19,811

Page 62: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

58 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 3003-2 Isostress calculations for 3003-O, H12, H14, and H18

Alloy andtemper

Isostress,ksi

Temperature (T1)t1, h log t1 T1 log t1

Temperature (T2)t2, h log t2 T2 log t2 (T1 log t1) – (T2 log t2) T2 – T1 CLMP CLMP avg°F °R °F °R

3003-O 10.0 212 672 135 2.130 1431.4 300 760 0.68 –0.168 –127.7 1559.0 88 17.79.0 212 672 730 2.863 1923.9 300 760 4 0.602 457.5 1466.4 88 16.77.5 300 760 27 1.431 1087.6 400 860 0.15 –0.824 –708.6 1796.2 100 18.05.0 300 760 2180 3.338 2536.9 400 860 12.8 1.106 951.2 1585.7 100 15.93.0 400 860 1877 3.273 2814.8 500 960 21.1 1.324 1271.0 1543.7 100 15.4 Average3.0 400 860 2310 3.364 2893.0 500 960 21.1 1.324 1271.0 1622.0 100 16.2 3003-O

16.63003-H12 14.0 212 672 35.5 1.550 1041.6 300 760 0.15 –0.824 –626.2 1667.8 88 19.0

14.0 212 672 35.5 1.550 1041.6 300 760 1.44 0.158 120.1 921.5 88 10.513.0 212 672 322 2.508 1685.4 300 760 27.7 1.442 1095.9 589.5 88 6.7 (a)10.0 300 760 70 1.845 1402.2 400 860 0.25 –0.602 –517.7 1919.9 100 19.210.0 300 760 70 1.845 1402.2 400 860 0.82 –0.086 –74.0 1476.2 100 14.88.0 300 760 1037 3.015 2291.4 400 860 12.8 1.106 951.2 1340.2 100 13.4 Average8.0 300 760 849 2.929 2226.0 400 860 12.8 1.106 951.2 1274.9 100 12.7 3003-H12

14.93003-H14 15.0 212 672 354 2.549 1712.9 300 760 0.77 –0.114 –86.6 1799.6 88 20.4 Average

5.0 400 860 741 2.549 2192.1 500 960 1.75 0.230 220.8 1971.3 100 19.7 3003-H1420.1

3003-H18 23.0 212 672 2.58 0.412 276.9 300 760 0.06 –1.222 –928.7 1205.6 88 13.723.0 212 672 12.4 1.093 734.5 300 760 0.68 –1.222 –928.7 1663.2 88 18.920.0 212 672 339 2.530 1700.2 300 760 0.68 0.900 0.0 1700.2 88 19.313.0 300 760 65 1.813 1377.9 400 860 0.5 –0.301 –258.9 1636.7 100 16.4 Average13.0 300 760 100 2.000 1520.0 400 860 0.82 –0.301 –258.9 1778.9 100 17.8 3003-H18

17.2Overall average = 16.6

(a) Omitted from calculations, appears to be outlier

Fig. 3003-1 Stress rupture strengths of 3003-O products at various temperatures. Stress versus rupture time

Table 3003-3 Effect of LMP constant value on long-time extrapolated stresses for 3003-O

CLMP = 16.0 CLMP = 17.51

log t C + log t T (C + log t)

Extrapolatedstress,

ksi C + log t T (C + log t)

Extrapolatedstress,

ksi°F °R yr h200 660 20 175,000 5.243 21.2 14,020 6.0 22.8 15,017 6.2

50 440,000 5.643 21.6 14,284 5.6 23.2 15,281 5.7250 710 20 175,000 5.243 21.2 15,083 4.5 22.6 16,077 4.8

50 440,000 5.643 21.6 15,367 4.2 23.0 16,361 4.5300 760 20 175,000 5.243 21.2 16,145 3.4 22.8 17,292 3.6

50 440,000 5.643 21.6 16,449 3.2 23.2 17,596 3.3350 810 20 175,000 5.243 21.2 17,207 2.6 22.8 18,430 2.7

50 440,000 5.643 21.6 17,531 2.4 23.2 18,754 2.5400 860 20 175,000 5.243 21.2 18,269 2.0 22.8 19,568 2.1

50 440,000 5.643 21.6 18,613 1.9 23.2 19,912 1.9Note: 175,000 h = ~20 yr; 440,000 h = ~50 yr

Temperature (T) Time (t)

Desired extrapolation

Page 63: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 59

Fig. 3003-2 Stress rupture strengths of 3003-O products at various temperatures. Stress versus temperature

Fig. 3003-3 Archival Larson-Miller parametric master curve for stress rupture strengths of 3003-O products. CLMP = 16.0

Page 64: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

60 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 3003-4 Archival Larson-Miller parametric master curve for stress rupture strengths of 3003-O products. CLMP = 17.51

0.01

0.1

1.0

101

102

103

104

105

-200 -100 0 100 200 300 400 500 600 700Temperature, °F

Rup

ture

tim

e, h

Rupturestress

2 ksi

346810 ksi

Fig. 3003-5 Time-temperature plot of stress rupture strengths for 3003-O products to determine Manson-Haferd constants

Page 65: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 61

Fig. 3003-6 Archival Manson-Haferd parameter master curve for stress rupture strengths of 3003-O products. TA = –230; log tA = 14

Fig. 3003-7 Archival Dorn-Sherby parametric master curve for stress rupture strengths of 3003-O products. ΔH= 35,000

Page 66: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

62 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 3003-8 Extrapolations of stress rupture strength to 100,000 h for 3003-O products based on the LMP, MHP, and DSP relationships

Fig. 3003-9 Archival Larson-Miller parametric master curve for stress rupture strengths of 3003-H12 rolled and drawn rod. CLMP = 19.1

Fig. 3003-10 Archival Larson-Miller parametric master curve for stress rupture strengths of 3003-H14 rolled and drawn rod. CLMP = 20.5

Page 67: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 63

Fig. 3003-11 Archival Larson-Miller parametric master curve for stress rupture strengths of 3003-H18 rolled and drawn rod. CLMP = 20.1

Fig. 3003-12 Larson-Miller parametric master curve for stress rupture strengths of 3003-O, 3003-H12, 3003-H14, and 3003-H18 rolled and drawn rod. CLMP =16.6

Page 68: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

64 / Parametric Analyses of High-Temperature Data for Aluminum Alloys30

04-O

,H32

,H34

,H38

Tabl

e 30

04-1

Str

ess

rupt

ure

data

for

3004

Allo

y an

d te

mpe

r°F

°RA

pplie

d st

ress

, ks

iR

uptu

re li

fe

(t),

hlo

g t

C+

log

tT

(C+

log

t)C

+ lo

g t

T(C

+ lo

g t)

C+

log

tT

(C+

log

t)

3004

-O30

076

020

.06.

330.

794

17.8

13,5

2320

.815

,803

24.8

18,8

4330

076

018

.011

72.

104

19.1

14,5

1922

.116

,799

26.1

19,8

3930

076

015

.087

32.

941

19.9

15,1

5522

.917

,435

26.9

20,4

7540

086

010

.016

1.20

418

.215

,655

21.2

18,2

3525

.221

,675

400

860

9.0

401.

602

18.6

15,9

9821

.618

,578

25.6

22,0

1840

086

08.

013

32.

124

19.1

16,4

4722

.119

,027

26.1

22,4

6740

086

07.

034

42.

537

19.5

16,8

0222

.519

,382

26.5

22,8

2240

086

06.

012

023.

080

20.1

17,2

6923

.119

,849

27.1

23,2

8950

096

05.

086

1.93

518

.918

,178

21.9

21,0

5825

.924

,898

3004

-H32

212

672

30.0

10.8

91.

039

18.0

12,1

2221

.014

,138

25.0

16,8

2621

267

228

.073

.61.

867

18.9

12,6

7921

.914

,695

25.9

17,3

8330

076

024

.02.

840.

453

17.5

13,2

6420

.515

,544

24.5

18,5

8430

076

022

.022

.41.

350

18.4

13,9

4621

.416

,226

25.4

19,2

6630

076

019

.510

02.

000

19.0

14,4

4022

.016

,720

26.0

19,7

6030

076

015

.033

42.

524

19.5

14,8

3822

.517

,118

26.5

20,1

5830

076

012

.010

563.

023

20.0

15,2

1723

.017

,497

27.0

20,5

3740

086

010

.025

.41.

405

18.4

15,8

2821

.418

,408

25.4

21,8

4840

086

09.

051

.91.

715

18.7

16,0

9521

.718

,675

25.7

22,1

1540

086

07.

040

5.5

2.60

819

.616

,863

22.6

19,4

4326

.622

,883

3004

-H14

300

760

22.5

19.5

1.29

018

.313

,900

21.3

16,1

8025

.319

,220

300

760

10.0

5024

3.70

120

.715

,733

23.7

18,0

1327

.721

,053

400

860

9.0

691.

839

18.8

16,2

0221

.818

,782

25.8

22,2

2240

086

08.

014

32.

155

19.2

16,4

7322

.219

,053

26.2

22,4

9340

086

07.

072

92.

863

19.9

17,0

8222

.919

,662

26.9

23,1

0230

04-H

3430

076

025

.04

0.60

217

.613

,378

20.6

15,6

5824

.618

,698

400

860

9.0

751.

875

18.9

16,2

3321

.918

,813

25.9

22,2

5340

086

08.

024

12.

382

19.4

16,6

6922

.419

,249

26.4

22,6

8940

086

07.

052

22.

718

19.7

16,9

5722

.719

,537

26.7

22,9

7730

04-H

1830

076

020

.010

52.

021

19.0

14,4

5622

.016

,736

26.0

19,7

7630

076

017

.025

02.

398

19.4

14,7

4222

.417

,022

26.4

20,0

6240

086

010

.022

1.34

218

.315

,774

21.3

18,3

5425

.321

,794

400

860

7.0

267

2.42

719

.416

,707

22.4

19,2

8726

.422

,727

500

1060

6.0

70.

845

17.8

18,9

1620

.822

,096

24.8

26,3

3650

010

605.

018

1.25

518

.319

,350

21.3

22,5

3025

.326

,770

500

1060

4.0

871.

940

18.9

20,0

7621

.923

,256

25.9

27,4

9630

04-H

3821

267

242

.55.

070.

705

17.7

11,8

9820

.713

,914

24.7

16,6

0221

267

239

.010

9.5

2.03

919

.012

,794

22.0

14,8

1026

.017

,498

212

672

36.0

472

2.67

419

.713

,221

22.7

15,2

3726

.717

,925

300

760

30.0

2.33

0.36

717

.413

,199

20.4

15,4

7924

.418

,519

300

760

25.0

28.5

1.45

518

.514

,026

21.5

16,3

0625

.519

,346

300

760

21.0

71.5

1.85

118

.914

,327

21.9

16,6

0725

.919

,647

300

760

20.0

81.0

1.90

818

.914

,370

21.9

16,6

5025

.919

,690

300

760

17.0

228

2.35

819

.414

,712

22.4

16,9

9226

.420

,032

300

760

15.0

291

2.46

419

.514

,793

22.5

17,0

7326

.520

,113

300

760

14.0

766

2.88

419

.915

,112

22.9

17,3

9226

.920

,432

400

860

12.0

6.85

0.83

617

.815

,339

20.8

17,9

1924

.821

,359

400

860

10.0

301.

477

18.5

15,8

9021

.518

,470

25.5

21,9

1040

086

09.

043

1.63

318

.616

,024

21.6

18,6

0425

.622

,044

400

860

8.0

591.

771

18.8

16,1

4321

.818

,723

25.8

22,1

6340

086

07.

019

22.

283

19.3

16,5

8322

.319

,163

26.3

22,6

0340

086

06.

047

52.

677

19.7

16,9

2222

.719

,502

26.7

22,9

42

(con

tinue

d)

CL

MP

= 17

.0Te

st t

empe

ratu

reC

LM

P=

20C

LM

P=

24

Page 69: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 65Ta

ble

3004

-1(c

onti

nued

)

Allo

y an

d te

mpe

r°F

°RA

pplie

d st

ress

, ks

iR

uptu

re li

fe

(t),

hlo

g t

C+

log

tT

(C+

log

t)C

+ lo

g t

T(C

+ lo

g t)

C+

log

tT

(C+

log

t)

3004

-H19

300

760

20.0

113

2.05

319

.114

,480

22.1

16,7

6026

.119

,800

300

760

15.0

422

2.62

519

.614

,915

22.6

17,1

9526

.620

,235

300

760

15.0

465

2.66

719

.714

,947

22.7

17,2

2726

.720

,267

300

760

15.0

499

2.69

819

.714

,970

22.7

17,2

5026

.720

,290

400

860

10.0

211.

322

18.3

15,7

5721

.318

,337

25.3

21,7

7740

086

06.

044

72.

650

19.7

16,8

9922

.719

,479

26.7

22,9

1930

04-H

3930

076

020

.098

1.99

119

.014

,433

22.0

16,7

1326

.019

,753

300

760

15.0

473

2.67

519

.714

,953

22.7

17,2

3326

.720

,273

400

860

10.0

211.

322

18.3

15,7

5721

.318

,337

25.3

21,7

7740

086

06.

040

02.

602

19.6

16,8

5822

.619

,438

26.6

22,8

78N

ote:

All

othe

r te

mpe

rs s

how

goo

d ag

reem

ent.

CL

MP

= 17

.0Te

st t

empe

ratu

reC

LM

P=

20C

LM

P=

24

Page 70: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

66 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 3004-1 Archival Larson-Miller parametric master curve for stress rupture strengths of 3004-O products. CLMP = 17.1

Fig. 3004-2 Archival Larson-Miller parametric master curve for stress rupture strengths of 3004-H32 products. CLMP = 23.2

Page 71: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 67

Fig. 3004-3 Archival Larson-Miller parametric master curve for stress rupture strengths of 3004-H38 products. CLMP = 24.1

Fig. 3004-4 Larson-Miller parametric master curve for stress rupture strengths of 3004-O, 3004-H32, and 3004-H38 products. CLMP = 20

Page 72: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

68 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 5050-1 Stress rupture data for 5050-O and isostress calculations

Test temperatureApplied stress,

ksiRupture life

(t), log t

CLMP = 18.5 CLMP = 19.0 CLMP = 19.8

oF oR C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

300 760 18.0 0.45 –0.347 18.2 13,796 18.7 14,176 19.5 14,78417.0 1.4 0.146 18.6 14,171 19.1 14,551 19.9 15,15916.0 4 0.602 19.1 14,518 19.6 14,898 20.4 15,50615.0 12 1.079 19.6 14,880 20.1 15,260 20.9 15,86814.0 32 1.505 20.0 15,204 20.5 15,584 21.3 16,19213.0 88 1.944 20.4 15,537 20.9 15,917 21.7 16,52512.0 280 2.447 20.9 15,920 21.4 16,300 22.2 16,90811.0 860 2.934 21.4 16,290 21.9 16,670 22.7 17,278

400 860 13.0 0.15 –0.824 17.7 15,201 18.2 15,631 19.0 16,31912.0 0.47 –0.328 18.2 15,628 18.7 16,058 19.5 16,74611.0 1.3 0.114 18.6 16,008 19.1 16,438 19.9 17,12610.0 3.2 0.505 19.0 16,344 19.5 16,774 20.3 17,4629.0 7 0.845 19.3 16,637 19.8 17,067 20.6 17,7558.0 16 1.204 19.7 16,945 20.2 17,375 21.0 18,0637.0 39 1.591 20.1 17,278 20.6 17,708 21.4 18,3966.0 110 2.141 20.6 17,751 21.1 18,181 21.9 18,8695.0 350 2.544 21.0 18,098 21.5 18,528 22.3 19,216

500 960 7.0 0.18 –0.745 17.8 17,045 18.3 17,525 19.1 18,2936.0 0.75 –0.125 18.4 17,640 18.9 18,120 19.7 18,8885.0 3.2 0.505 19.0 18,245 19.5 18,725 20.3 19,4934.0 13 1.114 19.6 18,829 20.1 19,309 20.9 20,077

600 1,060 5.0 0.038 –1.420 17.1 18,105 17.6 18,635 18.4 19,4834.0 0.23 –0.638 17.9 18,934 18.4 19,464 19.2 20,3123.0 1.8 0.255 18.8 19,880 19.3 20,410 20.1 21,258

Isostress calculation for 5050-O

Isostress,ksi

Temperature (T1)

t1, h log t1 T1 log t1

Temperature (T2)

t2 h log t2 T2 log t2

(T1 log t1) –(T2 log t2) T2 – T1 CLMP CLMP avgoF oR oF oR

13.0 300 760 88 1.944 1477.4 400 860 0.15 –0.824 –708.6 2186.1 100 21.912.0 300 760 280 2.447 1859.7 400 860 0.47 –0.328 –282.1 2141.8 100 21.411.0 300 760 860 2.934 2229.8 400 860 1.3 0.114 98.0 2131.8 100 21.37.0 400 860 39 1.591 1368.3 500 960 0.18 –0.745 –715.2 2083.5 100 20.86.0 400 860 110 2.141 1841.3 500 960 0.75 –0.125 –120.0 1961.3 100 19.65.0 400 860 350 2.544 2187.8 500 960 3.2 0.505 484.8 1703.0 100 17.05.0 400 860 350 2.544 2187.8 600 1060 0.038 –1.420 –1505.2 3693.0 200 18.55.0 500 960 3.2 0.505 484.8 600 1060 0.038 –1.420 –1505.2 1990.0 100 19.9 Average4.0 500 960 13 1.114 1069.4 600 1060 0.23 –0.638 –676.3 1745.7 100 17.5 5050-O

19.8

5050-O

Page 73: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 69

Fig. 5050-1 Archival Larson-Miller parametric master curve for stress rupture strengths of 5050-O products. CLMP = 19.0

Page 74: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

70 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

5052-O, H32, H34, H38, and H112

Table 5052-1 Stress rupture data for 5052-O, H34, H38, and H112

Test

Alloy and temperature Testing Applied Rupture CLMP = 16.0 CLMP = 17 CLMP = 18

temper oF oR source stress, ksi life (t), h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

5052-O 212 672 A 26.0 2.5 0.398 16.4 11,019 17.4 11,691 18.4 12,363212 672 A 20.0 312 2.494 18.5 12,428 19.5 13,100 20.5 13,772300 760 A 21.0 0.38 –0.430 15.6 11,833 16.6 12,593 17.6 13,353300 760 A 21.0 0.92 –0.041 16.0 12,129 17.0 12,889 18.0 13,649300 760 A 20.0 1.2 0.079 16.1 12,220 17.1 12,980 18.1 13,740300 760 A 19.0 3.3 0.519 16.5 12,554 17.5 13,314 18.5 14,074300 760 A 19.0 7.8 0.892 16.9 12,838 17.9 13,598 18.9 14,358300 760 A 18.0 9.1 0.959 17.0 12,889 18.0 13,649 19.0 14,409300 760 A 17.0 26 1.415 17.4 13,235 18.4 13,995 19.4 14,755300 760 A 16.0 65 1.813 17.8 13,538 18.8 14,298 19.8 15,058300 760 A 15.0 146 2.164 18.2 13,805 19.2 14,565 20.2 15,325300 760 A 15.0 178 2.255 18.3 13,874 19.3 14,634 20.3 15,394300 760 A 15.0 180 2.255 18.3 13,874 19.3 14,634 20.3 15,394300 760 A 14.0 380 2.580 18.6 14,121 19.6 14,881 20.6 15,641300 760 A 13.0 740 2.869 18.9 14,340 19.9 15,100 20.9 15,860300 760 A 13.0 742 2.870 18.9 14,341 19.9 15,101 20.9 15,861400 860 A 15.0 0.78 –0.108 15.9 13,667 16.9 14,527 17.9 15,387400 860 A 15.0 0.78 –0.108 15.9 13,667 16.9 14,527 17.9 15,387400 860 A 15.0 1 0.000 16.0 13,760 17.0 14,620 18.0 15,480400 860 A 14.0 2 0.301 16.3 14,019 17.3 14,879 18.3 15,739400 860 A 13.0 4.2 0.623 16.6 14,296 17.6 15,156 18.6 16,016400 860 A 12.0 8.6 0.934 16.9 14,563 17.9 15,423 18.9 16,283400 860 A 11.0 19 1.279 17.3 14,860 18.3 15,720 19.3 16,580400 860 A 10.0 18 1.255 17.3 14,839 18.3 15,699 19.3 16,559400 860 A 10.0 26 1.415 17.4 14,977 18.4 15,837 19.4 16,697400 860 A 10.0 42 1.623 17.6 15,156 18.6 16,016 19.6 16,876400 860 A 9.0 85 1.929 17.9 15,419 18.9 16,279 19.9 17,139400 860 A 8.0 62 1.792 17.8 15,301 18.8 16,161 19.8 17,021400 860 A 8.0 124 2.093 18.1 15,560 19.1 16,420 20.1 17,280400 860 A 8.0 190 2.279 18.3 15,720 19.3 16,580 20.3 17,440400 860 A 7.0 117 2.068 18.1 15,538 19.1 16,398 20.1 17,258400 860 A 7.0 440 2.643 18.6 16,033 19.6 16,893 20.6 17,753400 860 A 6.0 720 2.857 18.9 16,217 19.9 17,077 20.9 17,937400 860 A 6.0 1300 3.114 19.1 16,438 20.1 17,298 21.1 18,158400 860 A 5.0 7000 3.845 19.8 17,067 20.8 17,927 21.8 18,787500 960 A 10.0 0.63 –0.201 15.8 15,167 16.8 16,127 17.8 17,087500 960 A 10.0 0.63 –0.201 15.8 15,167 16.8 16,127 17.8 17,087500 960 A 9.0 0.45 –0.347 15.7 15,027 16.7 15,987 17.7 16,947500 960 A 9.0 1.1 0.041 16.0 15,399 17.0 16,359 18.0 17,319500 960 A 8.0 2 0.301 16.3 15,649 17.3 16,609 18.3 17,569500 960 A 7.0 3 0.477 16.5 15,818 17.5 16,778 18.5 17,738500 960 A 7.0 3.9 0.591 16.6 15,927 17.6 16,887 18.6 17,847500 960 A 6.0 8 0.903 16.9 16,227 17.9 17,187 18.9 18,147500 960 A 5.0 22 1.342 17.3 16,648 18.3 17,608 19.3 18,568500 960 A 4.0 100 2.000 18.0 17,280 19.0 18,240 20.0 19,200600 1060 A 4.0 5.5 0.740 16.7 17,744 17.7 18,804 18.7 19,864600 1060 A 3.0 30 1.477 17.5 18,526 18.5 19,586 19.5 20,646600 1060 A 2.0 450 2.653 18.7 19,772 19.7 20,832 20.7 21,892

5052-H32 212 672 B 28.0 70.2 1.846 17.8 11,993 18.8 12,665 19.8 13,337212 672 B 26.0 284 2.453 18.5 12,400 19.5 13,072 20.5 13,744212 672 B 25.0 527 2.722 18.7 12,581 19.7 13,253 20.7 13,925212 672 B 24.0 819 2.913 18.9 12,710 19.9 13,382 20.9 14,054212 672 A 20.0 548 2.739 18.7 12,593 19.7 13,265 20.7 13,937300 760 A 26.0 0.2 –0.691 15.3 11,635 16.3 12,395 17.3 13,155300 760 B 25.0 2.22 0.346 16.3 12,423 17.3 13,183 18.3 13,943300 760 A 21.0 7.5 0.875 16.9 12,825 17.9 13,585 18.9 14,345300 760 A 19.0 23.8 1.377 17.4 13,207 18.4 13,967 19.4 14,727300 760 B 18.0 70.9 1.851 17.9 13,567 18.9 14,327 19.9 15,087300 760 A 17.0 69 1.839 17.8 13,558 18.8 14,318 19.8 15,078300 760 B 15.0 270 2.431 18.4 14,008 19.4 14,768 20.4 15,528300 760 A 14.0 397 2.599 18.6 14,135 19.6 14,895 20.6 15,655300 760 B 12.5 839 2.924 18.9 14,382 19.9 15,142 20.9 15,902300 760 A 12.5 1190 3.076 19.1 14,498 20.1 15,258 21.1 16,018300 760 A 12.0 1646 3.216 19.2 14,604 20.2 15,364 21.2 16,124400 860 A 20.0 0.1 –1.000 15.0 12,900 16.0 13,760 17.0 14,620

(continued)

Page 75: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 71

Table 5052-1 (continued)

Test

Alloy and temperature Testing Applied Rupture CLMP = 16.0 CLMP = 17 CLMP = 18

temper oF oR source stress, ksi life (t), h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

400 860 B 15.0 2.28 0.358 16.4 14,068 17.4 14,928 18.4 15,788400 860 A 13.0 7 0.845 16.8 14,487 17.8 15,347 18.8 16,207400 860 A 11.0 24.8 1.394 17.4 14,959 18.4 15,819 19.4 16,679400 860 B 10.0 30 1.477 17.5 15,030 18.5 15,890 19.5 16,750400 860 A 10.0 40 1.602 17.6 15,138 18.6 15,998 19.6 16,858400 860 A 9.0 89.5 1.952 18.0 15,439 19.0 16,299 20.0 17,159400 860 A 8.0 215 2.332 18.3 15,766 19.3 16,626 20.3 17,486400 860 A 7.0 515 2.712 18.7 16,092 19.7 16,952 20.7 17,812

5052-H34 300 760 A 25.0 6.75 0.829 16.8 12,790 17.8 13,550 18.8 14,310300 760 A 20.0 67 1.826 17.8 13,548 18.8 14,308 19.8 15,068300 760 A 15.0 755 2.878 18.9 14,347 19.9 15,107 20.9 15,867400 860 A 18.0 0.633 –0.199 15.8 13,589 16.8 14,449 17.8 15,309400 860 A 10.0 46 1.663 17.7 15,190 18.7 16,050 19.7 16,910400 860 A 7.0 575 2.760 18.8 16,134 19.8 16,994 20.8 17,854600 1060 A 4.0 5.5 0.740 16.7 17,744 17.7 18,804 18.7 19,864600 1060 A 3.0 30 1.477 17.5 18,526 18.5 19,586 19.5 20,646600 1060 A 1.8 1040 3.017 19.0 20,158 20.0 21,218 21.0 22,278

5052-H38 212 672 B 35.0 9.61 0.983 17.0 11,413 18.0 12,085 19.0 12,757212 672 B 30.0 143 2.155 18.2 12,200 19.2 12,872 20.2 13,544212 672 B 28.0 452 2.655 18.7 12,536 19.7 13,208 20.7 13,880212 672 B 26.5 638 2.805 18.8 12,637 19.8 13,309 20.8 13,981300 760 A 30.0 0.52 –0.284 15.7 11,944 16.7 12,704 17.7 13,464300 760 A 30.0 1.88 0.274 16.3 12,368 17.3 13,128 18.3 13,888300 760 A 25.0 5.5 0.740 16.7 12,722 17.7 13,482 18.7 14,242300 760 B 23.0 13.8 1.140 17.1 13,026 18.1 13,786 19.1 14,546300 760 B 20.0 48 1.681 17.7 13,438 18.7 14,198 19.7 14,958300 760 A 20.0 52 1.716 17.7 13,464 18.7 14,224 19.7 14,984300 760 A 20.0 82.5 1.916 17.9 13,616 18.9 14,376 19.9 15,136300 760 B 18.0 102 2.009 18.0 13,687 19.0 14,447 20.0 15,207300 760 A 18.0 115 2.061 18.1 13,726 19.1 14,486 20.1 15,246300 760 A 16.0 306 2.487 18.5 14,050 19.5 14,810 20.5 15,570300 760 B 15.0 346 2.539 18.5 14,090 19.5 14,850 20.5 15,610300 760 A 15.0 543 2.734 18.7 14,238 19.7 14,998 20.7 15,758300 760 A 14.0 890 2.949 18.9 14,401 19.9 15,161 20.9 15,921300 760 B 13.0 875 2.942 18.9 14,396 19.9 15,156 20.9 15,916300 760 A 13.0 1656 3.216 19.2 14,604 20.2 15,364 21.2 16,124400 860 A 22.0 0.18 –0.745 15.3 13,119 16.3 13,979 17.3 14,839400 860 A 20.0 0.56 –0.252 15.7 13,543 16.7 14,403 17.7 15,263400 860 B 15.0 3.2 0.505 16.5 14,194 17.5 15,054 18.5 15,914400 860 A 15.0 4.6 0.663 16.7 14,330 17.7 15,190 18.7 16,050400 860 A 10.0 49 1.690 17.7 15,213 18.7 16,073 19.7 16,933400 860 A 9.5 94 1.973 18.0 15,457 19.0 16,317 20.0 17,177400 860 A 8.5 228 2.358 18.4 15,788 19.4 16,648 20.4 17,508400 860 A 8.1 265 2.432 18.4 15,852 19.4 16,712 20.4 17,572400 860 B 8.0 139 2.143 18.1 15,603 19.1 16,463 20.1 17,323400 860 B 7.0 236 2.373 18.4 15,801 19.4 16,661 20.4 17,521400 860 A 7.0 371 2.569 18.6 15,969 19.6 16,829 20.6 17,689

5052-H112 300 760 A 20.0 34 1.531 17.5 13,324 18.5 14,084 19.5 14,844300 760 A 18.0 300 2.477 18.5 14,043 19.5 14,803 20.5 15,563400 860 A 20.0 0.1 –1.000 15.0 12,900 16.0 13,760 17.0 14,620400 860 A 14.0 12.5 1.097 17.1 14,703 18.1 15,563 19.1 16,423400 860 A 10.0 102 2.009 18.0 15,488 19.0 16,348 20.0 17,208

Page 76: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

72 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 5052-2 Stress rupture data for 5052-H112 as-welded with 5052 filler wire

Testtemperature

Applied stress,ksi

Rupture life(t), h log t

CLMP = 16.0 CLMP = 17 CLMP = 18

°F °R C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

212 672 26.0 10 1.000 17.0 11,424 18.0 12,096 19.0 12,768300 760 24.0 0.15 –0.824 15.2 11,534 16.2 12,294 17.2 13,054

23.0 0.67 –0.174 15.8 12,028 16.8 12,788 17.8 13,54822.0 2.6 0.415 16.4 12,475 17.4 13,235 18.4 13,99521.0 9 0.954 17.0 12,885 18.0 13,645 19.0 14,40520.0 30 1.477 17.5 13,283 18.5 14,043 19.5 14,80319.0 78 1.892 17.9 13,598 18.9 14,358 19.9 15,11818.0 185 2.267 18.3 13,883 19.3 14,643 20.3 15,40317.0 370 2.568 18.6 14,112 19.6 14,872 20.6 15,63216.0 680 2.833 18.8 14,313 19.8 15,073 20.8 15,83315.0 1316 3.119 19.1 14,530 20.1 15,290 21.1 16,050

400 860 18.0 0.5 –0.301 15.7 13,501 16.7 14,361 17.7 15,22117.0 1.8 0.255 16.3 13,979 17.3 14,839 18.3 15,69916.0 4.8 0.681 16.7 14,346 17.7 15,206 18.7 16,06615.0 11.5 1.061 17.1 14,672 18.1 15,532 19.1 16,39214.0 21.5 1.332 17.3 14,906 18.3 15,766 19.3 16,62613.0 33 1.519 17.5 15,066 18.5 15,926 19.5 16,78612.0 49 1.690 17.7 15,213 18.7 16,073 19.7 16,93311.0 73 1.863 17.9 15,362 18.9 16,222 19.9 17,08210.0 130 2.114 18.1 15,578 19.1 16,438 20.1 17,2989.0 270 2.431 18.4 15,851 19.4 16,711 20.4 17,5718.0 730 2.863 18.9 16,222 19.9 17,082 20.9 17,9427.0 2145 3.231 19.2 16,539 20.2 17,399 21.2 18,2596.0 5600 3.748 19.7 16,983 20.7 17,843 21.7 18,7035.0 16,000 4.204 20.2 17,375 21.2 18,235 22.2 19,0954.5 27,640 4.442 20.4 17,580 21.4 18,440 22.4 19,300

500 960 5.0 193 2.286 18.3 17,555 19.3 18,515 20.3 19,4754.0 481 2.682 18.7 17,935 19.7 18,895 20.7 19,855

600 1060 4.0 11 1.041 17.0 18,063 18.0 19,123 19.0 20,1833.0 56 1.748 17.7 18,813 18.7 19,873 19.7 20,9332.0 370 2.568 18.6 19,682 19.6 20,742 20.6 21,802

700 1160 1.0 497 2.696 18.7 21,687 19.7 22,847 20.7 24,007

Page 77: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 73

Table 5052-3 Isostress calculations for 5052 and 5052 welded with 5052 filler alloy

Alloy and Isostress, Temperature (T1) Temperature (T2) (T1 log t1) – CLMPtemper ksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP avg

5052-O 15.0 300 760 168 2.225 1691.0 400 860 0.82 0.086 74.0 1617.0 100 16.214.0 300 760 380 2.580 1960.8 400 860 2 0.301 258.9 1701.9 100 17.013.0 300 760 741 2.870 2181.2 400 860 4.2 0.632 543.5 1637.7 100 16.410.0 400 860 29 0.845 726.7 500 960 0.63 –0.201 –193.0 919.7 100 9.29.0 400 860 85 1.079 927.9 500 960 0.45 –0.347 –333.1 1261.1 100 12.69.0 400 860 85 1.079 927.9 500 960 1.1 0.041 39.4 888.6 100 8.98.0 400 860 62 1.792 1541.1 500 960 2 0.301 289.0 1252.2 100 12.58.0 400 860 124 2.093 1800.0 500 960 2 0.301 289.0 1511.0 100 15.18.0 400 860 190 2.279 1959.9 500 960 2 0.301 289.0 1671.0 100 16.77.0 400 860 117 2.068 1778.5 500 960 3.45 0.538 516.5 1262.0 100 12.67.0 400 860 440 2.643 2273.0 500 960 0.7 0.538 516.5 1756.5 100 17.66.0 400 860 720 2.857 2457.0 500 960 8 0.903 866.9 1590.1 100 15.96.0 400 860 1300 3.114 2678.0 500 960 8 0.903 866.9 1811.2 100 18.15.0 400 860 7000 3.845 3306.7 500 960 22 1.342 1288.3 2018.4 100 20.24.0 400 860 100 2.000 1720.0 500 960 5.5 0.740 710.4 1009.6 100 10.1

15.6

5052-H32 26.0 212 672 284 2.453 1648.4 300 760 0.2 –0.691 –525.2 2173.6 88 24.725.0 212 672 819 2.913 1957.5 300 760 2 0.346 263.0 1694.6 88 19.315.0 300 760 270 2.431 1847.6 400 860 2.28 0.358 307.9 1539.7 100 15.412.0 300 760 1646 3.216 2444.2 400 860 16 1.204 1035.4 1408.7 100 14.1

18.4

5053-H38 30.0 212 672 143 2.155 1448.2 300 760 0.52 –0.284 –215.8 1664.0 88 18.930.0 212 672 143 2.155 1448.2 300 760 1.88 0.274 208.2 1239.9 88 14.120.0 300 760 50 1.700 1292.0 400 860 0.56 –0.252 –216.7 1508.7 100 15.120.0 300 760 82.5 1.916 1456.2 400 860 0.56 –0.252 –216.7 1672.9 100 16.715.0 300 760 346 2.539 1929.6 400 860 3.9 0.591 508.3 1421.4 100 14.215.0 300 760 543 2.734 2077.8 400 860 4.2 0.591 508.3 1569.6 100 15.7

15.8

5052-H112 18.0 300 760 185 2.267 1722.9 400 860 0.5 –0.301 –258.9 1981.8 100 19.8AW 5052 17.0 300 760 370 2.563 1947.9 400 860 1.8 0.255 219.3 1728.6 100 17.3

16.0 300 760 680 2.833 2153.1 400 860 4.8 0.681 585.7 1567.4 100 15.715.0 300 760 1316 3.119 2370.4 400 860 11.5 1.061 912.5 1458.0 100 14.65.0 400 860 16,000 4.204 3615.4 500 960 193 2.286 2194.6 1420.9 100 14.24.0 500 960 481 2.682 2574.7 600 1060 11 1.041 1103.5 1471.3 100 14.7

16.0Overall average = 16.1

Fig. 5052-1 Archival Larson-Miller parametric master curve for stress rupture strengths of 5052-O products. CLMP = 16.2

Page 78: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

74 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 5052-2 Archival Larson-Miller parametric master curve for stress rupture strengths of 5052-H32 products. CLMP = 19.3

Fig. 5052-3 Archival Larson-Miller parametric master curve for stress rupture strengths of 5052-H34 products. CLMP = 17.5

Page 79: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 75

Fig. 5052-4 Archival Larson-Miller parametric master curve for stress rupture strengths of 5052-H38 products. CLMP = 16.8

Fig. 5052-5 Comparison of Larson-Miller parametric master curves for stress rupture strengths of 5052-O, 5052-H32, 5052-H34, and 5052-H38 products.CLMP = 16.0

Page 80: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

76 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 5052-6 Archival Larson-Miller parametric master curve for stress rupture strengths of 5052 welds in 5052-H112 as-welded plate. CLMP = 14.0

Fig. 5052-7 Archival Larson-Miller parametric master curve for stress rupture strengths of 5052 welds in 5052-H112 as-welded plate. CLMP = 14.5

Page 81: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 77

Fig. 5052-8 Archival Larson-Miller parametric master curve for stress rupture strengths of 5052 welds in 5052-H112 as-welded plate. CLMP = 15.3

Fig. 5052-9 Comparison of Larson-Miller parametric master curves for stress rupture strengths of 5052 welds in 5052-H112 plate and of 5052 plate of vari-ous tempers. CLMP = 16

Page 82: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

78 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Test temperature

Applied stress, ksi Rupture life (t), h log t C + log t T(C + log t) C + log t T(C + log t) oF oR

150 610 42.0 3.8 0.580 15.5 9443 17.2 10,48041.0 7 0.845 15.7 9604 17.4 10,64140.0 14.5 1.161 16.1 9797 17.8 10,83439.0 27 1.431 16.3 9962 18.0 10,99938.0 51 1.708 16.6 10,131 18.3 11,16837.0 96 1.982 16.9 10,298 18.6 11,33536.0 180 2.255 17.2 10,465 18.9 11,50235.0 360 2.556 17.5 10,648 19.2 11,685

212 672 38.0 0.9 –0.046 14.9 9982 16.6 11,12437.0 1.4 0.146 15.0 10,111 16.7 11,25336.0 2.2 0.342 15.2 10,243 16.9 11,38535.0 4.1 0.613 15.5 10,425 17.2 11,56734.0 7.9 0.898 15.8 10,616 17.5 11,75933.0 16 1.204 16.1 10,822 17.8 11,96432.0 35 1.544 16.4 11,050 18.1 12,19331.0 76 1.881 16.8 11,277 18.5 12,41930.0 186.5 2.271 17.2 11,539 18.9 12,68129.0 450 2.653 17.6 11,796 19.3 12,93828.0 1118 3.048 17.9 12,061 19.6 13,203

250 710 35.0 0.45 –0.347 14.6 10,333 16.3 11,54034.0 0.75 –0.125 14.8 10,490 16.5 11,69733.0 1.4 0.146 15.0 10,683 16.7 11,89032.0 3 0.477 15.4 10,918 17.1 12,12531.0 6.5 0.813 15.7 11,156 17.4 12,36330.0 17.5 1.243 16.1 11,462 17.8 12,66929.0 48 1.681 16.6 11,773 18.3 12,98028.0 145 2.161 17.1 12,113 18.8 13,32027.0 360 2.556 17.5 12,394 19.2 13,60126.0 673 2.828 17.7 12,587 19.4 13,794

300 760 32.0 0.275 –0.561 14.3 10,898 16.0 12,19031.0 0.5 –0.301 14.6 11,095 16.3 12,38730.0 1.15 0.061 15.0 11,370 16.7 12,66229.0 3 0.477 15.4 11,687 17.1 12,97928.0 8 0.903 15.8 12,010 17.5 13,30227.0 22 1.342 16.2 12,344 17.9 13,63626.0 42.5 1.628 16.5 12,561 18.2 13,85325.0 71 1.851 16.8 12,731 18.5 14,02324.0 110 2.041 16.9 12,875 18.6 14,16723.0 160 2.204 17.1 12,999 18.8 14,29122.0 220 2.342 17.2 13,104 18.9 14,39621.0 301 2.479 17.4 13,208 19.1 14,500

350 810 29.0 0.25 –0.602 14.3 11,581 16.0 12,95828.0 0.5 –0.301 14.6 11,825 16.3 13,20227.0 1.1 0.041 14.9 12,102 16.6 13,47926.0 2.2 0.342 15.2 12,346 16.9 13,72325.0 4.5 0.653 15.6 12,598 17.3 13,97524.0 8 0.903 15.8 12,800 17.5 14,17723.0 13.5 1.130 16.0 12,984 17.7 14,36122.0 20 1.301 16.2 13,123 17.9 14,50021.0 28 1.447 16.3 13,241 18.0 14,61820.0 38 1.580 16.5 13,349 18.2 14,72619.0 52 1.716 16.6 13,459 18.3 14,83618.0 69.5 1.842 16.7 13,561 18.4 14,93817.0 95 1.978 16.9 13,671 18.6 15,04816.0 135 2.130 17.0 13,794 18.7 15,17115.0 201 2.303 17.2 13,934 18.9 15,311

400 860 26.0 0.192 –0.717 14.2 12,197 15.9 13,65925.0 0.45 –0.347 14.6 12,516 16.3 13,97824.0 0.78 –0.108 14.8 12,721 16.5 14,18323.0 1.25 0.097 15.0 12,897 16.7 14,35922.0 1.85 0.267 15.2 13,044 16.9 14,50621.0 2.8 0.447 15.3 13,198 17.0 14,66020.0 4.1 0.613 15.5 13,341 17.2 14,80319.0 5.9 0.771 15.7 13,477 17.4 14,93918.0 8.2 0.914 15.8 13,600 17.5 15,06217.0 12 1.079 16.0 13,742 17.7 15,20416.0 17 1.230 16.1 13,872 17.8 15,33415.0 25 1.398 16.3 14,016 18.0 15,478

5083-H321

CLMP = 14.9 CLMP = 16.6

Table 5083-1 Stress rupture data for 5083-H321 as welded with 5183 filler alloy

(continued)

Page 83: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 79

Test temperature

Applied stress, ksi Rupture life (t), h log t C + log t T(C + log t) C + log t T(C + log t)oF oR

14.0 36 1.556 16.5 14,152 18.2 15,61413.0 54 1.732 16.6 14,304 18.3 15,76612.0 81 1.908 16.8 14,455 18.5 15,91711.0 130 2.114 17.0 14,632 18.7 16,09410.0 215 2.332 17.2 14,820 18.9 16,282

Table 5083-1 (continued)

CLMP = 14.9 CLMP = 16.6

Page 84: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

80 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 5083-2 Isostress calculations for 5083-H321 as welded with 5183 filler alloy

Isostress, Temperature (T1) Temperature (T2) (T1 log t1) – CLMPksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP avg

38.0 150 610 51 1.708 1041.9 212 672 0.9 –0.046 –30.9 1072.8 62 17.337.0 150 610 96 1.982 1209.0 212 672 1.4 0.146 98.1 1110.9 62 17.936.0 150 610 180 2.255 1375.6 212 672 2.2 0.342 229.8 1145.7 62 18.535.0 150 610 360 2.556 1559.2 212 672 4.1 0.613 411.9 1147.2 62 18.535.0 150 610 360 2.556 1559.2 250 710 0.45 –0.347 –246.4 1805.5 100 18.135.0 212 672 4.1 0.613 411.9 250 710 0.45 –0.347 –246.4 658.3 38 17.334.0 212 672 7.9 0.898 603.5 250 710 0.75 –0.125 –88.8 692.2 38 18.233.0 212 672 16 1.204 809.1 250 710 1.4 0.146 103.7 705.4 38 18.632.0 212 672 35 1.544 1037.6 250 710 3 0.477 338.7 698.9 38 18.431.0 212 672 76 1.881 1264.0 250 710 6.5 0.813 577.2 686.8 38 18.130.0 212 672 186.5 2.271 1526.1 250 710 17.5 1.243 882.5 643.6 38 16.929.0 212 672 450 2.653 1782.8 250 710 48 1.681 1193.5 589.3 38 15.528.0 212 672 1118 3.048 2048.3 250 710 145 2.161 1534.3 513.9 38 13.532.0 212 672 35 1.544 1037.6 300 760 0.275 –0.561 –426.4 1463.9 88 16.631.0 212 672 76 1.881 1264.0 300 760 0.5 –0.301 –228.8 1492.8 88 17.030.0 212 672 186.5 2.271 1526.1 300 760 1.15 0.061 46.4 1479.8 88 16.829.0 212 672 450 2.653 1782.8 300 760 3 0.477 362.5 1420.3 88 16.128.0 212 672 1118 3.048 2048.3 300 760 8 0.903 686.3 1362.0 88 15.529.0 212 672 450 2.653 1782.8 350 810 0.25 –0.602 –487.6 2270.4 138 16.528.0 212 672 1118 3.048 2048.3 350 810 0.5 –0.301 –243.8 2292.1 138 16.632.0 250 710 3 0.477 338.7 300 760 0.275 –0.561 –426.4 765.0 50 15.331.0 250 710 6.5 0.813 577.2 300 760 0.5 –0.301 –228.8 806.0 50 16.130.0 250 710 17.5 1.243 882.5 300 760 1.15 0.061 46.4 836.2 50 16.729.0 250 710 48 1.681 1193.5 300 760 3 0.477 362.5 831.0 50 16.628.0 250 710 145 2.161 1534.3 300 760 8 0.903 686.3 848.0 50 17.027.0 250 710 360 2.556 1814.8 300 760 22 1.342 1019.9 794.8 50 15.926.0 250 710 673 2.828 2007.9 300 760 42.5 1.628 1237.3 770.6 50 15.429.0 250 710 48 1.681 1193.5 350 810 0.25 –0.602 –487.6 1681.1 100 16.828.0 250 710 145 2.161 1534.3 350 810 0.5 –0.301 –243.8 1778.1 100 17.827.0 250 710 360 2.556 1814.8 350 810 1.1 0.041 33.2 1781.6 100 17.826.0 250 710 673 2.828 2007.9 350 810 2.2 0.342 277.0 1730.9 100 17.326.0 250 710 673 2.828 2007.9 400 860 0.192 –0.717 –616.6 2624.5 150 17.529.0 300 760 3 0.477 362.5 350 810 0.25 –0.602 –487.6 850.1 50 17.028.0 300 760 8 0.903 686.3 350 810 0.5 –0.301 –243.8 930.1 50 18.627.0 300 760 22 1.342 1019.9 350 810 1.1 0.041 33.2 986.7 50 19.726.0 300 760 42.5 1.628 1237.3 350 810 2.2 0.342 277.0 960.3 50 19.225.0 300 760 71 1.851 1406.8 350 810 4.5 0.653 528.9 877.8 50 17.624.0 300 760 110 2.041 1551.2 350 810 8 0.903 731.4 819.7 50 16.423.0 300 760 160 2.204 1675.0 350 810 13.5 1.130 915.3 759.7 50 15.222.0 300 760 220 2.342 1779.9 350 810 20 1.301 1053.8 726.1 50 14.521.0 300 760 301 2.479 1884.0 350 810 28 1.447 1172.1 712.0 50 14.226.0 300 760 42.5 1.628 1237.3 400 860 0.192 –0.717 –616.6 1853.9 100 18.525.0 300 760 71 1.851 1406.8 400 860 0.45 –0.347 –298.4 1705.2 100 17.124.0 300 760 110 2.041 1551.2 400 860 0.78 –0.108 –92.9 1644.0 100 16.423.0 300 760 160 2.204 1675.0 400 860 1.25 0.097 83.4 1591.6 100 15.922.0 300 760 220 2.342 1779.9 400 860 1.85 0.267 229.6 1550.3 100 15.521.0 300 760 301 2.479 1884.0 400 860 2.8 0.447 384.4 1499.6 100 15.026.0 350 810 2.2 0.342 277.0 400 860 0.192 –0.717 –616.6 893.6 50 17.925.0 350 810 4.5 0.653 528.9 400 860 0.45 –0.347 –298.4 827.4 50 16.524.0 350 810 8 0.903 731.4 400 860 0.78 –0.108 –92.9 824.3 50 16.523.0 350 810 13.5 1.130 915.3 400 860 1.25 0.097 83.4 831.9 50 16.622.0 350 810 20 1.301 1053.8 400 860 1.85 0.267 229.6 824.2 50 16.521.0 350 810 28 1.447 1172.1 400 860 2.8 0.447 384.4 787.7 50 15.820.0 350 810 38 1.580 1279.8 400 860 4.1 0.613 527.2 752.6 50 15.119.0 350 810 52 1.716 1390.0 400 860 5.9 0.771 663.1 726.9 50 14.518.0 350 810 69.5 1.842 1492.0 400 860 8.2 0.914 786.0 706.0 50 14.117.0 350 810 95 1.978 1602.2 400 860 12 1.079 927.9 674.2 50 13.516.0 350 810 135 2.130 1725.3 400 860 17 1.230 1057.8 667.5 50 13.415.0 350 810 201 2.303 1865.4 400 860 25 1.398 1202.3 663.2 50 13.3

Overall average = 16.6

Page 85: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 81

Fig. 5083-2 Larson-Miller parametric master curve for stress rupture strengths of 5083-H321 plate welded with 5183 filler alloy. CLMP = 16.6

Fig. 5083-1 Archival Larson-Miller parametric master curve for stress rupture strengths of 5083-H321 plate welded with 5183 filler alloy. CLMP = 14.9

Page 86: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

82 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 5154-1 Stress rupture data for 5154-OTest Applied Rupture

temperature stress, life (t), CLMP = 14.5 CLMP = 15.5 CLMP = 16.5

°F °R ksi h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

212 672 34.0 0.04 –1.398 13.1 8805 14.1 9477 15.1 10,14933.0 0.26 –0.585 13.9 9351 14.9 10,023 15.9 10,69532.0 0.7 –0.155 14.3 9640 15.3 10,312 16.3 10,98431.0 1.4 0.146 14.6 9842 15.6 10,514 16.6 11,18630.0 2.9 0.462 15.0 10,054 16.0 10,726 17.0 11,39829.0 5.4 0.732 15.2 10,236 16.2 10,908 17.2 11,58028.0 10 1.000 15.5 10,416 16.5 11,088 17.5 11,76027.0 18 1.255 15.8 10,587 16.8 11,259 17.8 11,93126.0 35 1.544 16.0 10,782 17.0 11,454 18.0 12,12625.0 67 1.826 16.3 10,971 17.3 11,643 18.3 12,31524.0 130 2.114 16.6 11,165 17.6 11,837 18.6 12,50923.0 240 2.380 16.9 11,343 17.9 12,015 18.9 12,68722.0 430 2.633 17.1 11,513 18.1 12,185 19.1 12,85721.0 790 2.898 17.4 11,691 18.4 12,363 19.4 13,035

300 760 28.0 0.046 –1.337 13.2 10,004 14.2 10,764 15.2 11,52427.0 0.15 –0.824 13.7 10,394 14.7 11,154 15.7 11,91426.0 0.35 –0.456 14.0 10,673 15.0 11,433 16.0 12,19325.0 0.73 –0.137 14.4 10,916 15.4 11,676 16.4 12,43624.0 1.4 0.146 14.6 11,131 15.6 11,891 16.6 12,65123.0 2.7 0.431 14.9 11,348 15.9 12,108 16.9 12,86822.0 4.9 0.690 15.2 11,544 16.2 12,304 17.2 13,06421.0 9.1 0.959 15.5 11,749 16.5 12,509 17.5 13,26920.0 19 1.279 15.8 11,992 16.8 12,752 17.8 13,51219.0 37 1.568 16.1 12,212 17.1 12,972 18.1 13,73218.0 70 1.845 16.3 12,422 17.3 13,182 18.3 13,94217.0 140 2.146 16.6 12,651 17.6 13,411 18.6 14,17116.0 270 2.431 16.9 12,868 17.9 13,628 18.9 14,38815.0 550 2.740 17.2 13,102 18.2 13,862 19.2 14,622

400 860 21.0 0.046 –1.336 13.2 11,321 14.2 12,181 15.2 13,04120.0 0.13 –0.886 13.6 11,708 14.6 12,568 15.6 13,42819.0 0.3 –0.523 14.0 12,020 15.0 12,880 16.0 13,74018.0 0.58 –0.237 14.3 12,266 15.3 13,126 16.3 13,98617.0 1.1 0.041 14.5 12,505 15.5 13,365 16.5 14,22516.0 2 0.301 14.8 12,729 15.8 13,589 16.8 14,44915.0 3.8 0.580 15.1 12,969 16.1 13,829 17.1 14,68914.0 7 0.845 15.3 13,197 16.3 14,057 17.3 14,91713.0 12 1.079 15.6 13,398 16.6 14,258 17.6 15,11812.0 21 1.322 15.8 13,607 16.8 14,467 17.8 15,32711.0 40 1.602 16.1 13,848 17.1 14,708 18.1 15,56810.0 74 1.869 16.4 14,077 17.4 14,937 18.4 15,7979.0 150 2.176 16.7 14,341 17.7 15,201 18.7 16,0618.0 270 2.431 16.9 14,561 17.9 15,421 18.9 16,2817.0 530 2.724 17.2 14,813 18.2 15,673 19.2 16,5336.0 1100 3.041 17.5 15,085 18.5 15,945 19.5 16,805

500 960 14.0 0.11 –0.959 13.5 12,999 14.5 13,959 15.5 14,91913.0 0.2 –0.698 13.8 13,250 14.8 14,210 15.8 15,17012.0 0.37 –0.432 14.1 13,505 15.1 14,465 16.1 15,42511.0 0.7 –0.155 14.3 13,771 15.3 14,731 16.3 15,69110.0 1.3 0.114 14.6 14,029 15.6 14,989 16.6 15,9499.0 2 0.301 14.8 14,209 15.8 15,169 16.8 16,1298.0 3.6 0.556 15.1 14,454 16.1 15,414 17.1 16,3747.0 6.5 0.813 15.3 14,700 16.3 15,660 17.3 16,6206.0 13 1.114 15.6 14,989 16.6 15,949 17.6 16,9095.0 35 1.544 16.0 15,402 17.0 16,362 18.0 17,3224.0 170 2.230 16.7 16,061 17.7 17,021 18.7 17,981

600 1060 5.0 1.8 0.255 14.8 15,640 15.8 16,700 16.8 17,7604.0 6 0.778 15.3 16,195 16.3 17,255 17.3 18,3153.0 25 1.398 15.9 16,852 16.9 17,912 17.9 18,9722.0 200 2.301 16.8 17,809 17.8 18,869 18.8 19,929

5154-O

Page 87: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 83

Table 5154-2 Isostress calculations for 5154-O

Isostress, Temperature (T1) Temperature (T2) (T1 log t1) – ksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP

27.0 212 672 18 1.255 843.4 300 760 0.15 –0.824 –626.2 1469.6 88 16.726.0 212 672 35 1.544 1037.6 300 760 0.35 –0.456 –346.6 1384.1 88 15.725.0 212 672 67 1.826 1227.1 300 760 0.73 –0.137 –104.1 1331.2 88 15.124.0 212 672 130 2.114 1420.6 300 760 1.4 0.146 111.0 1309.6 88 14.923.0 212 672 240 2.380 1599.4 300 760 2.7 0.431 327.6 1271.8 88 14.522.0 212 672 430 2.633 1769.4 300 760 4.9 0.690 524.4 1245.0 88 14.121.0 212 672 790 2.898 1947.5 300 760 9.1 0.959 728.8 1218.6 88 13.821.0 300 760 9.1 0.959 728.8 400 860 0.046 –1.336 –1149.0 1877.8 100 18.820.0 300 760 19 1.279 972.0 400 860 0.13 –0.886 –762.0 1734.0 100 17.319.0 300 760 37 1.568 1191.7 400 860 0.3 –0.523 –449.8 1641.5 100 16.418.0 300 760 70 1.845 1402.2 400 860 0.58 –0.237 –203.8 1606.0 100 16.117.0 300 760 140 2.146 1631.0 400 860 1.1 0.041 35.3 1595.7 100 16.016.0 300 760 270 2.431 1847.6 400 860 2 0.301 258.9 1588.7 100 15.915.0 300 760 550 2.740 2082.4 400 860 3.8 0.580 498.8 1583.6 100 15.814.0 400 860 7 0.845 726.7 500 960 0.11 –0.959 –920.6 1647.3 100 16.513.0 400 860 12 1.079 927.9 500 960 0.2 –0.698 –670.1 1598.0 100 16.012.0 400 860 21 1.322 1136.9 500 960 0.37 –0.432 –414.7 1551.6 100 15.511.0 400 860 40 1.602 1377.7 500 960 0.7 –0.155 –148.8 1526.5 100 15.310.0 400 860 74 1.869 1607.3 500 960 1.3 0.114 109.4 1497.9 100 15.09.0 400 860 150 2.176 1871.4 500 960 2 0.301 289.0 1582.4 100 15.88.0 400 860 270 2.431 2090.7 500 960 3.6 0.556 533.8 1556.9 100 15.67.0 400 860 530 2.724 2342.6 500 960 6.5 0.813 780.5 1562.2 100 15.66.0 400 860 1100 3.041 2615.3 500 960 13 1.114 1069.4 1545.8 100 15.55.0 500 960 35 1.544 1482.2 600 1060 1.8 0.255 270.3 1211.9 100 12.14.0 500 960 170 2.230 2140.8 600 1060 6 0.778 824.7 1316.1 100 13.2

Overall average = 15.5

Fig. 5154-1 Archival Larson-Miller parametric master curve for stress rupture strengths of 5154-O products. CLMP = 15.0

Page 88: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

84 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 5454-1 Archival isostress calculations for CLMP for stress rupture strengths of 5454-O plate

Isostress, Temperature (T1) Temperature (T2) (T1 log t1) –ksi oF oR t1, h log t1 T1 log t1

oF oR t2,h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP

20.0 212 672 1560 3.193 2145.7 300 760 15.5 1.190 904.4 1241.3 88 14.119.0 212 672 2700 3.431 2305.6 300 760 25.7 1.410 1071.6 1234.0 88 14.017.0 212 672 11,010 4.042 2716.2 300 760 81 1.908 1450.1 1266.1 88 14.415.0 300 760 275 2.439 1853.6 400 860 2.8 0.447 384.4 1469.2 100 14.711.0 300 760 3800 3.580 2720.8 400 860 32 1.505 1294.3 1426.5 100 14.38.0 400 860 250 2.398 2062.3 500 960 7 0.845 811.2 1251.1 100 12.56.0 400 860 1094 3.039 2613.5 500 960 35 1.554 1491.8 1121.7 100 11.25.0 400 860 2770 3.442 2960.1 500 960 89 1.949 1871.0 1089.1 100 10.94.0 400 860 12,850 4.109 3533.7 500 960 239 2.378 2282.9 1250.9 100 12.56.0 400 860 1094 3.039 2613.5 600 1060 1.1 0.041 43.5 2570.1 200 12.94.0 400 860 12,850 4.109 3533.7 600 1060 8.5 0.829 878.7 2655.0 200 13.36.0 500 960 35 1.554 1491.8 600 1060 1.1 0.041 43.5 1448.4 100 14.54.0 500 960 239 2.378 2282.9 600 1060 8.5 0.929 984.7 1298.1 100 13.03.0 500 960 1812 3.258 3127.7 600 1060 35 1.554 1647.2 1480.4 100 14.8

Overall average = 13.4

Table 5454-2 Archival calculations of activation energy forDorn-Sherby parameter for stress rupture strengths of 5454-O plate

Temperature Activationcombination, Isostress, energy,°F ksi T1,°R t1,h T2,°R t2, h ΔH

212–300 20.0 672 1560 760 15.5 29,60019.0 672 2700 760 25.7 29,80017.0 672 11,010 760 81 31,500

300–400 15.0 760 275 860 2.8 33,800300–350 11.0 760 3800 860 32 35,200400–500 8.0 860 250 960 7 33,300

6.0 860 1094 960 35 31,1005.0 860 2770 960 89 31,1004.0 860 12,850 960 239 36,000

400–600 6.0 860 1094 960 1.1 34,3004.0 860 12,850 960 8.5 36,400

500–600 6.0 960 35 1060 1.1 38,2004.0 960 239 1060 8.5 36,8003.0 960 1812 1060 35 43,600

Overall average = 34,336

5454-O, H32, H34

Page 89: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 85

Tabl

e 54

54-3

Eff

ect

of lo

t-to

-lot

var

iati

ons

on L

MP

extr

apol

ated

str

esse

sD

esir

ed e

xtra

pola

tion

R&

D r

od;

Fig

. 545

4-7

3/4

in. p

late

; L

ot 1

; F

ig. 5

454-

83/

4 in

. pla

te;

Lot

2;

Fig

. 545

4-9

Com

posi

te;

Fig

. 545

4-10

Ext

rapo

late

dE

xtra

pola

ted

Ext

rapo

late

dE

xtra

pola

ted

Tem

pera

ture

(T

)C

LM

P=

13.9

54st

ress

,C

LM

P=

15.7

51st

ress

,C

LM

P=

17.5

54st

ress

,C

LM

P=

15.3

75st

ress

,°F

°Rt,

hlo

g t

C+

log

tT

(C+

log

t)ks

iC

+ lo

g t

T(C

+ lo

g t)

ksi

C+

log

tT

(C+

log

t)ks

iC

+ lo

g t

T(C

+ lo

g t)

ksi

212

672

10,0

004.

000

17.9

5412

,065

17.0

19.7

5113

,273

19.5

21.5

5414

,484

19.0

19.3

7513

,020

18.6

100,

000

5.00

018

.954

12,7

3714

.020

.751

13,9

4516

.022

.554

15,1

5616

.020

.375

13,6

9215

.530

076

010

,000

4.00

017

.954

13,6

459.

819

.751

15,0

1111

.521

.554

16,3

8111

.819

.375

14,7

2511

.010

0,00

05.

000

18.9

5414

,405

7.2

20.7

5115

,771

9.0

22.5

5417

,141

8.2

20.3

7515

,485

8.0

350

810

10,0

004.

000

17.9

5414

,543

7.0

19.7

5115

,998

8.1

21.5

5417

,459

7.1

19.3

7515

,694

7.3

100,

000

5.00

018

.954

15,3

534.

620

.751

16,8

085.

622

.554

18,2

694.

020

.375

16,5

045.

040

086

010

,000

4.00

017

.954

15,4

404.

519

.751

16,9

865.

221

.554

18,5

36(b

)19

.375

16,6

634.

810

0,00

05.

000

18.9

5416

,300

3.0

20.7

5117

,846

3.7(

a)22

.554

19,3

96(b

)20

.375

17,5

233.

645

091

010

,000

4.00

017

.954

16,3

383.

019

.751

17,9

733.

621

.554

19,6

14(b

)19

.375

17,6

313.

610

0,00

05.

000

18.9

5417

,248

2.5(

a)20

.751

18,8

83(b

)22

.554

20,5

24(b

)20

.375

18,5

412.

8

(a)

Thi

s va

lue

is a

n ex

trap

olat

ion

of th

e m

aste

r cu

rve.

(b)

Ext

rapo

latio

n is

not

just

ified

.

Page 90: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

86 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 5454-4 Stress rupture strengths of 5454-O products at various temperatures with LMP calculationsTemperature (T) Stress,

CLMP = 13.9 CLMP = 14.3 CLMP = 15.375 CLMP = 17.5

°F °R ksi t, h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

200 660 27.5 166 2.220 16.1 10,639 16.5 10,903 17.6 11,613 19.7 13,01525 432 2.634 16.5 10,912 16.9 11,176 18.0 11,886 20.1 13,28825 441 2.643 16.5 10,918 16.9 11,182 18.0 11,892 20.1 13,29422.5 1516 3.181 17.1 11,273 17.5 11,537 18.6 12,247 20.7 13,64920 10,069 4.027 17.9 11,832 18.3 12,096 19.4 12,805 21.5 14,20817 31,940 + 4.504 18.4 12,147 18.8 12,411 19.9 13,120 22.0 14,523

212 672 30 15.5 1.190 15.1 10,140 15.5 10,409 16.6 11,132 18.7 12,56025 223 2.348 16.2 10,919 16.6 11,187 17.7 11,910 19.8 13,338

250 710 25 22 1.342 15.2 10,822 15.6 11,106 16.7 11,869 18.8 13,37825 21 1.301 15.2 10,793 15.6 11,077 16.7 11,840 18.8 13,34922.5 98 1.991 15.9 11,283 16.3 11,567 17.4 12,330 19.5 13,83920 461 2.464 16.4 11,618 16.8 11,902 17.8 12,666 20.0 14,17417 1082 3.034 16.9 12,023 17.3 12,307 18.4 13,070 20.5 14,579

300 760 25 1.25 0.097 14.0 10,638 14.4 10,942 15.5 11,759 17.6 13,37420 25 1.398 15.3 11,626 15.7 11,930 16.8 12,747 18.9 14,36220 32.5 1.512 15.4 11,713 15.8 12,017 16.9 12,834 19.0 14,44917 179 2.253 16.2 12,276 16.6 12,580 17.6 13,397 19.8 15,01217 159 2.201 16.1 12,237 16.5 12,541 17.6 13,358 19.7 14,97314 1021 3.009 16.9 12,851 17.3 13,155 18.4 13,972 20.5 15,58714 955 2.980 16.9 12,829 17.3 13,133 18.4 13,950 20.5 15,56511 4443 3.648 17.5 13,336 17.9 13,640 19.0 14,457 21.1 16,0729 24,163 4.383 18.3 13,895 18.7 14,199 19.8 15,016 21.9 16,6317.4 31,800 + 4.502 18.4 13,986 18.8 14,290 19.9 15,107 22.0 16,722

350 810 17 13 1.114 15.0 12,161 15.4 12,485 16.5 13,356 18.6 15,07717 12.2 1.086 15.0 12,139 15.4 12,463 16.5 13,333 18.6 15,05516 28.1 1.449 15.3 12,433 15.7 12,757 16.8 13,627 18.9 15,34916 27 1.431 15.3 12,418 15.7 12,742 16.8 13,613 18.9 15,33414 64 1.806 15.7 12,722 16.1 13,046 17.2 13,917 19.3 15,63814 75 1.875 15.8 12,778 16.2 13,102 17.3 13,973 19.4 15,69414 106 2.025 15.9 12,899 16.3 13,223 17.4 14,094 19.5 15,81511 484 2.685 16.6 13,434 17.0 13,758 18.1 14,629 20.2 16,35011 510 2.708 16.6 13,452 17.0 13,776 18.1 14,647 20.2 16,36811 360 2.556 16.5 13,329 16.9 13,653 17.9 14,524 20.1 16,24511 391 2.592 16.5 13,359 16.9 13,683 18.0 14,553 20.1 16,27511 435 2.638 16.5 13,396 16.9 13,720 18.0 14,591 20.1 16,3129 1580 3.199 17.1 13,850 17.5 14,174 18.6 15,045 20.7 16,7666.5 10,674 4.028 17.9 14,522 18.3 14,846 19.4 15,716 21.5 17,4385.1 36,000 + 4.556 18.5 14,949 18.9 15,273 19.9 16,144 22.1 17,865

375 835 9 476 2.678 16.6 13,843 17.0 14,177 18.1 15,074 20.2 16,849400 860 11 53 1.724 15.6 13,437 16.0 13,781 17.1 14,705 19.2 16,533

11 47 1.672 15.6 13,392 16.0 13,736 17.0 14,660 19.2 16,48810.2 95 1.978 15.9 13,655 16.3 13,999 17.4 14,924 19.5 16,7519 158 2.199 16.1 13,845 16.5 14,189 17.6 15,114 19.7 16,9419 188 2.274 16.2 13,910 16.6 14,254 17.6 15,178 19.8 17,0069 170 2.230 16.1 13,872 16.5 14,216 17.6 15,140 19.7 16,9689 198 2.297 16.2 13,929 16.6 14,273 17.7 15,198 19.8 17,0259 132 2.121 16.0 13,778 16.4 14,122 17.5 15,047 19.6 16,8749 150 2.176 16.1 13,825 16.5 14,169 17.6 15,094 19.7 16,9219 164 2.215 16.1 13,859 16.5 14,203 17.6 15,127 19.7 16,9557 711 2.852 16.8 14,407 17.2 14,751 18.2 15,675 20.4 17,5036 1911 3.281 17.2 14,776 17.6 15,120 18.7 16,044 20.8 17,8724.5 11,394 4.057 18.0 15,443 18.4 15,787 19.4 16,712 21.6 18,5393.6 36,200 + 4.559 18.5 15,875 18.9 16,219 19.9 17,143 22.1 18,971

450 910 9 22.5 1.352 15.3 13,879 15.7 14,243 16.7 15,222 18.9 17,155

(continued)

Page 91: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 87

Table 5454-4 (continued)Temperature (T ) Stress, CLMP = 13.9 CLMP = 14.3 CLMP = 15.375 CLMP = 17.5

°F °R ksi t, h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

9 37 1.568 15.5 14,076 15.9 14,440 16.9 15,418 19.1 17,3527 101 2.004 15.9 14,473 16.3 14,837 17.4 15,815 19.5 17,7497 87 1.940 15.8 14,414 16.2 14,778 17.3 15,757 19.4 17,6907 91 1.959 15.9 14,432 16.3 14,796 17.3 15,774 19.5 17,7087 107 2.029 15.9 14,495 16.3 14,859 17.4 15,838 19.5 17,7714 3547 3.550 17.5 15,880 17.9 16,244 18.9 17,222 21.1 19,156

500 960 7 19.5 1.290 15.2 14,582 15.6 14,966 16.7 15,998 18.8 18,0387 19 1.279 15.2 14,572 15.6 14,956 16.7 15,988 18.8 18,0285 114 2.057 16.0 15,319 16.4 15,703 17.4 16,735 19.6 18,7755 97 1.987 15.9 15,252 16.3 15,636 17.4 16,668 19.5 18,7085 128 2.107 16.0 15,367 16.4 15,751 17.5 16,783 19.6 18,8234.5 217 2.336 16.2 15,587 16.6 15,971 17.7 17,003 19.8 19,0434 381 2.581 16.5 15,822 16.9 16,206 18.0 17,238 20.1 19,2784 351 2.545 16.4 15,787 16.8 16,171 17.9 17,203 20.0 19,2433.75 626 2.797 16.7 16,029 17.1 16,413 18.2 17,445 20.3 19,4853.5 1155 3.062 17.0 16,284 17.4 16,668 18.4 17,700 20.6 19,7403 3020 3.480 17.4 16,685 17.8 17,069 18.9 18,101 21.0 20,1412.35 19,985 4.301 18.2 17,473 18.6 17,857 19.7 18,889 21.8 20,929

550 1,010 4 70 1.845 15.7 15,902 16.1 16,306 17.2 17,392 19.3 19,5384 68 1.833 15.7 15,890 16.1 16,294 17.2 17,380 19.3 19,526

17.5600 1,060 5 4.2 0.623 14.5 15,394 14.9 15,818 16.0 16,958 18.1 19,210

4 11.5 1.061 15.0 15,859 15.4 16,283 16.4 17,422 18.6 19,6754 13 1.114 15.0 15,915 15.4 16,339 16.5 17,478 18.6 19,7313 74 1.869 15.8 16,715 16.2 17,139 17.2 18,279 19.4 20,5313 80 1.903 15.8 16,751 16.2 17,175 17.3 18,315 19.4 20,5672.5 213 2.328 16.2 17,202 16.6 17,626 17.7 18,765 19.8 21,0182 754 2.877 16.8 17,784 17.2 18,208 18.3 19,347 20.4 21,6002 841 2.925 16.8 17,835 17.2 18,259 18.3 19,398 20.4 21,651

13.9700 1,160 2 32.5 1.512 15.4 17,878 15.8 18,342 16.9 19,589 19.0 22,054

Page 92: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

88 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 5454-5 Stress rupture strengths of 5454-H34 plate at various temperaturesTemperature (T ) Stress, CLMP = 13.9 CLMP = 14.3 CLMP = 15.375 CLMP = 17.5

°F °R ksi t, h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

200 660 35 80 1.903 15.8 10,430 16.2 10,694 17.3 11,403 19.4 12,80631 622 2.794 16.7 11,018 17.1 11,282 18.2 11,992 20.3 13,39431 457 2.660 16.6 10,930 17.0 11,194 18.0 11,903 20.2 13,30629 1332 3.124 17.0 11,236 17.4 11,500 18.5 12,209 20.6 13,61227 2100 3.322 17.2 11,367 17.6 11,631 18.7 12,340 20.8 13,74322 14,313 4.156 18.1 11,917 18.5 12,181 19.5 12,890 21.7 14,29320 30,950 4.491 18.4 12,138 18.8 12,402 19.9 13,112 22.0 14,514

212 672 31 189 2.276 16.2 10,870 16.6 11,139 17.7 11,861 19.8 13,289250 710 27 106 2.025 15.9 11,307 16.3 11,591 17.4 12,354 19.5 13,863

27 90 1.954 15.9 11,256 16.3 11,540 17.3 12,304 19.5 13,81222 748 2.874 16.8 11,910 17.2 12,194 18.2 12,957 20.4 14,46622 807 2.907 16.8 11,933 17.2 12,217 18.3 12,980 20.4 14,48921 1185 3.074 17.0 12,052 17.4 12,336 18.4 13,099 20.6 14,608

275 735 22 185 2.267 16.2 11,883 16.6 12,177 17.6 12,967 19.8 14,529300 760 27 6.6 0.820 14.7 11,187 15.1 11,491 16.2 12,308 18.3 13,923

22 46 1.663 15.6 11,828 16.0 12,132 17.0 12,949 19.2 14,56422 56 1.748 15.6 11,892 16.0 12,196 17.1 13,013 19.2 14,62822 39 1.591 15.5 11,773 15.9 12,077 17.0 12,894 19.1 14,50920 101 2.004 15.9 12,087 16.3 12,391 17.4 13,208 19.5 14,82320 101 2.004 15.9 12,087 16.3 12,391 17.4 13,208 19.5 14,82317 347 2.540 16.4 12,494 16.8 12,798 17.9 13,615 20.0 15,23017 367 2.565 16.5 12,513 16.9 12,817 17.9 13,634 20.1 15,24917 364 2.561 16.5 12,510 16.9 12,814 17.9 13,631 20.1 15,24614 1799 3.255 17.2 13,038 17.6 13,342 18.6 14,159 20.8 15,77410 21,266 4.328 18.2 13,853 18.6 14,157 19.7 14,974 21.8 16,589

350 810 20 6.2 0.792 14.7 11,901 15.1 12,225 16.2 13,095 18.3 14,81717 25 1.398 15.3 12,391 15.7 12,715 16.8 13,586 18.9 15,30717 26 1.415 15.3 12,405 15.7 12,729 16.8 13,600 18.9 15,32117 28 1.447 15.3 12,431 15.7 12,755 16.8 13,626 18.9 15,34717 31 1.491 15.4 12,467 15.8 12,791 16.9 13,661 19.0 15,38314 148 2.170 16.1 13,017 16.5 13,341 17.5 14,211 19.7 15,93314 116 2.064 16.0 12,931 16.4 13,255 17.4 14,126 19.6 15,84714 102 2.009 15.9 12,886 16.3 13,210 17.4 14,081 19.5 15,80214 105 2.021 15.9 12,896 16.3 13,220 17.4 14,091 19.5 15,81214 141 2.149 16.0 13,000 16.4 13,324 17.5 14,194 19.6 15,91614 121 2.083 16.0 12,946 16.4 13,270 17.5 14,141 19.6 15,86214 102 2.009 15.9 12,886 16.3 13,210 17.4 14,081 19.5 15,80214 94 1.973 15.9 12,857 16.3 13,181 17.3 14,052 19.5 15,77314 123 2.090 16.0 12,952 16.4 13,276 17.5 14,147 19.6 15,86811 514 2.710 16.6 13,454 17.0 13,778 18.1 14,649 20.2 16,3709 2092 3.320 17.2 13,948 17.6 14,272 18.7 15,143 20.8 16,864

400 860 14 12 1.079 15.0 12,882 15.4 13,226 16.5 14,150 18.6 15,97811 68 1.833 15.7 13,530 16.1 13,874 17.2 14,799 19.3 16,6269 218 2.338 16.2 13,965 16.6 14,309 17.7 15,233 19.8 17,0619 177 2.248 16.1 13,887 16.5 14,231 17.6 15,156 19.7 16,9837 1102 3.042 16.9 14,570 17.3 14,914 18.4 15,839 20.5 17,666

450 910 7 137 2.137 16.0 14,594 16.4 14,958 17.5 15,936 19.6 17,8707 137 2.137 16.0 14,594 16.4 14,958 17.5 15,936 19.6 17,8704 5374 3.730 17.6 16,043 18.0 16,407 19.1 17,386 21.2 19,319

500 960 7 30 1.477 15.4 14,762 15.8 15,146 16.9 16,178 19.0 18,2184 463 2.666 16.6 15,903 17.0 16,287 18.0 17,319 20.2 19,359

550 1010 4 117 2.068 16.0 16,128 16.4 16,532 17.4 17,617 19.6 19,764600 1060 2.5 188 2.274 16.2 17,144 16.6 17,568 17.6 18,708 19.8 20,960

Page 93: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 89

Comparison of long-life stress rupture strengths with extrapolations

Actual test results CLMP = 13.5 CLMP = 13.9; Fig. 5454-13 CLMP = 14.3; Fig. 5454-2

Actual rupture Extrapolated Extrapolated ExtrapolatedTemperature (T1) Test stress, time, (t), stress, stress, stress,

°F °R ksi h log t C + log t T(C + log t) ksi C + log t T(C + log t) ksi C + log t T(C + log t) ksi

200 672 20.0 10,069 4.027 17.5 11,778 16.8 17.9 12,047 17.5 18.3 12,316 17.517.0 31,940(a) 4.504 18.0 12,099 16.0(a) 18.4 12,367 16.5(a) 18.8 12,636 16.5(a)

300 760 9.0 24,163 4.383 17.9 13,591 8.5 18.3 13,895 8.5 18.7 14,199 9.07.4 31,800(a) 4.502 18.0 13,682 7.5(a) 18.4 13,986 5.0(a) 18.8 14,290 8.0(a)

350 810 6.5 10,674 4.028 17.5 14,198 7.0 17.9 14,522 6.5 18.3 14,846 6.55.1 36,000(a) 4.556 18.1 14,625 5.0(a) 18.5 14,949 5.1(a) 18.9 15,273 5.0(a)

400 860 4.5 11,394 4.057 17.6 15,099 4.7 18.0 15,443 4.5 18.4 15,787 4.53.6 36,200(a) 4.559 18.1 15,531 3.8(a) 18.5 15,875 3.5(a) 18.9 16,219 3.5(a)

500 960 2.4 19,985 4.301 17.8 17,089 2.2 18.2 17,473 2.5 18.6 17,857 2.0

(a) Test was discontinued at this time.

Table 5454-6 Comparison of actual long-time test results with extrapolated values for 5454-O plate based on short-life data (<10,000 h)

Isostress calculations for stress rupture strengths of 5454-O plate from short-life data (<10,000 h)

Isotress, Temperature (T1) Temperature (T2) (T1 log t1) –ksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP

25.0 200 660 436 2.638 1741.1 250 710 21.5 1.322 938.6 802.5 50 16.025.0 250 710 21.5 1.322 938.6 300 760 1.25 0.097 73.7 864.9 50 17.320.0 250 710 461 2.464 1749.4 300 760 28.8 1.450 1102.0 647.4 50 12.917.0 250 710 1082 3.034 2154.1 300 760 169 2.226 1691.8 462.4 50 9.217.0 300 760 169 2.226 1691.8 350 810 12.6 1.100 891.0 800.8 50 16.014.0 300 760 988 2.995 2276.2 350 810 81.6 1.902 1540.6 735.6 50 14.711.0 300 760 4443 3.648 2772.5 350 810 436 2.638 2136.8 635.7 50 12.711.0 350 810 436 2.638 2136.8 400 860 50 1.699 1461.1 675.6 50 13.59.0 350 810 1580 3.199 2591.2 400 860 166 2.220 1909.2 682.0 50 13.69.0 400 860 166 2.220 1909.2 450 910 30 1.477 1344.1 565.1 50 11.37.0 400 860 711 2.852 2452.7 450 910 95 1.978 1800.0 652.7 50 13.17.0 450 910 95 1.978 1800.0 500 960 19.2 1.284 1232.6 567.3 50 11.34.0 450 910 3547 3.550 3230.5 500 960 366 2.563 2460.5 770.0 50 15.44.0 500 960 366 2.563 2460.5 550 1010 69 1.839 1857.4 603.1 50 12.15.0 500 960 112.5 2.088 2004.5 600 1060 4.2 0.623 660.4 1344.1 100 13.44.0 500 960 366 2.563 2460.5 600 1060 12.2 1.086 1151.2 1309.3 100 13.13.0 500 960 3020 3.480 3340.8 600 1060 77 1.886 1999.2 1341.6 100 13.4

2.0 600 1060 798 2.902 3076.1 700 1160 32.5 1.512 1753.9 1322.2 100 13.2Average 5454-O = 13.5

Page 94: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

90 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 5454-7 Stress rupture strengths of 5454-H32 plate welded with 5554 filler alloy at various temperaturesTemperature (T) Stress, CLMP = 13.9 CLMP = 14.3 CLMP = 15.375 CLMP = 17.5

°F °R ksi t, h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

212 672 29.0 9.5 0.978 14.9 9998 15.3 10,267 16.4 10,989 18.5 12,41728.0 18 1.255 15.2 10,184 15.6 10,453 16.6 11,175 18.8 12,60327.0 35 1.544 15.4 10,378 15.8 10,647 16.9 11,370 19.0 12,79826.0 63 1.789 15.7 10,543 16.1 10,812 17.2 11,534 19.3 12,96225.0 120 2.081 16.0 10,739 16.4 11,008 17.5 11,730 19.6 13,158

300 760 24.0 1 0.000 13.9 10,564 14.3 10,868 15.4 11,685 17.5 13,30023.0 2.2 0.342 14.2 10,824 14.6 11,128 15.7 11,945 17.8 13,56022.0 4.7 0.672 14.6 11,075 15.0 11,379 16.0 12,196 18.2 13,81121.0 9.9 0.996 14.9 11,321 15.3 11,625 16.4 12,442 18.5 14,05720.0 22 1.342 15.2 11,584 15.6 11,888 16.7 12,705 18.8 14,32019.0 45 1.653 15.6 11,820 16.0 12,124 17.0 12,941 19.2 14,55618.0 90 1.954 15.9 12,049 16.3 12,353 17.3 13,170 19.5 14,78517.0 180 2.255 16.2 12,278 16.6 12,582 17.6 13,399 19.8 15,01416.0 340 2.531 16.4 12,488 16.8 12,792 17.9 13,609 20.0 15,22415.0 685 2.836 16.7 12,719 17.1 13,023 18.2 13,840 20.3 15,455

400 860 15.0 2.6 0.415 14.3 12,311 14.7 12,655 15.8 13,579 17.9 15,40714.0 4 0.602 14.5 12,472 14.9 12,816 16.0 13,740 18.1 15,56813.0 6.4 0.806 14.7 12,647 15.1 12,991 16.2 13,916 18.3 15,74312.0 11 1.041 14.9 12,849 15.3 13,193 16.4 14,118 18.5 15,94511.0 20 1.301 15.2 13,073 15.6 13,417 16.7 14,341 18.8 16,16910.0 40 1.602 15.5 13,332 15.9 13,676 17.0 14,600 19.1 16,4289.0 80 1.903 15.8 13,591 16.2 13,935 17.3 14,859 19.4 16,6878.0 175 2.243 16.1 13,883 16.5 14,227 17.6 15,151 19.7 16,9797.0 400 2.602 16.5 14,192 16.9 14,536 18.0 15,460 20.1 17,288

500 960 7.0 4.5 0.653 14.6 13,971 15.0 14,355 16.0 15,387 18.2 17,4276.0 11 1.041 14.9 14,343 15.3 14,727 16.4 15,759 18.5 17,7995.0 42 1.623 15.5 14,902 15.9 15,286 17.0 16,318 19.1 18,3584.0 197 2.294 16.2 15,546 16.6 15,930 17.7 16,962 19.8 19,0023.0 1364 3.135 17.0 16,354 17.4 16,738 18.5 17,770 20.6 19,810

600 1060 5.0 2 0.301 14.2 15,053 14.6 15,477 15.7 16,617 17.8 18,8694.0 6.6 0.820 14.7 15,603 15.1 16,027 16.2 17,167 18.3 19,4193.0 34 1.531 15.4 16,357 15.8 16,781 16.9 17,920 19.0 20,1732.0 306 2.486 16.4 17,369 16.8 17,793 17.9 18,933 20.0 21,185

700 1160 2.5 3.2 0.505 14.4 16,710 14.8 17,174 15.9 18,421 18.0 20,8862.0 22 1.342 15.2 17,681 15.6 18,145 16.7 19,392 18.8 21,8571.1 780 2.892 16.8 19,479 17.2 19,943 18.3 21,190 20.4 23,655

Page 95: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 91

Table 5454-8 Isostress calculations for 5454 plate and 5554 welds in 5454 plate

Isostress, Temperature (T1) Temperature (T2) (T1 log t1) – CLMPProduct ksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP avg

5454-O 25.0 200 660 436 2.638 1741.1 250 710 21.5 1.322 938.6 802.5 50 16.020.0 200 660 10,069 4.027 2657.8 250 710 461 2.464 1749.4 908.4 50 18.225.0 250 710 21.5 1.322 938.6 300 760 1.25 0.097 73.7 864.9 50 17.320.0 250 710 461 2.464 1749.4 300 760 28.8 1.450 1102.0 647.4 50 12.917.0 250 710 1082 3.034 2154.1 300 760 169 2.226 1691.8 462.4 50 9.217.0 300 760 169 2.226 1691.8 350 810 12.6 1.100 891.0 800.8 50 16.014.0 300 760 988 2.995 2276.2 350 810 81.6 1.902 1540.6 735.6 50 14.711.0 300 760 4443 3.648 2772.5 350 810 436 2.638 2136.8 635.7 50 12.79.0 300 760 24,163 4.383 3331.1 350 810 1,580 3.199 2591.2 739.9 50 14.8

11.0 350 810 436 2.638 2136.8 400 860 50 1.699 1461.1 675.6 50 13.59.0 350 810 1580 3.199 2591.2 400 860 166 2.220 1909.2 682.0 50 13.69.0 400 860 166 2.220 1909.2 450 910 30 1.477 1344.1 565.1 50 11.37.0 400 860 711 2.852 2452.7 450 910 95 1.978 1800.0 652.7 50 13.17.0 450 910 95 1.978 1800.0 500 960 19.2 1.284 1232.6 567.3 50 11.34.0 450 910 3547 3.550 3230.5 500 960 366 2.563 2460.5 770.0 50 15.44.0 500 960 366 2.563 2460.5 550 1010 69 1.839 1857.4 603.1 50 12.15.0 500 960 112.5 2.088 2004.5 600 1060 4.2 0.623 660.4 1344.1 100 13.44.0 500 960 366 2.563 2460.5 600 1060 12.2 1.086 1151.2 1309.3 100 13.13.0 500 960 3020 3.480 3340.8 600 1060 77 1.886 1999.2 1341.6 100 13.4

Avg2.0 600 1060 798 2.902 3076.1 700 1160 32.5 1.512 1753.9 1322.2 100 13.2 5454-O

13.85454-H34 27.0 200 660 2100 3.322 2192.5 250 710 98 1.991 1413.6 778.9 50 15.6

22.0 200 660 14,313 4.156 2743.0 250 710 778 2.891 2052.6 690.3 50 13.827.0 250 710 98 1.991 1413.6 300 760 6.6 0.820 623.2 790.4 50 15.822.0 250 710 778 2.891 2052.6 300 760 58.5 1.767 1342.9 709.7 50 14.220.0 300 760 101 2.004 1523.0 350 810 6.2 0.792 641.5 881.5 50 17.617.0 300 760 359 2.555 1941.8 350 810 27.5 1.439 1165.6 776.2 50 15.514.0 300 760 1799 3.255 2473.8 350 810 117 2.068 1675.1 798.7 50 16.014.0 350 810 117 2.068 1675.1 400 860 12 1.079 927.9 747.1 50 14.911.0 350 810 514 2.710 2195.1 400 860 47 1.672 1437.9 757.2 50 15.19.0 350 810 2092 3.320 2689.2 400 860 202 2.305 1982.3 706.9 50 14.17.0 400 860 1102 3.042 2616.1 450 910 137 2.137 1944.7 671.5 50 13.47.0 400 860 1102 3.042 2616.1 500 960 30 1.477 1417.9 1198.2 100 12.04.0 450 910 5374 3.730 3394.3 500 960 463 2.666 2559.4 834.9 50 16.74.0 450 910 5374 3.730 3394.3 550 1010 117 2.068 2088.7 1305.6 100 13.1 Avg4.0 500 960 463 2.666 2559.4 550 1010 117 2.068 2088.7 470.7 50 9.4 5454-H34

15.55454-H32 24.0 212 672 225 3.348 2249.9 300 760 1 0.000 0.0 2249.9 88 25.6AW 5554

15.0 300 760 685 2.836 2155.4 400 860 2.6 0.415 356.9 1798.5 100 18.07.0 400 860 400 2.602 2237.7 500 960 4.5 0.653 626.9 1610.8 100 16.15.0 500 960 42 1.623 1558.1 600 1060 2 0.301 319.1 1239.0 100 12.44.0 500 960 197 2.294 2202.2 600 1060 6.6 0.820 869.2 1333.0 100 13.33.0 500 960 1364 3.135 3009.6 600 1060 34 1.531 1622.9 1386.7 100 13.9

Average2.0 600 1060 306 2.486 2635.2 700 1160 3.2 0.505 585.8 2049.4 100 20.5 5554 weld

17.1Average all = 14.9

Page 96: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

92 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 5454-1 Stress rupture strengths of 5454-O products at various temperatures. Stress versus rupture time

Page 97: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 93

Fig. 5454-2 Archival Larson-Miller parametric master curve for stress rupture strengths of 5454-O products. CLMP = 14.3

Page 98: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

94 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 5454-3 Stress rupture strengths of 5454-O products at various temperatures. Stress versus rupture time. Following LMP analysis. Broken lines representextrapolations using Larson-Miller Parameter

Fig. 5454-4 Time-temperature plot of stress rupture strengths for 5454-O products to determine Manson-Haferd constants. TA = –161 °F; log tA = 11.25

Page 99: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 95

Fig. 5454-5 Archival Manson-Haferd parametric master curve for stress rupture strengths of 5454-O products. TA = –161 °F; log tA = 11.25

Page 100: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

96 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 5454-6 Archival Dorn-Sherby parametric master curve for stress rupture strengths of 5454-O products. ΔH = 31,400

Page 101: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 97

Fig. 5454-7 Archival Larson-Miller parametric master curve for stress rupture strengths of 5454-O rolled and drawn rod. CLMP = 13.954

Fig. 5454-8 Archival Larson-Miller parametric master curve for stress rupture strengths of 5454-O plate, Lot 1. CLMP = 15.751

Page 102: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

98 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 5454-9 Archival Larson-Miller parametric master curve for stress rupture strengths of 5454-O plate, Lot 2. CLMP = 17.554

Fig. 5454-10 Archival Larson-Miller parametric master curve for stress rupture strengths of 5454-O products. CLMP = 15.375

Page 103: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 99

Fig. 5454-11 Archival Larson-Miller parametric master curve for strength at minimum creep rate of 5454-O plate, Lot B. CLMP = 17.595

Fig. 5454-12 Archival Larson-Miller parametric master curve for strength at minimum creep rate of 5454-O products, Lot B. CLMP = 15.735

Page 104: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

100 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 5454-13 Larson-Miller parametric master curve for stress rupture strengths of 5454-O plate with various values of CLMP

Fig. 5454-14 Archival Larson-Miller parametric master curve for stress rupture strengths of 5454-H32 products. CLMP = 15.5

Page 105: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 101

Fig. 5454-15 Archival Larson-Miller parametric master curve for stress rupture strengths of 5454-H32 products. CLMP = 17.06

Fig. 5454-16 Archival Larson-Miller parametric master curve for stress rupture strengths of 5454-H32 plate. CLMP = 16.3

Page 106: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

102 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 5454-17 Archival Larson-Miller parametric master curve for stress rupture strengths of 5454-H34 products. CLMP = 14.3

Page 107: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 103

Fig. 5454-18 Archival Larson-Miller parametric master curve for stress rupture strengths of 5454-H34 rolled and drawn rod. CLMP = 17.0

Fig. 5454-19 Archival Larson-Miller parametric master curve for stress rupture strengths of 5454-H32 plate as-welded with 5554 filler alloy. CLMP = 15.2

Page 108: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

104 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 5454-20 Comparison of Larson-Miller parametric master curves for stress rupture strengths of 5454-O and H34 plate and 5554 welds in 5454-H32plate. CLMP = 14.3

Fig. 5454-21 Semi-log Larson-Miller parametric master curve for stress rupture strengths of 5454-O plate from archival data, CLMP = 13.9

Page 109: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 105

Table 5456-1 Stress rupture data for 5456-H321 as welded with 5556 filler alloy

Testtemperature Applied Rupture CLMP = 14.0 CLMP = 14.6 CLMP = 15.0

oF oR stress, ksi life (t), h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

212 672 35.0 12.3 1.090 15.1 10,140 15.7 10,544 16.1 10,81234.0 21 1.322 15.3 10,296 15.9 10,700 16.3 10,96833.0 35 1.544 15.5 10,446 16.1 10,849 16.5 11,11832.0 63 1.799 15.8 10,617 16.4 11,020 16.8 11,28931.0 110 2.041 16.0 10,780 16.6 11,183 17.0 11,45230.0 187 2.272 16.3 10,935 16.9 11,338 17.3 11,607

300 760 30.0 1.52 0.182 14.2 10,778 14.8 11,234 15.2 11,53829.0 3.5 0.544 14.5 11,053 15.1 11,509 15.5 11,81328.0 7 0.845 14.8 11,282 15.4 11,738 15.8 12,04227.0 13 1.114 15.1 11,487 15.7 11,943 16.1 12,24726.0 20 1.301 15.3 11,629 15.9 12,085 16.3 12,38925.0 34 1.531 15.5 11,804 16.1 12,260 16.5 12,56424.0 50 1.699 15.7 11,931 16.3 12,387 16.7 12,69123.0 73 1.863 15.9 12,056 16.5 12,512 16.9 12,81622.0 110 2.041 16.0 12,191 16.6 12,647 17.0 12,95121.0 160 2.204 16.2 12,315 16.8 12,771 17.2 13,07520.0 230 2.362 16.4 12,435 17.0 12,891 17.4 13,19519.0 321 2.507 16.5 12,545 17.1 13,001 17.5 13,305

400 860 21.0 1.84 0.265 14.3 12,268 14.9 12,784 15.3 13,12820.0 2.8 0.447 14.4 12,424 15.0 12,940 15.4 13,28419.0 3.8 0.580 14.6 12,539 15.2 13,055 15.6 13,39918.0 5.3 0.724 14.7 12,663 15.3 13,179 15.7 13,52317.0 7.3 0.863 14.9 12,782 15.5 13,298 15.9 13,64216.0 10 1.000 15.0 12,900 15.6 13,416 16.0 13,76015.0 14 1.146 15.1 13,026 15.7 13,542 16.1 13,88614.0 20 1.301 15.3 13,159 15.9 13,675 16.3 14,01913.0 29 1.462 15.5 13,297 16.1 13,813 16.5 14,15712.0 43 1.633 15.6 13,444 16.2 13,960 16.6 14,30411.0 63 1.799 15.8 13,587 16.4 14,103 16.8 14,44710.0 98 1.991 16.0 13,752 16.6 14,268 17.0 14,6129.0 160 2.204 16.2 13,935 16.8 14,451 17.2 14,7958.0 258 2.412 16.4 14,114 17.0 14,630 17.4 14,974

Isostress calculations for 5456-H321 AW 5556

Isostress, Temperature (T1) Temperature (T2) (T1 log t1) – CLMPksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP avg

30.0 212 672 187 2.272 1526.8 300 760 1.52 0.182 138.3 1388.5 88 15.821.0 300 760 160 2.204 1675.0 400 860 1.84 0.265 227.9 1447.1 100 14.5 Average20.0 300 760 230 2.362 1795.1 400 860 2.8 0.447 384.4 1410.7 100 14.1 545619.0 300 760 321 2.507 1905.3 400 860 3.8 0.580 498.8 1406.5 100 14.1 AW 5556

14.6

5456-H321

Page 110: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

106 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 5456-2 Application of Larson-Miller parameter to high-temperature tensile properties of 5456-H321 plate

Stress, Temperature (T) T(C + log t) Stress, Temperature (T) T(C + log t)ksi °F °R t, h log t C + log t LMP ksi °F °R t, h log t C + log t LMP

LMP calculations for master curve — tensile strength of 5456-H321 LMP calculations for master curve — Tensile yield strength of 5456-H32148 212 672 1000 3.000 57.0 38,304 37 212 672 0.5 –0.301 45.7 30,710

212 672 10,000 4.000 58.0 38,976 212 672 10 1.000 47.0 31,58441 300 760 0.5 –0.301 53.7 40,811 36 212 672 100 2.000 48.0 32,256

300 760 10 1.000 55.0 41,800 212 672 1000 3.000 49.0 32,92840 300 760 100 2.000 56.0 42,560 35 212 672 10,000 4.000 50.0 33,60038 300 760 1000 3.000 57.0 43,320 33 300 760 0.5 –0.301 45.7 34,73135 300 760 10,000 4.000 58.0 44,080 300 760 10 1.000 47.0 35,72037 350 810 0.5 –0.301 53.7 43,496 300 760 100 2.000 48.0 36,48036 350 810 10 1.000 55.0 44,550 31 300 760 1000 3.000 49.0 37,24035 350 810 100 2.000 56.0 45,360 28 300 760 10,000 4.000 50.0 38,00033 350 810 1000 3.000 57.0 46,170 350 810 0.5 –0.301 45.7 37,01631 350 810 10,000 4.000 58.0 46,980 350 810 10 1.000 47.0 38,07032 400 860 0.5 –0.301 53.7 46,181 350 810 100 2.000 48.0 38,88031 400 860 10 1.000 55.0 47,300 26 350 810 1000 3.000 49.0 39,69030 400 860 100 2.000 56.0 48,160 24 350 810 10,000 4.000 50.0 40,50028 400 860 1000 3.000 57.0 49,020 22 400 860 0.5 –0.301 45.7 39,30126 400 860 10,000 4.000 58.0 49,880 400 860 10 1.000 47.0 40,42023 450 910 0.5 –0.301 53.7 48,866 21 400 860 100 2.000 48.0 41,28022 450 910 10 1.000 55.0 50,050 20 400 860 1000 3.000 49.0 42,140

450 910 100 2.000 56.0 50,960 19 400 860 10,000 4.000 50.0 43,00021 450 910 1000 3.000 57.0 51,870 15 450 910 0.5 –0.301 45.7 41,586

450 910 10,000 4.000 58.0 52,780 14 450 910 10 1.000 47.0 42,77017 500 960 0.5 –0.301 53.7 51,551 450 910 100 2.000 48.0 43,680

11 500 960 0.5 –0.301 45.7 43,871

Isostress calculation of CLMP for tensile and yield strengths of 5456-H321 at various temperatures

Isostress, Temperature (T1) Temperature (T2)

ksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T1 log t1 T2 – T1 CLMP

CLMP calculations—Tensile strength of 5456-H321

37.0 300 760 2000 3.4770 2642.5 350 810 0.5 –0.3000 –243.0 2885.5 50 57.735.0 300 760 10,000 4.0000 3040.0 350 810 10 1.0000 810.0 2230.0 50 44.632.0 350 810 3170 3.8451 3114.5 400 860 0.5 –0.3000 –258.0 3372.5 50 67.531.0 350 810 10,000 4.0000 3240.0 400 860 10 1.0000 860.0 2380.0 50 47.6

CLMP calculations—Tensile yield strength of 5456-H321

28.0 300 760 10,000 4.000 3040.0 350 810 100 2.0 1620.0 1420.0 50 28.422.0 350 810 100,000 5.000 4050.0 400 860 10 1.0 860.0 3190.0 50 63.8

Average value = 46.1

Source: W. Kauzmann, Flow of Solid Metals from the Standpoint of Chemical Rate Theory, Trans. AIME, Vol 143, 1941, p 57.

Table 5456-3 Calculation of short-time high-temperature exposures simulating long-time service conditions for 5456-H116plate

LMP = T1(C + log t1) T2 = LMP/(C + log t2)

Service exposure conditions LMP short-time simulation temperatures

Temperature (T1) T1 (C + log t1) LMP/ Temperature (T2)

CLMP °F °R t1, h log t1 C + log t1 target LMP t2, h log t2 (C + log t2) (C + log t2) °F °R

20 150 610 250,000 5.383 25.383 15,483.6 4 0.598 20.598 752 752 292610 250,000 5.383 25.383 15,483.6 96 1.976 21.976 705 705 245

30 150 610 250,000 5.383 35.383 21,583.6 4 0.598 30.598 705 705 245610 250,000 5.383 35.383 21,583.6 96 1.976 31.976 675 675 215

50 150 610 250,000 5.383 55.383 33,783.6 4 0.598 50.598 668 668 208610 250,000 5.383 55.383 33,783.6 96 1.976 51.976 650 650 190

Page 111: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Table 5456-4 Comparison of stress rupture strengths for welds in 5052, 5083, and 5456 plateTest

temperature Applied RuptureCLMP = 15.0

oF oR stress, ksi life (t), h log t C + log t T(C + log t)

5052 as welded with 5052 filler alloy212 672 26.0 10 1.000 16.0 10,752300 760 24.0 0.15 –0.824 14.2 10,774

23.0 0.67 –0.174 14.8 11,26822.0 2.6 0.415 15.4 11,71521.0 9 0.954 16.0 12,12520.0 30 1.477 16.5 12,52319.0 78 1.892 16.9 12,83818.0 185 2.267 17.3 13,12317.0 370 2.568 17.6 13,35216.0 680 2.833 17.8 13,55315.0 1316 3.119 18.1 13,770

400 860 18.0 0.5 –0.301 14.7 12,64117.0 1.8 0.255 15.3 13,11916.0 4.8 0.681 15.7 13,48615.0 11.5 1.061 16.1 13,81214.0 21.5 1.332 16.3 14,04613.0 33 1.519 16.5 14,20612.0 49 1.690 16.7 14,35311.0 73 1.863 16.9 14,50210.0 130 2.114 17.1 14,7189.0 270 2.431 17.4 14,9918.0 730 2.863 17.9 15,3627.0 2145 3.231 18.2 15,6796.0 5600 3.748 18.7 16,1235.0 16,000 4.204 19.2 16,5154.5 27,640 4.442 19.4 16,720

500 960 5.0 193 2.286 17.3 16,5954.0 481 2.682 17.7 16,975

600 1060 4.0 11 1.041 16.0 17,0033.0 56 1.748 16.7 17,7532.0 370 2.568 17.6 18,622

700 1160 1.0 497 2.696 17.7 20,527

5456 as welded with 5556 filler alloy212 672 35.0 12.3 1.090 16.1 10,812

34.0 21 1.322 16.3 10,96833.0 35 1.544 16.5 11,11832.0 63 1.799 16.8 11,28931.0 110 2.041 17.0 11,45230.0 187 2.272 17.3 11,607

300 760 30.0 1.52 0.182 15.2 11,53829.0 3.5 0.544 15.5 11,81328.0 7 0.845 15.8 12,04227.0 13 1.114 16.1 12,24726.0 20 1.301 16.3 12,38925.0 34 1.531 16.5 12,56424.0 50 1.699 16.7 12,69123.0 73 1.863 16.9 12,81622.0 110 2.041 17.0 12,95121.0 160 2.204 17.2 13,07520.0 230 2.362 17.4 13,19519.0 321 2.507 17.5 13,305

400 860 21.0 1.84 0.265 15.3 13,12820.0 2.8 0.447 15.4 13,28419.0 3.8 0.580 15.6 13,39918.0 5.3 0.724 15.7 13,52317.0 7.3 0.863 15.9 13,64216.0 10 1.000 16.0 13,76015.0 14 1.146 16.1 13,88614.0 20 1.301 16.3 14,01913.0 29 1.462 16.5 14,15712.0 43 1.633 16.6 14,30411.0 63 1.799 16.8 14,44710.0 98 1.991 17.0 14,6129.0 160 2.204 17.2 14,7958.0 258 2.412 17.4 14,974

Testtemperature Applied Rupture CLMP = 15.0

oF oR stress, ksi life (t), h log t C + log t T(C + log t)

5083 as welded with 5183 filler alloy150 610 42.0 3.8 0.580 15.6 9504

41.0 7 0.845 15.8 966540.0 14.5 1.161 16.2 985839.0 27 1.431 16.4 10,02338.0 51 1.708 16.7 10,19237.0 96 1.982 17.0 10,35936.0 180 2.255 17.3 10,52635.0 360 2.556 17.6 10,709

212 672 38.0 0.9 –0.046 15.0 10,04937.0 1.4 0.146 15.1 10,17836.0 2.2 0.342 15.3 10,31035.0 4.1 0.613 15.6 10,49234.0 7.9 0.898 15.9 10,68333.0 16 1.204 16.2 10,88932.0 35 1.544 16.5 11,11831.0 76 1.881 16.9 11,34430.0 186.5 2.271 17.3 11,60629.0 450 2.653 17.7 11,86328.0 1,118 3.048 18.0 12,128

250 710 35.0 0.45 –0.347 14.7 10,40434.0 0.75 –0.125 14.9 10,56133.0 1.4 0.146 15.1 10,75432.0 3 0.477 15.5 10,98931.0 6.5 0.813 15.8 11,22730.0 17.5 1.243 16.2 11,53329.0 48 1.681 16.7 11,84428.0 145 2.161 17.2 12,18427.0 360 2.556 17.6 12,46526.0 673 2.828 17.8 12,658

300 760 32.0 0.275 –0.561 14.4 10,97431.0 0.5 –0.301 14.7 11,17130.0 1.15 0.061 15.1 11,44629.0 3 0.477 15.5 11,76328.0 8 0.903 15.9 12,08627.0 22 1.342 16.3 12,42026.0 42.5 1.628 16.6 12,63725.0 71 1.851 16.9 12,80724.0 110 2.041 17.0 12,95123.0 160 2.204 17.2 13,07522.0 220 2.342 17.3 13,18021.0 301 2.479 17.5 13,284

350 810 29.0 0.25 –0.602 14.4 11,66228.0 0.5 –0.301 14.7 11,90627.0 1.1 0.041 15.0 12,18326.0 2.2 0.342 15.3 12,42725.0 4.5 0.653 15.7 12,67924.0 8 0.903 15.9 12,88123.0 13.5 1.130 16.1 13,06522.0 20 1.301 16.3 13,20421.0 28 1.447 16.4 13,32220.0 38 1.580 16.6 13,43019.0 52 1.716 16.7 13,54018.0 69.5 1.842 16.8 13,64217.0 95 1.978 17.0 13,75216.0 135 2.130 17.1 13,87515.0 201 2.303 17.3 14,015

400 860 26.0 0.192 –0.717 14.3 12,28325.0 0.45 –0.347 14.7 12,60224.0 0.78 –0.108 14.9 12,80723.0 1.25 0.097 15.1 12,98322.0 1.85 0.267 15.3 13,13021.0 2.8 0.447 15.4 13,28420.0 4.1 0.613 15.6 13,42719.0 5.9 0.771 15.8 13,56318.0 8.2 0.914 15.9 13,68617.0 12 1.079 16.1 13,82816.0 17 1.230 16.2 13,95815.0 25 1.398 16.4 14,10214.0 36 1.556 16.6 14,23813.0 54 1.732 16.7 14,39012.0 81 1.908 16.9 14,54111.0 130 2.114 17.1 14,71810.0 215 2.332 17.3 14,906

Page 112: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

108 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 5456-1 Archival Larson-Miller parametric master curve for stress rupture strengths of 5456-H321 plate as-welded with 5556 filler alloy. CLMP = 13

Fig. 5456-2 Larson-Miller parametric master curve for stress rupture strengths of 5456-H321 plate welded with 5556 filler alloy. CLMP = 14.6

Page 113: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 109

Fig. 5456-3 Tensile strengths of 5456-H321 plate at various temperatures

Fig. 5456-4 Tensile yield strengths of 5456-H321 plate at various temperatures

Page 114: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

110 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 5456-5 Larson-Miller parametric master curve for tensile strengths of 5456-H321 plate. CLMP = 54

Fig. 5456-6 Larson-Miller parametric master curve for tensile yield strengths of 5456-H321 plate. CLMP = 46

Page 115: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 111

Fig. 5456-7 Comparison of Larson-Miller parametric master curves for stress rupture strengths of welds in 5052, 5083, and 5456 plate as welded (AW) withalloy indicated. CLMP = 15

Page 116: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

112 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 6061-1 Stress rupture data for 1.25 in. thick 6061-T651 plateTest

temperature Applied stress, Rupture life,°F °R Testing source ksi h

200 660 C 38 119C 37.5 718C 37 2522C 36.5 4613C 35.5 21,447

212 672 A 38 29A 37 925

250 710 A 36 63A 35 549

275 735 A 34.4 299A 33.5 597C 33 382

300 760 A 35 1.35A 33 96C 33 73A 32 285C 30 700A 30 1017C 28 1682C 24 10,739C 21 28,517

350 810 A 29 42A 26 208C 26 148B 26 163B 24 446A 24 470B 22.5 868B 21 1912B 21 1663B 20 2814B 16.5 14,705B 14 27,325

375 835 B 21 397B 17 2063

400 860 A 26 7B 26 6.1A 24 16B 24 19A 22 50A 21 108B 21 70B 21 74B 21 72B 21 67B 21 72B 21 69A 19 194A 17 468B 17 474B 13 2445B 10 29,125B 8.5 34,800+

450 910 A 21 4.8A 17 27B 17 22.4A 13 177A 13 257B 13 121B 13 182A 11 681A 11 941B 11 632B 9 4156B 7 13,463B 4 35,800

Testtemperature Applied stress, Rupture life,

°F °R Testing source ksi h

500 960 A 17 1.7A 13 11A 13 23A 13 33B 13 9.2A 11 64A 11 82B 11 77A 9.5 278B 9.5 271A 8 721A 8 1078B 7 1081B 6 1838B 5 2824B 3 31,500

550 1,010 A 13 1A 11 6A 9.5 27B 9 28.8A 8 76A 8 102B 7 153A 6 224A 6 244A 4 763B 4 753B 2.5 35,400+

600 1,060 A 9.5 2.4A 8 11B 7 20A 6 38A 6 45A 4 130A 4 144B 4 126A 3 500B 2 10,749+

650 1,110 A 6 8.5A 4 29A 3 79A 3 115A 2.5 721

700 1,160 A 3 15A 3 20A 2.5 181A 2.5 227A 2 1086

750 1,210 A 2 332

6061-T6, T651

Page 117: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 113

Table 6061-2 Isostress calculations for 6061-T651 plate from Alcoa/MPC program

Isostress, Temperature (T1) Temperature (T2) (T1log t1) – CLMPksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP avg

30.0 300 760 1000 3.000 2280.0 350 810 27 1.431 1159.1 1120.9 50 22.4For

26.0 350 810 205 2.312 1872.7 400 860 7 0.845 726.7 1146.0 50 22.9 300–550 °F24.0 350 810 465 2.667 2160.3 400 860 20 1.301 1118.9 1041.4 50 20.8 20.321.0 400 860 80 1.903 1636.6 450 910 4.8 0.681 619.7 1016.9 50 20.317.0 400 860 470 2.672 2297.9 450 910 27 1.431 1302.2 995.7 50 19.917.0 400 860 470 2.672 2297.9 500 960 1.7 0.231 221.8 2076.2 100 20.817.0 450 910 27 1.431 1302.2 500 960 1.7 0.231 221.8 1080.5 50 21.613.0 450 910 200 2.301 2093.9 500 960 19 1.279 1227.8 866.1 50 17.311.0 450 910 800 2.903 2641.7 500 960 71 1.851 1777.0 864.8 50 17.313.0 450 910 200 2.301 2093.9 550 1010 1 0.000 0.0 2093.9 100 20.911.0 450 910 800 2.903 2641.7 550 1010 5 0.699 706.0 1935.7 100 19.413.0 500 960 19 1.279 1227.8 550 1010 1 0.000 0.0 1227.8 50 24.610.0 500 960 185 2.267 2176.3 550 1010 17 1.231 1243.3 933.0 50 18.78.0 500 960 900 2.954 2835.8 550 1010 85 1.929 1948.3 887.6 50 17.88.0 500 960 900 2.954 2835.8 600 1060 11 1.041 1103.5 1732.4 100 17.3 For

600–750 °F9.5 550 1010 28 1.447 1461.5 600 1060 2.4 0.380 402.8 1058.7 50 21.2 13.98.0 550 1010 85 1.929 1948.3 600 1060 11 1.041 1103.5 844.8 50 16.96.0 550 1010 240 2.380 2403.8 600 1060 41 1.613 1709.8 694.0 50 13.94.0 550 1010 750 2.875 2903.8 600 1060 130 2.114 2240.8 662.9 50 13.34.0 550 1010 750 2.875 2903.8 650 1110 30 1.477 1639.5 1264.3 100 12.64.0 600 1060 130 2.114 2240.8 650 1110 30 1.477 1639.5 601.4 50 12.03.0 600 1060 500 2.699 2860.9 650 1110 95 1.978 2195.6 665.4 50 13.33.0 600 1060 500 2.699 2860.9 700 1160 20 1.301 1509.2 1351.8 100 13.53.0 650 1110 95 1.978 2195.6 700 1160 20 1.301 1509.2 686.4 50 13.72.5 650 1110 700 2.845 3158.0 700 1160 200 2.301 2669.2 488.8 50 9.82.0 700 1160 1100 3.041 3527.6 750 1210 350 2.544 3078.2 449.3 50 9.0

All17.4

Page 118: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

114 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 6061-3 Stress rupture data for composite 6061-T6 sheet and rolled and drawn rod

RuptureTemperaturelife (t), CLMP = 15 CLMP = 20 CLMP = 23

°F °R Applied stress, ksi h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

212 672 40.5 0.06 –1.222 13.8 9259 18.8 12,619 21.8 14,63540 0.375 –0.426 14.6 9794 19.6 13,154 22.6 15,17039 4.6 0.663 15.7 10,526 20.7 13,886 23.7 15,90238 49 1.690 16.7 11,216 21.7 14,576 24.7 16,59237 490 2.690 17.7 11,888 22.7 15,248 25.7 17,26436.6 1500 3.176 18.2 12,214 23.2 15,574 26.2 17,590

300 760 38 0.038 –1.420 13.6 10,321 18.6 14,121 21.6 16,40137 0.14 –0.854 14.1 10,751 19.1 14,551 22.1 16,83136 0.47 –0.328 14.7 11,151 19.7 14,951 22.7 17,23135 1.7 0.230 15.2 11,575 20.2 15,375 23.2 17,65534 5.1 0.708 15.7 11,938 20.7 15,738 23.7 18,01833 15.5 1.190 16.2 12,304 21.2 16,104 24.2 18,38432 41 1.613 16.6 12,626 21.6 16,426 24.6 18,70631 100 2.000 17.0 12,920 22.0 16,720 25.0 19,00030 215 2.332 17.3 13,172 22.3 16,972 25.3 19,25229 365 2.562 17.6 13,347 22.6 17,147 25.6 19,42728 570 2.756 17.8 13,495 22.8 17,295 25.8 19,57526 850 2.929 17.9 13,626 22.9 17,426 25.9 19,706

400 860 31 0.0475 –1.323 13.7 11,762 18.7 16,062 21.7 18,64230 0.135 –0.870 14.1 12,152 19.1 16,452 22.1 19,03229 0.32 –0.495 14.5 12,474 19.5 16,774 22.5 19,35428 0.76 –0.119 14.9 12,798 19.9 17,098 22.9 19,67827 1.65 0.217 15.2 13,087 20.2 17,387 23.2 19,96726 3.1 0.491 15.5 13,322 20.5 17,622 23.5 20,20225 6.1 0.785 15.8 13,575 20.8 17,875 23.8 20,45524 11.5 1.061 16.1 13,812 21.1 18,112 24.1 20,69223 19 1.279 16.3 14,000 21.3 18,300 24.3 20,88022 32 1.505 16.5 14,194 21.5 18,494 24.5 21,07421 50 1.699 16.7 14,361 21.7 18,661 24.7 21,24120 77 1.886 16.9 14,522 21.9 18,822 24.9 21,40219 120 2.079 17.1 14,688 22.1 18,988 25.1 21,56818 180 2.255 17.3 14,839 22.3 19,139 25.3 21,71917 290 2.462 17.5 15,017 22.5 19,317 25.5 21,89716 440 2.643 17.6 15,173 22.6 19,473 25.6 22,05315 730 2.863 17.9 15,362 22.9 19,662 25.9 22,24214 1300 3.114 18.1 15,578 23.1 19,878 26.1 22,45813 2200 3.342 18.3 15,774 23.3 20,074 26.3 22,65412 4400 3.643 18.6 16,033 23.6 20,333 26.6 22,913

500 960 18.5 0.13 –0.886 14.1 13,549 19.1 18,349 22.1 21,22918 0.25 –0.612 14.4 13,812 19.4 18,612 22.4 21,49217 0.72 –0.143 14.9 14,263 19.9 19,063 22.9 21,94316 1.6 0.204 15.2 14,596 20.2 19,396 23.2 22,27615 3.2 0.505 15.5 14,885 20.5 19,685 23.5 22,56514 5 0.699 15.7 15,071 20.7 19,871 23.7 22,75113 7.2 0.857 15.9 15,223 20.9 20,023 23.9 22,90312 11.5 1.061 16.1 15,419 21.1 20,219 24.1 23,09911 19.5 1.290 16.3 15,638 21.3 20,438 24.3 23,31810 40 1.602 16.6 15,938 21.6 20,738 24.6 23,6189 87 1.940 16.9 16,262 21.9 21,062 24.9 23,9428 205 2.312 17.3 16,620 22.3 21,420 25.3 24,3007 480 2.681 17.7 16,974 22.7 21,774 25.7 24,6546 1050 3.021 18.0 17,300 23.0 22,100 26.0 24,9805.5 1650 3.217 18.2 17,488 23.2 22,288 26.2 25,168

600 1,060 10.5 0.2 –0.699 14.3 15,159 19.3 20,459 22.3 23,63910 0.52 –0.284 14.7 15,599 19.7 20,899 22.7 24,0799 1.6 0.204 15.2 16,116 20.2 21,416 23.2 24,5968 3.5 0.544 15.5 16,477 20.5 21,777 23.5 24,9577 7.6 0.881 15.9 16,834 20.9 22,134 23.9 25,3146 16 1.204 16.2 17,176 21.2 22,476 24.2 25,6565 41 1.613 16.6 17,610 21.6 22,910 24.6 26,0904 110 2.041 17.0 18,063 22.0 23,363 25.0 26,543

Page 119: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 115

Table 6061-4 Isostress calculations for 6061-T6 sheet and rolled and drawn rod

Isostress, Temperature (T1) Temperature (T2) (T1 log t1) – CLMPksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP avg

38.0 212 672 49 1.690 1135.7 300 760 0.038 –1.420 –1079.2 2214.9 88 25.2 Average37.0 212 672 490 2.690 1807.7 300 760 0.14 –0.854 –649.0 2456.7 88 27.9 212/300

26.531.0 300 760 100 2.000 1520.0 400 860 0.0475 –1.323 –1137.8 2657.8 100 26.630.0 300 760 215 2.332 1772.3 400 860 0.135 –0.870 –748.2 2520.5 100 25.229.0 300 760 365 2.562 1947.1 400 860 0.32 –0.495 –425.7 2372.8 100 23.728.0 300 760 570 2.756 2094.6 400 860 0.76 –0.119 –102.3 2196.9 100 22.0 Average 27.0 300 760 850 2.929 2226.0 400 860 1.65 0.217 186.6 2039.4 100 20.4 300/400

23.618.0 400 860 180 2.255 1939.3 500 960 0.25 –0.612 –587.5 2526.8 100 25.317.0 400 860 290 2.462 2117.3 500 960 0.72 –0.143 –137.3 2254.6 100 22.516.0 400 860 440 2.643 2273.0 500 960 1.6 0.204 195.8 2077.1 100 20.815.0 400 860 730 2.863 2462.2 500 960 3.2 0.505 484.8 1977.4 100 19.814.0 400 860 1300 3.114 2678.0 500 960 5 0.699 671.0 2007.0 100 20.113.0 400 860 2200 3.342 2874.1 500 960 7.2 0.857 822.7 2051.4 100 20.5 Average12.0 400 860 4400 3.643 3133.0 500 960 11.5 1.061 1018.6 2114.4 100 21.1 400/500

21.410.0 300 760 40 1.602 1217.5 400 860 0.52 –0.284 –244.2 1461.8 100 14.69.0 300 760 87 1.940 1474.4 400 860 1.6 0.204 175.4 1299.0 100 13.08.0 300 760 205 2.312 1757.1 400 860 3.5 0.544 467.8 1289.3 100 12.97.0 300 760 480 2.681 2037.6 400 860 7.6 0.881 757.7 1279.9 100 12.8 Average6.0 300 760 1050 3.021 2296.0 400 860 16 1.204 1035.4 1260.5 100 12.6 500/600

Average = 13.2Overall average = 20.4

Isostress, Temperature (T1) Temperature (T2) (T1 log t1) –ksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP

10.0 350 810 81 1.908 1545.5 400 860 1.4 0.146 125.6 1419.9 50 28.46.0 400 860 230 2.362 2031.3 500 960 0.7 –0.155 –148.8 2180.1 100 21.85.0 400 860 5500 3.740 3216.4 500 960 11 1.041 999.4 2217.0 100 22.25.0 400 860 5500 3.740 3216.4 500 960 80 1.903 1826.9 1389.5 100 13.94.0 500 960 462 2.665 2558.4 600 1060 2.1 0.322 341.3 2217.1 100 22.24.0 500 960 462 2.665 2558.4 600 1060 2.8 0.447 473.8 2084.6 100 20.82.5 600 1060 175 2.243 2377.6 700 1160 5.2 0.716 830.6 1547.0 100 15.5

Overall average = 20.7

Table 6061-5 Stress rupture data for 6061-O plate and isostress calculations

Testtemperature Applied Rupture CLMP = 13.9 CLMP = 17.4 CLMP = 20.3

oF oR stress, ksi life (t), h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)350 810 12.0 0.2 –0.699 13.2 10,693 16.7 13,528 19.6 15,877

10.0 81 1.908 15.8 12,804 19.3 15,639 22.2 17,988400 860 10.0 1.3 0.114 14.0 12,052 17.5 15,062 20.4 17,556

10.0 1.5 0.176 14.1 12,105 17.6 15,115 20.5 17,6098.0 11 1.041 14.9 12,849 18.4 15,859 21.3 18,3538.0 42 1.623 15.5 13,350 19.0 16,360 21.9 18,8546.5 210 2.322 16.2 13,951 19.7 16,961 22.6 19,4556.0 230 2.362 16.3 13,985 19.8 16,995 22.7 19,4895.0 5500 3.740 17.6 15,170 21.1 18,180 24.0 20,674

500 960 6.0 0.7 –0.155 13.7 13,195 17.2 16,555 20.1 19,3395.5 4.5 0.653 14.6 13,971 18.1 17,331 21.0 20,1155.0 11 1.041 14.9 14,343 18.4 17,703 21.3 20,4875.0 80 1.903 15.8 15,171 19.3 18,531 22.2 21,3154.5 450 2.653 16.6 15,891 20.1 19,251 23.0 22,0354.0 462 2.665 16.6 15,902 20.1 19,262 23.0 22,046

600 1,060 4.0 2.1 0.322 14.2 15,075 17.7 18,785 20.6 21,8594.0 2.8 0.447 14.3 15,208 17.8 18,918 20.7 21,9923.5 42 1.623 15.5 16,454 19.0 20,164 21.9 23,2383.0 160 2.204 16.1 17,070 19.6 20,780 22.5 23,8543.0 240 2.380 16.3 17,257 19.8 20,967 22.7 24,0412.5 175 2.243 16.1 17,112 19.6 20,822 22.5 23,8962.0 >680 2.832 16.7 17,736 20.2 21,446 23.1 24,520

700 1,160 2.5 5.2 0.716 14.6 16,955 18.1 21,015 21.0 24,3792.0 218 2.338 16.2 18,836 19.7 22,896 22.6 26,2601.5 >940 2.973 16.9 19,573 20.4 23,633 23.3 26,997

Page 120: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

116 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 6061-6 Comparison of actual long-time test results with extrapolated values for 6061-T651Actual test results

Test CLMP = 13.9 CLMP = 17.4 CLMP = 20.3Temperature stress, Actual rupture Extrapolated Extrapolated Extrapolated

oF oR ksi time (t), h log t C + log t T(C + log t) stress, ksi C + log t T(C + log t) stress, ksi C + log t T(C + log t) stress, ksi

200 672 35.5 21,447 4.332 18.2 12,252 34.7 21.7 14,604 34.3 24.6 16,553 35.0300 760 24.0 10,739 4.031 17.9 13,628 21.0 21.4 16,288 25.0 24.3 18,492 24.0

21.0 28,517 4.455 18.4 13,950 19.5 21.9 16,610 22.0 24.8 18,814 23.0350 810 16.5 14,705 4.167 18.1 14,634 14.0 21.6 17,469 15.0 24.5 19,818 17.0

14.0 27,325 4.436 18.3 14,852 13.0 21.8 17,687 14.3 24.7 20,036 16.0400 860 10.0 29,128 4.464 18.4 15,793 8.6 21.9 18,803 9.7 24.8 21,297 11.0

8.5 >34,800(a) 4.542 18.4 15,860 <8.0 21.9 18,870 <9.5 24.8 21,364 <10.6450 910 7.0 13,463 4.129 18.0 16,406 6.0 21.5 19,591 7.6 24.4 22,230 8.3

4.0 >35,800(a) 4.554 18.5 16,793 <4.6 22.0 19,978 <6.5 24.9 22,617 <7.3500 960 3.0 31,500 4.498 18.4 17,662 3.0 21.9 21,022 4.0 24.8 23,806 4.0550 1010 2.5 >35,400(a) 4.549 18.4 18,633 <2.5 21.9 22,168 <2.5 24.8 25,097 <2.9600 1060 2.0 >10,749(a) 4.031 17.9 19,007 <2.3 21.4 22,717 <2.5 24.3 25,791 <2.5

(a) Test was discontinued at this time.

Table 6061-7 Stress rupture data for 1.25 in. thick 6061-T651 plate illustrating laboratory variations

Applied First Rupture Second Rupture Average DifferenceTest temperature stress, testing life, testing life, rupture from average

°F °R ksi source h source h life, h ksi %

300 760 33 A 96 C 73 84.5 23.0 2730 A 1017 C 700 858.5 317.0 37

350 810 26 A 208 B 163 185.5 45.0 2426 A 208 C 148 178 60.0 3426 B 163 C 148 155.5 15.0 1024 A 470 B 446 458 24.0 5

400 860 26 A 7 B 6.1 6.55 0.9 1424 B 19 A 16 17.5 3.0 1721 A 108 B(a) 71 89.5 37.0 4117 B 474 A 468 471 6.0 1

450 910 17 A 27 B 22.4 24.7 4.6 1913 A 217 B(b) 152 184.5 65.0 3511 A 811 B 632 721.5 179.0 25

500 960 13 A 22 B 9.2 15.6 12.8 8211 B 77 A(c) 73 75 4.0 59.5 A 278 B 271 274.5 7.0 3

550 1010 4 A 763 B 753 758 10.0 1600 1060 4 A 137 B 126 131.5 11.0 8

Average difference: 22

(a) B was average of five tests, 67–74 h. (b) Both were average of two tests. (c) A was average of two tests.

Table 6061-8 Comparison of actual long-time stress rupture test results of 6061-T651 (>10,000 h) with extrapolated predictions

Actual test results

Test CLMP = 13.9 CLMP = 17.4 CLMP = 20.3Temperature stress, Actual rupture Extrapolated Extrapolated Extrapolated

oF oR ksi time (t), h log t C + log t T(C + log t) stress, ksi C + log t T(C + log t) stress, ksi C + log t T(C + log t) stress, ksi

200 672 35.5 21,447 4.332 18.2 12,252 34.7 21.7 14,604 34.3 24.6 16,553 35.0300 760 21.0 28,517 4.455 18.4 13,950 19.5 21.9 16,610 22.0 24.8 18,814 23.0350 810 16.5 14,705 4.167 18.1 14,634 14.0 21.6 17,469 15.0 24.5 19,818 17.0

14.0 27,325 4.436 18.3 14,852 13.0 21.8 17,687 14.3 24.7 20,036 16.0400 860 10.0 29,128 4.464 18.4 15,793 8.6 21.9 18,803 9.7 24.8 21,297 11.0

8.5 >34,800(a) 4.542 18.4 15,860 <8.0 21.9 19,591 <9.5 24.8 21,364 <10.6450 910 7.0 13,463 4.129 18.0 16,406 6.0 21.5 19,591 7.6 24.4 22,230 8.3

4.0 >35,800(a) 4.554 18.5 16,793 <4.6 22.0 19,978 <6.5 24.9 22,617 <7.3500 960 3.0 31,500 4.498 18.4 17,662 3.0 21.9 21,022 4.0 24.8 23,806 4.0550 1010 2.5 >35,400(a) 4.549 18.4 18,633 <2.5 21.9 22,168 <2.5 24.8 25,097 <2.9600 1060 2.0 >10,749(a) 4.031 17.9 19,007 <2.3 21.4 22,717 <2.5 24.3 25,791 <2.5

(a) Test was discontinued at this time.

Page 121: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 117

Table 6061-9 Stress rupture strengths of 6061-T651 plate welded with 4043 filler alloyTemperature Stress, CLMP = 13.9 CLMP = 17.4 CLMP = 20.3

oF oR ksi t, h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

212 672 29.9 0.1 –1.000 12.9 8669 16.4 11,021 19.3 12,97029.8 0.133 –0.876 13.0 8752 16.5 11,104 19.4 13,05329.7 19 1.279 15.2 10,200 18.7 12,552 21.6 14,50129.7 1122 3.050 17.0 11,390 20.5 13,742 23.4 15,69129.5 6.5 0.813 14.7 9887 18.2 12,239 21.1 14,188

225 685 29.6 0.001 –2.000 11.9 8152 15.4 10,549 18.3 12,53629.5 0.21 –0.678 13.2 9057 16.7 11,455 19.6 13,44129.4 0.35 –0.456 13.4 9209 16.9 11,607 19.8 13,59329.3 0.017 –1.760 12.1 8316 15.6 10,713 18.5 12,700

250 710 28.8 0.3 –0.523 13.4 9498 16.9 11,983 19.8 14,04228.7 83 1.919 15.8 11,231 19.3 13,716 22.2 15,77528.6 97 1.987 15.9 11,280 19.4 13,765 22.3 15,82428.5 183.5 2.264 16.2 11,476 19.7 13,961 22.6 16,02028.0 357.5 2.553 16.5 11,682 20.0 14,167 22.9 16,22627.0 776 2.890 16.8 11,921 20.3 14,406 23.2 16,465

300 760 27.5 0.03 –1.523 12.4 9407 15.9 12,067 18.8 14,27127.0 11 1.041 14.9 11,355 18.4 14,015 21.3 16,21926.0 31 1.491 15.4 11,697 18.9 14,357 21.8 16,56125.0 69.5 1.842 15.7 11,964 19.2 14,624 22.1 16,82824.0 155 2.190 16.1 12,228 19.6 14,888 22.5 17,09223.0 328 2.516 16.4 12,476 19.9 15,136 22.8 17,34021.0 542 2.734 16.6 12,642 20.1 15,302 23.0 17,506

350 810 25.0 0.25 –0.602 13.3 10,771 16.8 13,606 19.7 15,95524.0 2.9 0.462 14.4 11,633 17.9 14,468 20.8 16,81723.0 8.5 0.929 14.8 12,011 18.3 14,846 21.2 17,19522.0 18.5 1.267 15.2 12,285 18.7 15,120 21.6 17,46921.0 40.5 1.607 15.5 12,561 19.0 15,396 21.9 17,74520.0 91 1.959 15.9 12,846 19.4 15,681 22.3 18,03019.0 200 2.301 16.2 13,123 19.7 15,958 22.6 18,30718.0 430 2.633 16.5 13,392 20.0 16,227 22.9 18,57617.0 740 2.869 16.8 13,583 20.3 16,418 23.2 18,76717.0 920 2.964 16.9 13,660 20.4 16,495 23.3 18,84417.0 1438+ 3.158 17.1 13,817 20.6 16,652 23.5 19,001

400 860 23.5 0.05 –1.301 12.6 10,835 16.1 13,845 19.0 16,33923.0 0.23 –0.638 13.3 11,405 16.8 14,415 19.7 16,90922.0 1.2 0.079 14.0 12,022 17.5 15,032 20.4 17,52621.0 2.9 0.462 14.4 12,351 17.9 15,361 20.8 17,85520.0 5.3 0.724 14.6 12,577 18.1 15,587 21.0 18,08119.0 9.3 0.968 14.9 12,786 18.4 15,796 21.3 18,29018.0 18 1.255 15.2 13,033 18.7 16,043 21.6 18,53717.0 33 1.519 15.4 13,260 18.9 16,270 21.8 18,76416.0 60 1.778 15.7 13,483 19.2 16,493 22.1 18,98715.0 134 2.127 16.0 13,783 19.5 16,793 22.4 19,28714.0 290 2.462 16.4 14,071 19.9 17,081 22.8 19,57513.0 715 2.854 16.8 14,408 20.3 17,418 23.2 19,912

450 910 20.0 0.02 –1.699 12.2 11,103 15.7 14,288 18.6 16,92719.5 0.12 –0.921 13.0 11,811 16.5 14,996 19.4 17,63519.0 0.28 –0.553 13.3 12,146 16.8 15,331 19.7 17,97018.0 0.78 –0.108 13.8 12,551 17.3 15,736 20.2 18,37517.0 1.75 0.243 14.1 12,870 17.6 16,055 20.5 18,69416.0 3.5 0.544 14.4 13,144 17.9 16,329 20.8 18,96815.0 8 0.903 14.8 13,471 18.3 16,656 21.2 19,29514.0 17 1.230 15.1 13,768 18.6 16,953 21.5 19,59213.0 37 1.568 15.5 14,076 19.0 17,261 21.9 19,90012.0 80 1.903 15.8 14,381 19.3 17,566 22.2 20,20511.5 117 2.068 16.0 14,531 19.5 17,716 22.4 20,35511.0 175 2.243 16.1 14,690 19.6 17,875 22.5 20,51410.0 375 2.574 16.5 14,991 20.0 18,176 22.9 20,815

500 960 16.0 0.13 –0.886 13.0 12,493 16.5 15,853 19.4 18,63715.0 0.4 –0.398 13.5 12,962 17.0 16,322 19.9 19,10614.0 0.9 –0.046 13.9 13,300 17.4 16,660 20.3 19,44413.0 1.9 0.279 14.2 13,612 17.7 16,972 20.6 19,75612.0 4.2 0.623 14.5 13,942 18.0 17,302 20.9 20,08611.0 8.6 0.934 14.8 14,241 18.3 17,601 21.2 20,38510.0 15 1.176 15.1 14,473 18.6 17,833 21.5 20,61710.0 19.5 1.290 15.2 14,582 18.7 17,942 21.6 20,7269.0 41 1.613 15.5 14,892 19.0 18,252 21.9 21,0368.0 87 1.940 15.8 15,206 19.3 18,566 22.2 21,3507.0 200 2.301 16.2 15,553 19.7 18,913 22.6 21,6976.0 320 2.505 16.4 15,749 19.9 19,109 22.8 21,893

(continued)

Page 122: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

118 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 6061-9 (continued)Temperature

Stress,CLMP = 13.9 CLMP = 17.4 CLMP = 20.3

oF oR ksi t, h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

6.0 400 2.602 16.5 15,842 20.0 19,202 22.9 21,9865.0 900 2.954 16.9 16,180 20.4 19,540 23.3 22,3244.4 1500 3.176 17.1 16,393 20.6 19,753 23.5 22,5374.0 2460 3.391 17.3 16,599 20.8 19,959 23.7 22,743

600 1060 8.5 0.21 –0.678 13.2 14,015 16.7 17,725 19.6 20,7998.5 0.41 –0.387 13.5 14,324 17.0 18,034 19.9 21,1088.0 0.36 –0.444 13.5 14,263 17.0 17,973 19.9 21,0477.5 0.68 –0.168 13.7 14,556 17.2 18,266 20.1 21,3407.0 1.1 0.041 13.9 14,777 17.4 18,487 20.3 21,5617.0 1.25 0.097 14.0 14,837 17.5 18,547 20.4 21,6216.5 2 0.301 14.2 15,053 17.7 18,763 20.6 21,8376.0 3.5 0.544 14.4 15,311 17.9 19,021 20.8 22,0955.0 9.5 0.978 14.9 15,771 18.4 19,481 21.3 22,5555.0 14 1.146 15.0 15,949 18.5 19,659 21.4 22,7334.0 25 1.398 15.3 16,216 18.8 19,926 21.7 23,0003.0 94 1.973 15.9 16,825 19.4 20,535 22.3 23,6093.0 177 2.248 16.1 17,117 19.6 20,827 22.5 23,9012.5 350 2.544 16.4 17,431 19.9 21,141 22.8 24,2152.0 2285 3.359 17.3 18,295 20.8 22,005 23.7 25,0791.8 5355 3.729 17.6 18,687 21.1 22,397 24.0 25,471

700 1160 5.5 0.03 –1.523 12.4 14,357 15.9 18,417 18.8 21,7815.5 0.05 –1.301 12.6 14,615 16.1 18,675 19.0 22,0395.0 0.1 –1.000 12.9 14,964 16.4 19,024 19.3 22,3884.0 0.7 –0.155 13.7 15,944 17.2 20,004 20.1 23,3684.0 1.1 0.041 13.9 16,172 17.4 20,232 20.3 23,5963.5 1.5 0.176 14.1 16,328 17.6 20,388 20.5 23,7523.0 3.5 0.544 14.4 16,755 17.9 20,815 20.8 24,1793.0 4.2 0.623 14.5 16,847 18.0 20,907 20.9 24,2712.5 13.5 1.130 15.0 17,435 18.5 21,495 21.4 24,8592.3 25 1.398 15.3 17,746 18.8 21,806 21.7 25,1702.3 36 1.556 15.5 17,929 19.0 21,989 21.9 25,3532.0 70 1.845 15.7 18,264 19.2 22,324 22.1 25,6881.5 615 2.789 16.7 19,359 20.2 23,419 23.1 26,783

750 1210 1.8 65 1.813 15.7 19,013 19.2 23,248 22.1 26,7571.6 72.5 1.860 15.8 19,070 19.3 23,305 22.2 26,814

800 1260 1.5 5 0.699 14.6 18,395 18.1 22,805 21.0 26,459

Page 123: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 119Ta

ble

6061

-10

Isos

tres

s ca

lcul

atio

ns fo

r 40

43 w

elds

in 6

061-

T651

pla

te

Isos

tres

s, k

siTe

mpe

ratu

re (

T1)

Tim

e (t

1), h

log

t 1T

1 lo

g t 1

Tem

pera

ture

(T

2)T

ime

(t2)

, hlo

g t 2

T2 lo

g t 2

(T1 lo

g t 1)

(T2 lo

g t 2)

T2 –

T1

CL

MP

°F°R

°F°R

27.0

250

710

776

2.89

020

51.9

300

760

111.

041

791.

212

60.7

5025

.225

.030

076

069

.51.

842

1399

.935

081

00.

25–0

.602

–487

.618

87.5

5037

.824

.030

076

015

52.

190

1664

.435

081

02.

90.

462

374.

212

90.2

5025

.823

.030

076

032

82.

516

1912

.235

081

08.

50.

929

752.

511

59.7

5023

.221

.030

076

054

22.

734

2077

.835

081

040

.51.

607

1301

.777

6.2

5015

.523

.030

076

032

82.

516

1912

.240

086

00.

23–0

.638

–548

.724

60.8

100

24.6

21.0

300

760

542

2.73

420

77.8

400

860

2.9

0.46

239

7.3

1680

.510

016

.823

.035

081

08.

50.

929

752.

540

086

00.

23–0

.638

–548

.713

01.2

5026

.022

.035

081

018

.51.

267

1026

.340

086

01.

20.

079

67.9

958.

350

19.2

21.0

350

810

40.5

1.60

713

01.7

400

860

2.9

0.46

239

7.3

904.

450

18.1

20.0

350

810

911.

959

1586

.840

086

05.

30.

724

622.

696

4.2

5019

.319

.035

081

020

02.

301

1863

.840

086

09.

30.

968

832.

510

31.3

5020

.618

.035

081

043

02.

633

2132

.740

086

018

1.25

510

79.3

1053

.450

21.1

17.0

350

810

740

2.86

923

23.9

400

860

331.

519

1306

.310

17.6

5020

.417

.035

081

092

02.

964

2400

.840

086

033

1.51

913

06.3

1094

.550

21.9

17.0

350

810

1438

3.15

825

58.0

400

860

331.

519

1306

.312

51.6

5025

.019

.040

086

09.

30.

968

832.

545

091

00.

28–0

.921

–838

.116

70.6

5033

.418

.040

086

018

1.25

510

79.3

450

910

0.78

–0.5

53–5

03.2

1582

.550

31.7

17.0

400

860

331.

519

1306

.345

091

01.

75–0

.108

–98.

314

04.6

5028

.116

.040

086

060

1.77

815

29.1

450

910

3.5

0.54

449

5.0

1034

.050

20.7

15.0

400

860

134

2.12

718

29.2

450

910

80.

903

821.

710

07.5

5020

.114

.040

086

029

02.

462

2117

.345

091

017

1.23

011

19.3

998.

050

20.0

13.0

400

860

715

2.85

424

54.4

450

910

371.

568

1426

.910

27.6

5020

.616

.040

086

060

1.77

815

29.1

500

960

0.13

–0.8

86–8

50.6

2379

.610

023

.815

.040

086

013

42.

127

1829

.250

096

00.

4–0

.398

–382

.122

11.3

100

22.1

14.0

400

860

290

2.46

221

17.3

500

960

0.8

–0.0

46–4

4.2

2161

.510

021

.613

.040

086

071

52.

854

2454

.450

096

01.

90.

279

267.

821

86.6

100

21.9

16.0

450

910

3.5

0.54

449

5.0

500

960

0.13

–0.8

86–8

50.6

1345

.650

26.9

15.0

450

910

80.

903

821.

750

096

00.

4–0

.398

–382

.112

03.8

5024

.114

.045

091

017

1.23

011

19.3

500

960

0.8

–0.0

46–4

4.2

1163

.550

23.3

13.0

450

910

371.

568

1426

.950

096

01.

90.

279

267.

811

59.0

5023

.212

.045

091

080

2.06

818

81.9

500

960

4.2

0.62

359

8.1

1283

.850

25.7

11.0

450

910

175

2.24

320

41.1

500

960

8.6

0.93

489

6.6

1144

.550

22.9

10.0

450

910

375

2.57

423

42.3

500

960

17.2

1.23

311

83.7

1158

.750

23.2

8.0

500

960

871.

940

1862

.460

010

600.

36–0

.444

–470

.623

33.0

100

23.3

7.0

500

960

200

2.30

122

09.0

600

1060

1.1

0.04

143

.521

65.5

100

21.7

6.0

500

960

360

2.55

324

50.9

600

1060

3.5

0.54

457

6.6

1874

.210

018

.75.

050

096

090

02.

954

2835

.860

010

6011

.71.

063

1126

.817

09.1

100

17.1

4.0

500

960

2460

3.39

132

55.4

600

1060

251.

398

1481

.917

73.5

100

17.7

5.0

600

1060

11.7

1.06

311

26.8

700

1160

0.1

–1.0

00–1

160.

022

86.8

100

22.9

4.0

600

1060

251.

398

1481

.970

011

600.

9–0

.091

–105

.615

87.4

100

15.9

3.0

600

1060

136

2.11

122

37.7

700

1160

3.5

0.54

463

1.0

1606

.610

016

.12.

560

010

6035

02.

544

2696

.670

011

6013

.51.

130

1310

.813

85.8

100

13.9

2.0

600

1060

2285

3.35

935

60.5

700

1160

701.

845

2140

.214

20.3

100

14.2

5.0

500

960

900

2.95

428

35.8

700

1160

0.1

–1.0

00–1

160.

039

95.8

200

20.0

4.0

500

960

2460

3.39

132

55.4

700

1160

0.9

–0.0

91–1

05.6

3360

.920

016

.81.

570

011

6061

52.

789

3235

.280

012

605

0.69

988

0.7

2354

.510

023

.5O

vera

ll av

erag

e =

22.

0

Page 124: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

120 / Parametric Analyses of High-Temperature Data for Aluminum AlloysTa

ble

6061

-11

Supp

lem

enta

l str

ess

rupt

ure

stre

ngth

s of

diff

eren

t lo

ts o

f 606

1-T6

51 p

late

wel

ded

wit

h 40

43 fi

ller

allo

yL

ot B

Lot

C

Tem

pera

ture

Stre

ss,

Tim

e (t

),C

LM

P=

13.9

CL

MP

= 17

.4C

LM

P=

20.3

Stre

ss,

Tim

e (t

),C

LM

P=

13.9

CL

MP

= 17

.4C

LM

P=

20.3

o Fo R

ksi

hlo

g t

C +

log

tT

(C +

log

t)C

+ lo

gt

T(C

+ lo

gt)

C +

log

tT

(C +

log

t)ks

ih

log

tC

+ lo

gt

T(C

+ lo

gt)

C +

log

tT

(C +

log

t)C

+ lo

gt

T(C

+ lo

gt)

300

760

21.5

0.02

7–1

.569

12.3

9372

15.8

12,0

3218

.714

,236

21.0

0.16

–0.7

9613

.199

5916

.612

,619

19.5

14,8

2320

.50.

8–0

.097

13.8

10,4

9017

.313

,150

20.2

15,3

5420

.03.

30.

519

14.4

10,9

5817

.913

,618

20.8

15,8

2219

.58.

70.

940

14.8

11,2

7818

.313

,938

21.2

16,1

4219

.020

1.30

115

.211

,553

18.7

14,2

1321

.616

,417

18.5

401.

602

15.5

11,7

8219

.014

,442

21.9

16,6

4618

.067

.51.

829

15.7

11,9

5419

.214

,614

22.1

16,8

1817

.511

02.

041

15.9

12,1

1519

.414

,775

22.3

16,9

7917

.017

02.

230

16.1

12,2

5919

.614

,919

22.5

17,1

2316

.523

02.

362

16.3

12,3

5919

.815

,019

22.7

17,2

2316

.031

42.

497

16.4

12,4

6219

.915

,122

22.8

17,3

2614

.016

153.

208

17.1

13,0

0220

.615

,662

23.5

17,8

6640

086

017

.00.

033

–1.4

8112

.410

,680

15.9

13,6

9018

.816

,184

20.0

0.08

3–1

.081

12.8

11,0

2416

.314

,034

19.2

16,5

2816

.50.

13–0

.886

13.0

11,1

9216

.514

,202

19.4

16,6

9619

.00.

75–0

.125

13.8

11,8

4717

.314

,857

20.2

17,3

5116

.00.

34–0

.469

13.4

11,5

5116

.914

,561

19.8

17,0

5518

.03.

250.

512

14.4

12,3

9417

.915

,404

20.8

17,8

9815

.50.

8–0

.097

13.8

11,8

7117

.314

,881

20.2

17,3

7517

.010

.51.

021

14.9

12,8

3218

.415

,842

21.3

18,3

3615

.01.

80.

255

14.2

12,1

7317

.715

,183

20.6

17,6

779.

014

,440

4.16

018

.115

,532

21.6

18,5

4224

.521

,036

14.5

3.3

0.51

914

.412

,400

17.9

15,4

1020

.817

,904

14.0

5.25

0.72

014

.612

,573

18.1

15,5

8321

.018

,077

13.5

7.6

0.88

114

.812

,712

18.3

15,7

2221

.218

,216

13.0

121.

079

15.0

12,8

8218

.515

,892

21.4

18,3

8612

.518

1.25

515

.213

,033

18.7

16,0

4321

.618

,537

12.0

27.8

1.44

315

.313

,195

18.8

16,2

0521

.718

,699

11.5

471.

672

15.6

13,3

9219

.116

,402

22.0

18,8

9611

.080

1.90

315

.813

,591

19.3

16,6

0122

.219

,095

10.5

150

2.17

616

.113

,825

19.6

16,8

3522

.519

,329

10.0

310

2.49

116

.414

,096

19.9

17,1

0622

.819

,600

500

960

12.5

0.01

2–1

.921

12.0

11,5

0015

.514

,860

18.4

17,6

4413

.00.

15–0

.824

13.1

12,5

5316

.615

,913

19.5

18,6

9712

.00.

023

–1.6

3812

.311

,772

15.8

15,1

3218

.717

,916

12.0

1.2

0.07

914

.013

,420

17.5

16,7

8020

.419

,564

11.5

0.04

4–1

.357

12.5

12,0

4116

.015

,401

18.9

18,1

8511

.05.

40.

732

14.6

14,0

4718

.117

,407

21.0

20,1

9111

.00.

082

–1.0

6012

.812

,326

16.3

15,6

8619

.218

,470

10.0

191.

279

15.2

14,5

7218

.717

,932

21.6

20,7

1610

.50.

18–0

.745

13.2

12,6

2916

.715

,989

19.6

18,7

739.

046

1.66

315

.614

,940

19.1

18,3

0022

.021

,084

10.0

0.4

–0.3

9813

.512

,962

17.0

16,3

2219

.919

,106

8.0

991.

996

15.9

15,2

6019

.418

,620

22.3

21,4

049.

50.

95–0

.022

13.9

13,3

2317

.416

,683

20.3

19,4

677.

023

02.

362

16.3

15,6

1219

.818

,972

22.7

21,7

569.

02.

30.

362

14.3

13,6

9217

.817

,052

20.7

19,8

366.

047

02.

672

16.6

15,9

0920

.119

,269

23.0

22,0

538.

56

0.77

814

.714

,091

18.2

17,4

5121

.120

,235

5.0

1100

3.04

116

.916

,263

20.4

19,6

2323

.322

,407

8.0

161.

204

15.1

14,5

0018

.617

,860

21.5

20,6

444.

417

003.

230

17.1

16,4

4520

.619

,805

23.5

22,5

897.

548

1.68

115

.614

,958

19.1

18,3

1822

.021

,102

7.0

150

2.17

616

.115

,433

19.6

18,7

9322

.521

,577

6.6

339

2.53

016

.415

,773

19.9

19,1

3322

.821

,917

600

1,06

08.

00.

013

–1.8

8612

.012

,735

15.5

16,4

4518

.419

,519

8.5

0.13

3–0

.876

13.0

13,8

0516

.517

,515

19.4

20,5

897.

50.

023

–1.6

3812

.312

,998

15.8

16,7

0818

.719

,782

8.0

0.31

–0.5

0913

.414

,194

16.9

17,9

0419

.820

,978

7.0

0.04

4–1

.357

12.5

13,2

9616

.017

,006

18.9

20,0

807.

01.

60.

204

14.1

14,9

5017

.618

,660

20.5

21,7

346.

50.

081

–1.0

9212

.813

,576

16.3

17,2

8619

.220

,360

6.5

30.

477

14.4

15,2

4017

.918

,950

20.8

22,0

246.

00.

16–0

.796

13.1

13,8

9016

.617

,600

19.5

20,6

746.

05.

30.

724

14.6

15,5

0118

.119

,211

21.0

22,2

855.

50.

34–0

.469

13.4

14,2

3716

.917

,947

19.8

21,0

215.

016

1.20

415

.116

,010

18.6

19,7

2021

.522

,794

5.0

0.82

–0.0

8613

.814

,643

17.3

18,3

5320

.221

,427

4.0

441.

643

15.5

16,4

7619

.020

,186

21.9

23,2

604.

52.

20.

342

14.2

15,0

9717

.718

,807

20.6

21,8

813.

017

02.

230

16.1

17,0

9819

.620

,808

22.5

23,8

824.

06.

60.

820

14.7

15,6

0318

.219

,313

21.1

22,3

872.

022

853.

359

17.3

18,2

9520

.822

,005

23.7

25,0

793.

522

1.34

215

.216

,157

18.7

19,8

6721

.622

,941

1.8

5355

3.72

417

.618

,681

21.1

22,3

9124

.025

,465

3.0

901.

954

15.9

16,8

0519

.420

,515

22.3

23,5

892.

545

02.

653

16.6

17,5

4620

.121

,256

23.0

24,3

30(c

ontin

ued)

Page 125: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 121

Tabl

e 60

61-1

1(c

onti

nued

)L

ot B

Lot

C

Tem

pera

ture

Stre

ss,

Tim

e (t

),C

LM

P=

13.9

CL

MP

= 17

.4C

LM

P=

20.3

Stre

ss,

Tim

e t,

CL

MP

= 13

.9C

LM

P=

17.4

CL

MP

= 20

.3o F

o Rks

ih

log

tC

+ lo

gt

T(C

+ lo

gt)

C +

log

tT

(C +

log

t)C

+ lo

gt

T(C

+ lo

gt)

ksi

hlo

g t

C +

log

tT

(C +

log

t)C

+ lo

gt

T(C

+ lo

gt)

C +

log

tT

(C +

log

t)

700

1160

5.0

0.01

5–1

.824

12.1

14,0

0815

.618

,068

18.5

21,4

324.

00.

35–0

.456

13.4

15,5

9516

.919

,655

19.8

23,0

194.

50.

035

–1.4

5612

.414

,435

15.9

18,4

9518

.821

,859

3.0

30.

477

14.4

16,6

7717

.920

,737

20.8

24,1

014.

00.

1–1

.000

12.9

14,9

6416

.419

,024

19.3

22,3

882.

072

1.85

715

.818

,278

19.3

22,3

3822

.225

,702

3.5

0.33

–0.4

8113

.415

,566

16.9

19,6

2619

.822

,990

1.5

615

2.78

916

.719

,359

20.2

23,4

1923

.126

,783

3.0

1.3

0.11

414

.016

,256

17.5

20,3

1620

.423

,680

2.5

6.2

0.79

214

.717

,043

18.2

21,1

0321

.124

,467

2.0

401.

602

15.5

17,9

8219

.022

,042

21.9

25,4

0675

012

101.

865

1.81

315

.719

,013

19.2

23,2

4822

.126

,757

1.6

72.5

1.86

015

.819

,070

19.3

23,3

0522

.226

,814

800

1260

1.5

50.

699

14.6

18,3

9518

.122

,805

21.0

26,4

59

Page 126: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

122 / Parametric Analyses of High-Temperature Data for Aluminum AlloysTa

ble

6061

-12

Effe

ct o

f lot

-to-

lot

vari

atio

ns in

CLM

Pon

ext

rapo

late

d st

ress

rup

ture

str

engt

hs o

f wel

ded

6061

-T6

extr

apol

ated

str

ess

rupt

ure

stre

ngth

s of

606

1-T6

AW

404

3, L

ot A

CL

MP

= 13

.7C

LM

P=

15.4

CL

MP

= 16

.9D

esir

ed e

xtra

pola

tion

Ext

rapo

late

dE

xtra

pola

ted

Ext

rapo

late

dTe

mpe

ratu

rest

ress

,st

ress

,st

ress

,°F

°Rt,

hlo

g t

C+

log

tT

(C+

log

t)ks

iC

+ lo

g t

T(C

+ lo

g t)

ksi

C+

log

tT

(C+

log

t)ks

i

212

672

10,0

004.

000

17.7

11,8

9420

.519

.413

,037

21.0

20.9

14,0

4519

.510

0,00

05.

000

18.7

12,5

6618

.020

.413

,709

19.0

21.9

14,7

1718

.530

076

010

,000

4.00

017

.713

,452

14.0

19.4

14,7

4415

.020

.915

,884

15.7

100,

000

5.00

018

.714

,212

11.2

20.4

15,5

0412

.521

.916

,644

13.2

350

810

10,0

004.

000

17.7

14,3

3710

.519

.415

,714

11.7

20.9

16,9

2912

.210

0,00

05.

000

18.7

15,1

478.

020

.416

,524

8.4

21.9

17,7

399.

240

086

010

,000

4.00

017

.715

,222

7.8

19.4

16,6

848.

520

.917

,974

8.6

100,

000

5.00

018

.716

,082

6.0

20.4

17,5

445.

521

.918

,834

5.8

450

910

10,0

004.

000

17.7

16,1

074.

919

.417

,654

5.2

20.9

19,0

195.

210

0,00

05.

000

18.7

17,0

172.

720

.418

,564

3.0

21.9

19,9

293.

8

Extr

apol

ated

str

ess

rupt

ure

stre

ngth

s of

606

1-T6

A

W 4

043,

Lot

CC

LM

P=

21.3

Des

ired

ext

rapo

lati

onE

xtra

pola

ted

Tem

pera

ture

(T

)st

ress

,o F

o Rt,

hlo

g t

C+

log

tT

(C+

log

t)ks

i

212

672

10,0

004.

000

25.3

17,0

0228

.010

0,00

05.

000

26.3

17,6

7424

.230

076

010

,000

4.00

025

.319

,228

18.5

100,

000

5.00

026

.319

,988

15.5

350

810

10,0

004.

000

25.3

20,4

9313

.810

0,00

05.

000

26.3

21,3

0310

.840

086

010

,000

4.00

025

.321

,758

9.0

100,

000

5.00

026

.322

,618

6.8

450

910

10,0

004.

000

25.3

23,0

236.

210

0,00

05.

000

26.3

23,9

335.

0

Extr

apol

ated

str

ess

rupt

ure

stre

ngth

s of

606

1-T6

AW

404

3, L

ot B

CL

MP

= 18

.1C

LM

P=

21.7

CL

MP

= 24

.65

CL

MP

= 25

.3C

LM

P=

27.0

CL

MP

= 29

.0D

esir

ed e

xtra

pola

tion

Ext

rapo

late

dE

xtra

pola

ted

Ext

rapo

late

dE

xtra

pola

ted

Ext

rapo

late

dE

xtra

pola

ted

Tem

pera

ture

(T

)st

ress

,st

ress

,st

ress

,st

ress

,st

ress

,st

ress

,°F

°Rt,

hlo

g t

C+

log

tT

(C+

log

t)ks

iC

+ lo

g t

T(C

+ lo

g t)

ksi

C +

log

tT

(C+

log

t)ks

iC

+ lo

g t

T(C

+ lo

g t)

ksi

C +

log

tT

(C+

log

t)ks

iC

+ lo

g t

T(C

+ lo

g t)

ksi

212

672

10,0

004.

000

22.1

14,8

5119

.025

.717

,270

20.0

28.7

19,2

5321

.029

.319

,690

21.5

31.0

20,8

3220

.033

.022

,176

23.0

100,

000

5.00

023

.115

,523

16.5

26.7

17,9

4217

.829

.719

,925

19.0

30.3

20,3

6219

.532

.021

,504

18.8

34.0

22,8

4821

.030

076

010

,000

4.00

022

.116

,796

12.0

25.7

19,5

3212

.028

.721

,774

13.0

29.3

22,2

6812

.531

.023

,560

13.8

33.0

25,0

8012

.510

0,00

05.

000

23.1

17,5

5610

.726

.720

,292

10.7

29.7

22,5

3411

.230

.323

,028

11.0

32.0

24,3

2012

.034

.025

,840

11.4

350

810

10,0

004.

000

22.1

17,9

019.

725

.720

,817

9.7

28.7

23,2

0710

.029

.323

,733

10.2

31.0

25,1

1010

.533

.026

,730

10.5

100,

000

5.00

023

.118

,711

8.2

26.7

21,6

278.

629

.724

,017

9.0

30.3

24,5

439.

232

.025

,920

9.5

34.0

27,5

409.

540

086

010

,000

4.00

022

.119

,006

7.8

25.7

22,1

028.

028

.724

,639

8.2

29.3

25,1

988.

231

.026

,660

8.2

33.0

28,3

808.

510

0,00

05.

000

23.1

19,8

665.

226

.722

,962

6.8

29.7

25,4

997.

230

.326

,058

7.3

32.0

27,5

207.

034

.029

,240

7.5

450

910

10,0

004.

000

22.1

20,1

116.

025

.723

,387

6.3

28.7

26,0

726.

829

.326

,663

6.5

31.0

28,2

106.

533

.030

,030

6.8

100,

000

5.00

023

.121

,021

4.5

26.7

24,2

974.

829

.726

,982

5.3

30.3

27,5

735.

232

.029

,120

4.8

34.0

30,9

405.

8

Page 127: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 123

Table 6061-13 Stress rupture data for 6061-T651 plate welded with 4043 and heat treated and agedafter welding

Testtemperature

Applied Rupture CLMP = 13.9 CLMP = 17.4 CLMP = 20.3

°F °R stress, ksi life, (t), h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

212 672 37.0 0.33 –0.481 13.4 9018 16.9 11,370 19.8 13,31835.0 14 1.146 15.0 10,111 18.5 12,463 21.4 14,412

300 760 32.0 0.75 –0.125 13.8 10,469 17.3 13,129 20.2 15,33331.5 6.5 0.813 14.7 11,182 18.2 13,842 21.1 16,04631.0 97 1.987 15.9 12,074 19.4 14,734 22.3 16,93830.5 140 2.146 16.0 12,195 19.5 14,855 22.4 17,05930.0 90 1.954 15.9 12,049 19.4 14,709 22.3 16,91329.0 150 2.176 16.1 12,218 19.6 14,878 22.5 17,08228.0 270 2.431 16.3 12,412 19.8 15,072 22.7 17,27625.0 510 2.708 16.6 12,622 20.1 15,282 23.0 17,486

350 810 29.0 6 0.778 14.7 11,889 18.2 14,724 21.1 17,07327.5 9.5 0.978 14.9 12,051 18.4 14,886 21.3 17,23521.0 192 2.283 16.2 13,108 19.7 15,943 22.6 18,29218.0 580 2.763 16.7 13,497 20.2 16,332 23.1 18,681

400 860 26.0 2.3 0.362 14.3 12,265 17.8 15,275 20.7 17,76921.0 12 1.079 15.0 12,882 18.5 15,892 21.4 18,38615.0 140 2.146 16.0 13,800 19.5 16,810 22.4 19,30412.0 435 2.638 16.5 14,223 20.0 17,233 22.9 19,727

500 960 14.0 3 0.477 14.4 13,802 17.9 17,162 20.8 19,9469.5 10 1.000 14.9 14,304 18.4 17,664 21.3 20,4487.5 26 1.415 15.3 14,702 18.8 18,062 21.7 20,8467.5 37 1.568 15.5 14,849 19.0 18,209 21.9 20,9935.0 465 2.667 16.6 15,904 20.1 19,264 23.0 22,048

600 1060 7.5 0.5 –0.311 13.6 14,404 17.1 18,114 20.0 21,1885.0 7 0.845 14.7 15,630 18.2 19,340 21.1 22,4143.0 50 1.699 15.6 16,535 19.1 20,245 22.0 23,319

Isostress calculations for 6061-T651 plate welded with 4043 and heat treated and aged after welding

Isostress, Temperature (T1) Temperature (T2) (T1 log t1) –ksi °F °R t1, h log t1 T1 log t1 °F °R t2, h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP

29.0 300 760 150 2.176 1653.8 350 810 6 0.778 630.2 1023.6 50 20.527.5 300 760 350 2.544 1933.4 350 810 9.5 0.978 792.2 1141.3 50 22.826.0 350 810 20 1.301 1053.8 400 860 2.3 0.362 311.3 742.5 50 14.821.0 350 810 192 2.283 1849.2 400 860 12 1.079 927.9 921.3 50 18.47.5 500 960 26 1.415 1358.4 600 1060 0.5 –0.311 –329.7 1688.1 100 16.97.5 500 960 37 1.568 1505.3 600 1060 0.5 –0.311 –329.7 1834.9 100 18.35.0 500 960 465 2.667 2560.3 600 1060 7 0.845 895.7 1664.6 100 16.6

Overall average = 18.3

Page 128: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

124 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Isostress calculations for 6061-T651 plate welded with 5154 filler alloy and heat treated and aged after welding

Isostress, Temperature (T1) Time (t1),Temperature (T2) Time (t2), (T2 log t1) –

ksi °F °R h log t1 T1 log t1 °F °R h log t2 T2 log t2 (T2 log t2) T2–T1 CLMP

31.0 212 672 1680 3.225 2167.2 300 760 8 0.903 686.3 1480.9 88 16.825.0 300 760 200 2.301 1748.8 400 860 1 0.000 0.0 1748.8 100 17.524.0 300 760 800 2.903 2206.3 400 860 2 0.301 258.9 1947.4 100 19.515.0 400 860 78 1.892 1627.1 500 960 0.05 –1.301 –1249.0 2876.1 100 28.814.0 400 860 110 2.041 1755.3 500 960 0.14 –0.854 –819.8 2575.1 100 25.813.0 400 860 160 2.204 1895.4 500 960 0.35 –0.456 –437.8 2333.2 100 23.312.0 400 860 228 2.358 2027.9 500 960 0.9 –0.046 –44.2 2072.0 100 20.711.0 400 860 350 2.544 2187.8 500 960 2 0.301 289.0 1898.9 100 19.010.0 400 860 610 2.785 2395.1 500 960 4.5 0.653 626.9 1768.2 100 17.710.0 400 860 1243 3.094 2660.8 500 960 8.6 0.934 896.6 1764.2 100 17.6

Overall average = 20.7

Table 6061-14 Stress rupture strengths of 6061-T651 plate as-welded with 5154 filler alloyTemperature (T) Stress, CLMP = 13.9 CLMP = 17.4 CLMP = 20.3

°F °R ksi Time (t), h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

212 672 34.5 26.5 1.423 15.3 10,297 18.8 12,649 21.7 14,59834.0 399 2.601 16.5 11,089 20.0 13,441 22.9 15,389

300 760 31.0 6.7 0.826 14.7 11,192 18.2 13,852 21.1 16,05630.0 15 1.176 15.1 11,458 18.6 14,118 21.5 16,32229.0 23.5 1.371 15.3 11,606 18.8 14,266 21.7 16,47028.0 39 1.591 15.5 11,773 19.0 14,433 21.9 16,63727.0 64 1.806 15.7 11,937 19.2 14,597 22.1 16,80126.0 100 2.000 15.9 12,084 19.4 14,744 22.3 16,94825.0 180 2.255 16.2 12,278 19.7 14,938 22.6 17,142

400 860 24.0 2 0.301 14.2 12,213 17.7 15,223 20.6 17,71723.0 3.2 0.505 14.4 12,388 17.9 15,398 20.8 17,89222.0 5 0.699 14.6 12,555 18.1 15,565 21.0 18,05921.0 7.5 0.875 14.8 12,707 18.3 15,717 21.2 18,21120.0 12 1.079 15.0 12,882 18.5 15,892 21.4 18,38619.0 18 1.255 15.2 13,033 18.7 16,043 21.6 18,53718.0 27 1.431 15.3 13,185 18.8 16,195 21.7 18,68917.0 38 1.580 15.5 13,313 19.0 16,323 21.9 18,81716.0 54 1.732 15.6 13,444 19.1 16,454 22.0 18,94815.0 78 1.892 15.8 13,581 19.3 16,591 22.2 19,08514.0 110 2.041 15.9 13,709 19.4 16,719 22.3 19,21313.0 160 2.204 16.1 13,849 19.6 16,859 22.5 19,35312.0 228 2.358 16.3 13,982 19.8 16,992 22.7 19,48611.0 350 2.544 16.4 14,142 19.9 17,152 22.8 19,64610.0 610 2.785 16.7 14,349 20.2 17,359 23.1 19,8539.0 1243 3.094 17.0 14,615 20.5 17,625 23.4 20,119

500 960 15.0 0.05 –1.301 12.6 12,095 16.1 15,455 19.0 18,23914.0 0.14 –0.854 13.0 12,524 16.5 15,884 19.4 18,66813.0 0.35 –0.456 13.4 12,906 16.9 16,266 19.8 19,05012.0 0.9 –0.046 13.9 13,300 17.4 16,660 20.3 19,44411.0 2 0.301 14.2 13,633 17.7 16,993 20.6 19,77710.0 4.5 0.653 14.6 13,971 18.1 17,331 21.0 20,1159.0 8.6 0.934 14.8 14,241 18.3 17,601 21.2 20,3858.0 17 1.230 15.1 14,525 18.6 17,885 21.5 20,6697.0 33 1.519 15.4 14,802 18.9 18,162 21.8 20,9466.0 60 1.778 15.7 15,051 19.2 18,411 22.1 21,1955.0 140 2.146 16.0 15,404 19.5 18,764 22.4 21,5484.0 396 2.598 16.5 15,838 20.0 19,198 22.9 21,982

Page 129: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 125

Table 6061-15 Comparison of stress rupture strengths of 5454-H34 and 6061-T651 plate

Test Applied RuptureCLMP = 16

temperature (T) stress, life, (t), T(C + log t)°F °R ksi h log t C + log t LMP

5454-H34 plate200 660 35 80 1.903 17.9 11,816

31 622 2.794 18.8 12,40431 457 2.660 18.7 12,31629 1332 3.124 19.1 12,62227 2100 3.322 19.3 12,75322 14,313 4.156 20.2 13,30320 30,950 4.491 20.5 13,524

212 672 31 189 2.276 18.3 12,281250 710 27 106 2.025 18.0 12,798

27 90 1.954 18.0 12,74722 748 2.874 18.9 13,40122 807 2.907 18.9 13,42421 1185 3.074 19.1 13,543

275 735 22 185 2.267 18.3 13,426300 760 27 6.6 0.820 16.8 12,783

22 46 1.663 17.7 13,42422 56 1.748 17.7 13,48822 39 1.591 17.6 13,36920 101 2.004 18.0 13,68320 101 2.004 18.0 13,68317 347 2.540 18.5 14,09017 367 2.565 18.6 14,10917 364 2.561 18.6 14,10614 1799 3.255 19.3 14,63410 21,266 4.328 20.3 15,449

350 810 20 6.2 0.792 16.8 13,60217 25 1.398 17.4 14,09217 26 1.415 17.4 14,10617 28 1.447 17.4 14,13217 31 1.491 17.5 14,16814 148 2.170 18.2 14,71814 116 2.064 18.1 14,63214 102 2.009 18.0 14,58714 105 2.021 18.0 14,59714 141 2.149 18.1 14,70114 121 2.083 18.1 14,64714 102 2.009 18.0 14,58714 94 1.973 18.0 14,55814 123 2.090 18.1 14,65311 514 2.710 18.7 15,1559 2092 3.320 19.3 15,649

400 860 14 12 1.079 17.1 14,68811 68 1.833 17.8 15,3369 218 2.338 18.3 15,7719 177 2.248 18.2 15,6937 1102 3.042 19.0 16,376

450 910 7 137 2.137 18.1 16,5057 137 2.137 18.1 16,5054 5374 3.730 19.7 17,954

500 960 7 30 1.477 17.5 16,7784 463 2.666 18.7 17,919

550 1010 4 117 2.068 18.1 18,249600 1060 2.5 188 2.274 18.3 19,370

Test Applied RuptureCLMP = 16

temperature (T) stress, life, (t), T(C + log t)°F °R ksi h log t C + log t LMP

6061-T651 plate (Part 1)200 660 38 119 2.076 18.1 11,930

37.5 718 2.856 18.9 12,44537 2522 3.404 19.4 12,80736.5 4613 3.666 19.7 12,98035.5 21,447 4.340 20.3 13,424

212 672 38 29 1.462 17.5 11,73437 925 2.966 19.0 12,745

250 710 36 63 1.799 17.8 12,63735 549 2.740 18.7 13,305

275 735 34.4 299 2.476 18.5 13,58033.5 597 2.776 18.8 13,80033 382 2.582 18.6 13,658

300 760 35 1.35 0.130 16.1 12,25933 96 1.982 18.0 13,66633 73 1.863 17.9 13,57632 285 2.455 18.5 14,02630 700 2.845 18.8 14,32230 1017 3.007 19.0 14,44528 1682 3.223 19.2 14,60924 10,739 4.031 20.0 15,22421 28,517 4.455 20.5 15,546

350 810 29 42 1.623 17.6 14,27526 208 2.318 18.3 14,83826 148 2.170 18.2 14,71826 163 2.212 18.2 14,75224 446 2.649 18.6 15,10624 470 2.672 18.7 15,12422.5 868 2.939 18.9 15,34121 1912 3.281 19.3 15,61821 1663 3.221 19.2 15,56920 2814 3.450 19.5 15,75516.5 14,705 4.167 20.2 16,33514 27,325 4.436 20.4 16,553

375 835 21 397 2.599 18.6 15,53017 2063 3.314 19.3 16,127

400 860 26 7 0.845 16.8 14,48726 6.1 0.778 16.8 14,42924 16 1.204 17.2 14,79524 19 1.279 17.3 14,86022 50 1.699 17.7 15,22121 108 2.033 18.0 15,50821 70 1.845 17.8 15,34721 74 1.869 17.9 15,36721 72 1.857 17.9 15,35721 67 1.826 17.8 15,33021 72 1.857 17.9 15,35721 69 1.839 17.8 15,34219 194 2.288 18.3 15,72817 468 2.670 18.7 16,05617 474 2.676 18.7 16,06113 2445 3.388 19.4 16,67410 29,125 4.464 20.5 17,5998.5 34,800+ 4.532 20.5 17,658

(continued)

Page 130: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

126 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table 6061-15 (continued)

Test Applied RuptureCLMP = 16

temperature (T) stress, life, (t), T(C + log t)°F °R ksi h log t C + log t LMP

6061-T651 plate (Part 2)450 910 21 4.8 0.681 16.7 15,180

17 27 1.431 17.4 15,86217 22.4 1.350 17.4 15,78913 177 2.248 18.2 16,60613 257 2.410 18.4 16,75313 121 2.083 18.1 16,45613 182 2.260 18.3 16,61711 681 2.833 18.8 17,13811 941 2.974 19.0 17,26611 632 2.801 18.8 17,1099 4156 3.619 19.6 17,8537 13,463 4.129 20.1 18,3174 35,800+ 4.554 20.6 18,704

500 960 17 1.7 0.230 16.2 15,58113 11 1.041 17.0 16,35913 23 1.372 17.4 16,67713 33 1.519 17.5 16,81813 9.2 0.864 16.9 16,18911 64 1.806 17.8 17,09411 82 1.908 17.9 17,19211 77 1.892 17.9 17,1769.5 278 2.444 18.4 17,7069.5 271 2.433 18.4 17,6968 721 2.858 18.9 18,1048 1078 3.032 19.0 18,2717 1081 3.033 19.0 18,2726 1838 3.264 19.3 18,4935 2824 3.451 19.5 18,6733 31,500 4.498 20.5 19,678

550 1,010 13 1 0.000 16.0 16,16011 6 0.778 16.8 16,9469.5 27 1.431 17.4 17,6059 28.8 1.459 17.5 17,6348 76 1.881 17.9 18,0608 102 2.009 18.0 18,1897 153 2.185 18.2 18,3676 224 2.350 18.4 18,5346 244 2.387 18.4 18,5714 763 2.883 18.9 19,0724 753 2.877 18.9 19,0662.5 35,400+ 4.549 20.5 20,754

600 1,060 9.5 2.4 0.380 16.4 17,3638 11 1.041 17.0 18,0637 20 1.301 17.3 18,3396 38 1.580 17.6 18,6356 45 1.653 17.7 18,7124 130 2.114 18.1 19,2014 144 2.158 18.2 19,2474 126 2.100 18.1 19,1863 500 2.699 18.7 19,8212 10,749+ 4.031 20.0 21,233

650 1,110 6 8.5 0.929 16.9 18,7914 29 1.462 17.5 19,3833 79 1.897 17.9 19,8663 115 2.061 18.1 20,0482.5 721 2.858 18.9 20,932

700 1,160 3 15 1.176 17.2 19,9243 20 1.301 17.3 20,0692.5 181 2.258 18.3 21,1792.5 227 2.356 18.4 21,2932 1086 3.036 19.0 22,082

750 1,210 2 332 2.521 18.5 22,410

Page 131: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 127

0

5

10

15

20

40

35

30

25

Rupture time, h102 1041 10310 105

Stre

ss ru

ptur

e st

reng

th, k

si

212 °F250 °F

200 °F

300 °F

350 °F

500 °F

700 °F

750 °F

650 °F600 °F

550 °F

375 °F

275 °F

400 °F

450 °F

(Test discontinued)

400 860 375 835 350 810 300 760 275 735 250 710 212 672 200 660

750 1210 700 1160 650 1110 600 1060 550 1010 500 960 450 910

°F °R °F °R Test temperature Test temperatureU of M data U of M dataAlcoa data Alcoa data

Fig. 6061-1 Stress rupture strengths of 6061-T651 plate at various temperatures. Long-transverse specimen

Page 132: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

128 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 6061-2 Archival Larson-Miller parametric master curve for stress rupture strengths of 6061-T6 products except extrusions. CLMP = 19.6

Page 133: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 129

Fig.

606

1-3

Lars

on-M

iller

par

amet

ric

mas

ter

curv

e fo

r st

ress

rup

ture

str

engt

hs o

f 606

1-T6

51 p

late

with

var

ying

CLM

Pva

lues

Page 134: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

130 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 6061-4 Comparison of Larson-Miller parametric master curves for stress rupture strengths of 6061-O and 6061-T651 plate. CLMP = 20.3

Fig. 6061-5 Comparison of Larson-Miller parametric master curves for stress rupture strengths of 6061-T651 plate and 6061-T6 sheet and rolled and drawnrod. CLMP = 20.3

Page 135: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 131

Fig. 6061-6 Archival Larson-Miller parametric master curve for 0.1% creep strengths of 6061-T651 rolled and drawn rod. CLMP = 25.0

Fig. 6061-7 Archival Larson-Miller parametric master curve for 0.1% creep strengths of 6061-T6511 extruded rod. CLMP = 17.0

Page 136: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

132 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 6061-8 Archival Larson-Miller parametric master curve for 0.2% creep strengths of 6061-T6511 extruded rod. CLMP = 19.0

Fig. 6061-9 Archival Larson-Miller parametric master curve for 0.5% creep strengths of 6061-T651 rolled and drawn rod. CLMP = 16.8

Page 137: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 133

Fig. 6061-10 Archival Larson-Miller parametric master curve for 0.5% creep strengths of 6061-T6511 extruded rod. CLMP = 20.0

Fig. 6061-11 Archival Larson-Miller parametric master curve for 1% creep strengths of 6061-T6511 extruded rod. CLMP = 20.4

Page 138: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

134 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 6061-12 Archival Larson-Miller parametric master curve for strength at minimum creep rate of 6061-T6 products. CLMP = 23.48

Fig. 6061-13 Stress rupture strengths of 6061-T6 plate as-welded with 4043 filler alloy (Lot B) at various temperatures

Fig. 6061-14 Archival Larson-Miller parametric master curve for stress rupture strengths of 6061-T6 plate as-welded with 4043 filler alloy, Lot A. CLMP = 18.1

Page 139: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 135

Fig. 6061-15 Archival Larson-Miller parametric master curve for stress rupture strengths of 6061-T6 plate as-welded with 4043 filler alloy, Lot A. CLMP = 21.7

Fig. 6061-16 Archival Larson-Miller parametric master curve for stress rupture strengths of 6061-T6 plate welded with 4043 filler alloy, Lot A. CLMP = 24.647

Fig. 6061-17 Archival Larson-Miller parametric master curve for stress rupture strengths of 6061-T6 plate as-welded with 4043 filler alloy, Lot A. CLMP = 25.3

Page 140: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

136 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 6061-18 Archival Larson-Miller parametric master curve for stress rupture strengths of 6061-T6 plate welded with 4043 filler alloy, Lot A. CLMP = 27.0

Fig. 6061-19 Archival Larson-Miller parametric master curve for stress rupture strengths of 6061-T6 plate as-welded with 4043 filler alloy, Lot A. CLMP = 29.0

Fig. 6061-20 Archival Larson-Miller parametric master curve for stress rupture strengths of 6061-T6 plate as-welded with 4043 filler alloy, Lot B. CLMP = 13.7

Page 141: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 137

Fig. 6061-21 Archival Larson-Miller parametric master curve for stress rupture strengths of 6061-T6 plate as-welded with 4043 filler alloy, Lot B. CLMP = 15.4

Fig. 6061-22 Archival Larson-Miller parametric master curve for stress rupture strengths of 6061-T6 plate as-welded with 4043 filler alloy, Lot B. CLMP = 16.9

Fig. 6061-23 Archival Larson-Miller parametric master curve for stress rupture strengths of 6061-T6 plate as-welded with 4043 filler alloy, Lot C. CLMP = 21.3

Page 142: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

138 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 6061-24 Archival Larson-Miller parametric master curve for stress rupture strengths of 6061-T6 plate welded with 4043 filler alloy, composite. CLMP = 20.3

Fig. 6061-25 Archival Larson-Miller parametric master curve for strengths at minimum creep rate of 6061-T6 plate welded with 4043 filler alloy, Lot A. CLMP = 26.846

Page 143: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 139

Fig. 6061-26 Archival Larson-Miller parametric master curve for stress rupture strengths of 6061-T6 plate welded with 5356 filler alloy. CLMP = 14.8

Fig. 6061-27 Comparison of Larson-Miller parametric master curves for stress rupture strengths of parent metal and 4043 welds as-welded in 6061-T651plate. AW, tested as-welded. CLMP = 17.4

Page 144: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

140 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 6061-28 Comparison of Larson-Miller parametric master curves for stress rupture strengths of parent metal and 4043 welds as-welded and heat treatedand aged after welding in 6061-T651 plate. W, weld; AW, tested as-welded; HTAW, tested after heat treatment and aging after welding.

CLMP = 17.4

Fig. 6061-29 Comparison of Larson-Miller parametric master curves for stress rupture strengths of parent metal 6061-T651 plate and of 4043 and 5356welds as-welded (AW) in 6061-T651 plate. CLMP = 20.3

Page 145: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 141

Fig. 6061-30 Comparison of Larson-Miller parametric master curves for stress rupture strengths of 5454-H34 and 6061-T651 plate. CLMP = 16

Page 146: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

142 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

6063-T5, T6

Table 6063-1 Stress rupture data for 6063-T6 and isostress calculationsTest Applied Rupture

Alloy and temperature stress, life, (t), CLMP = 19.0 CLMP = 20.0 CLMP = 21.0

temper oF oR ksi h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

6063-T5 212 672 24.0 19 1.278 20.3 13,627 21.3 14,299 22.3 14,971212 672 23.5 9.7 0.987 20.0 13,431 21.0 14,103 22.0 14,775212 672 22.5 463 2.666 21.7 14,560 22.7 15,232 23.7 15,904212 672 21.0 1255 3.100 22.1 14,851 23.1 15,523 24.1 16,195300 760 20.0 2.94 0.467 19.5 14,795 20.5 15,555 21.5 16,315300 760 18.0 172 2.236 21.2 16,139 22.2 16,899 23.2 17,659300 760 17.0 131.5 2.119 21.1 16,050 22.1 16,810 23.1 17,570300 760 16.0 1040 3.158 22.2 16,840 23.2 17,600 24.2 18,360400 860 15.0 5.2 0.716 19.7 16,956 20.7 17,816 21.7 18,676400 860 12.0 50 1.699 20.7 17,801 21.7 18,661 22.7 19,521400 860 8.5 504 2.702 21.7 18,664 22.7 19,524 23.7 20,384

6063-T6 212 672 32.0 7.8 0.892 19.9 13,367 20.9 14,039 21.9 14,711212 672 31.0 19.1 1.281 20.3 13,629 21.3 14,301 22.3 14,973212 672 28.0 894 2.951 22.0 14,751 23.0 15,423 24.0 16,095300 760 24.0 25 1.398 20.4 15,502 21.4 16,262 22.4 17,022300 760 22.0 195.5 2.291 21.3 16,181 22.3 16,941 23.3 17,701300 760 20.0 442 2.645 21.6 16,450 22.6 17,210 23.6 17,970400 860 15.0 16.3 1.204 20.2 17,375 21.2 18,235 22.2 19,095400 860 12.0 97.3 1.988 21.0 18,050 22.0 18,910 23.0 19,770400 860 8.5 570 2.756 21.8 18,710 22.8 19,570 23.8 20,430

Isostress calculations for 6063-T6

Alloy and Isostress, Temperature (T1) Temperature (T2) (T1 log t1) – CLMPtemper ksi °F °R Time (t1), h log t1 T1 log t1 °F °R Time (t2), h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP avg

6063-T5 20.0 212 672 2200 3.342 2245.8 300 760 2.94 0.467 354.9 1890.9 88 21.5 (Estimated)18.0 212 672 20,000 4.301 2890.3 300 760 15 1.278 971.3 1919.0 88 21.8 (Estimated)15.0 300 760 3000 3.477 2642.5 400 860 5.2 0.716 615.8 2026.8 100 20.3 (Estimated)

Average = 21.26063-T6 25.0 212 672 10,000 4.000 2688.0 300 760 10 1.000 760.0 1928.0 88 21.9 (Estimated)

16.0 300 760 1000 3.000 2280.0 400 860 4 0.602 517.7 1762.3 100 17.6 (Estimated)15.0 300 760 6200 3.792 2881.9 400 860 16.3 1.212 1042.3 1839.6 100 18.4 (Estimated)

Average = 19.3Overall average = 20.2

Fig. 6063-1 Archival Larson-Miller parametric master curve for strength at minimum creep rate of 6063-T5 extruded shapes. CLMP = 12.723

Page 147: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 143

Fig. 6063-2 Archival Larson-Miller parametric master curve for Strength at minimum creep rate of 6063-T6 extruded shapes. CLMP = 14.13

Fig. 6063-3 Comparison of Larson-Miller parametric master curves for stress rupture strengths of 6063-T5 and 6063-T6 extruded shapes. CLMP = 20

Page 148: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

144 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Isostress, Temperature (T1) Time (t), Temperature (T2) Time (t2), (T1 log t1) –ksi oF oR h log t1 T1 log t1

oF oR h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP

48.0 300 760 330 2.519 1914.4 350 810 9 0.954 772.7 1141.7 50 22.845.0 300 760 1092 3.038 2308.9 350 810 30 1.477 1196.4 1112.5 50 22.340.0 350 810 190 2.279 1846.0 400 860 5 0.699 601.1 1244.9 50 24.938.0 350 810 375 2.574 2084.9 400 860 18 1.255 1079.3 1005.6 50 20.135.0 350 810 1000 3.000 2430.0 400 860 44.5 1.648 1417.3 1012.7 50 20.3

Average CLMP = 22.1

0

15

20

25

30

35

40

45

50

0 17 18 19 20 21 22Larson-Miller Parameter (LMP)/103

Stre

ss ru

ptur

e st

reng

th, k

si

55

500 960 450 910 400 860 350 810 300 760 °F °R Test temperature

CLMP = 21.1

Fig. A201.0-1 Archival Larson-Miller parametric master curve for stress rupture strengths of A201.0-T7 sand castings. CLMP = 21.1

Casting Alloys

A201.0-T7

Table A201-1 Stress rupture strengths of A201.0-T7 permanent mold castings at various temperatures and isostress calcula-tions of CLMP

Temperature (T) Stress, Time (t), CLMP = 22oF oR ksi h log t C + log t T(C + log t)

300 760 50.0 155 2.190 24.2 18,38445.0 1092 3.038 25.0 19,290

350 810 48.0 9 0.954 23.0 18,59344.0 42.5 1.628 23.6 19,13938.0 375 2.574 24.6 19,905

400 860 40.0 5 0.699 22.7 19,52135.0 44.5 1.648 23.6 20,33730.0 255 2.407 24.4 20,990

450 910 24.0 89 1.949 23.9 21,794500 960 17.0 34 1.531 23.5 22,590

Page 149: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 145

224.0-T63

Table 224-1 Stress rupture strengths of 224.0-T6 sand castings at various temperatures andisostress calculations of CLMP

Temperature (T) Stress, CLMP = 13 CLMP = 16 CLMP = 20

°F °R ksi Time (t), h log t C + log t T(C + log t) C + log t T(C + log t) C + log t T(C + log t)

300 760 42.0 7.5 0.869 13.9 10,540 16.9 12,820 20.9 15,86036.0 127 2.104 15.1 11,479 18.1 13,759 22.1 16,79933.0 210 2.322 15.3 11,645 18.3 13,925 22.3 16,96531.0 340 2.531 15.5 11,804 18.5 14,084 22.5 17,12428.0 >1000 3.000 16.0 12,160 19.0 14,440 23.0 17,480

400 860 38.0 0.15 –0.824 12.2 10,471 15.2 13,051 19.2 16,49133.0 1.3 0.114 13.1 11,278 16.1 13,858 20.1 17,29825.0 41 1.613 14.6 12,567 17.6 15,147 21.6 18,58720.0 490 2.690 15.7 13,493 18.7 16,073 22.7 19,513

450 910 29.0 0.56 –0.252 12.7 11,601 15.7 14,331 19.7 17,97125.0 4.1 0.612 13.6 12,387 16.6 15,117 20.6 18,75720.0 53 1.724 14.7 13,399 17.7 16,129 21.7 19,76916.5 352 2.547 15.5 14,148 18.5 16,878 22.5 20,518

500 960 23.5 0.85 –0.071 12.9 12,412 15.9 15,292 19.9 19,13220.0 9 0.954 14.0 13,396 17.0 16,276 21.0 20,11616.5 69 1.839 14.8 14,245 17.8 17,125 21.8 20,96513.5 116 2.064 15.1 14,461 18.1 17,341 22.1 21,18112.0 616 2.790 15.8 15,158 18.8 18,038 22.8 21,87810.0 646 2.811 15.8 15,179 18.8 18,059 22.8 21,899

550 1010 15.0 28 1.447 14.4 14,591 17.4 17,621 21.4 21,66113.5 37 1.568 14.6 14,714 17.6 17,744 21.6 21,784

600 1060 15.0 3.75 0.574 13.6 14,388 16.6 17,568 20.6 21,80811.0 54.5 1.736 14.7 15,620 17.7 18,800 21.7 23,04011.0 0 0.556 13.6 14,369 16.6 17,549 20.6 21,78910.0 0 1.061 14.1 14,905 17.1 18,085 21.1 22,3258.0 0 1.362 14.4 15,224 17.4 18,404 21.4 22,6445.5 0 1.531 14.5 15,403 17.5 18,583 21.5 22,823

650 1110 10.0 14 1.146 14.1 15,702 17.1 19,032 21.1 23,4726.0 167.5 2.224 15.2 16,899 18.2 20,229 22.2 24,669

700 1160 6.0 35 1.544 14.5 16,871 17.5 20,351 21.5 24,9914.0 76 1.881 14.9 17,262 17.9 20,742 21.9 25,382

750 1210 4.0 8.5 0.929 13.9 16,854 16.9 20,484 20.9 25,324

Table 224.2 Isostress calculations for stress rupture strengths of 224.0-T62 sand castings

Isostress, Temperature (T1) Time (t1),Temperature (T2) Time (t2), (T1 log t1) –

ksi °F °R h log t1 T1 log t1oF oR h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP

33.0 300 760 210 2.322 1764.7 400 860 1.3 0.114 98.0 1666.7 100 16.728.0 300 760 1000 3.000 2280.0 400 860 0.2 –0.693 –596.0 2876.0 100 28.825.0 400 860 0.91 –0.041 –35.3 450 910 0.046 –1.337 –1216.7 1181.4 50 23.620.0 400 860 41 1.613 1387.2 450 910 4.1 0.612 556.9 830.3 50 16.620.0 450 910 53 1.724 1568.8 500 960 9.0 0.954 915.8 653.0 50 13.116.5 450 910 352 2.547 2317.8 500 960 69.0 1.839 1765.4 552.3 50 11.015.0 500 960 100 2.000 1920.0 550 1010 28 1.447 1461.5 458.5 50 9.213.5 500 960 116 2.064 1981.4 550 1010 37 1.568 1583.7 397.8 50 8.015.0 500 960 100 2.000 1920.0 600 1060 3.75 0.574 608.4 1311.6 100 13.115.0 550 1010 28 1.447 1461.5 600 1060 3.75 0.574 608.4 853.0 50 17.113.5 550 1010 37 1.568 1583.7 600 1060 10 1.000 1060.0 523.7 50 10.510.0 600 1060 120 2.079 2203.7 650 1110 14 1.146 1272.1 931.7 50 18.66.0 650 1110 167.5 2.224 2468.6 700 1160 35 1.544 1791.0 677.6 50 13.64.0 700 1160 76 1.881 2182.0 750 1210 8.5 0.929 1124.1 1057.9 50 21.2

Overall average CLMP 15.8

Page 150: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

146 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 224.0-1 Archival Larson-Miller parametric master curve for stress rupture strengths of 224.0-T62 sand castings. CLMP = 11.0

Fig. 224.0-2 Larson-Miller parametric master curve for stress rupture strengths of 224.0-T62 sand castings. CLMP = 16.0

Page 151: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 147

249.0-T63

Table 249-1 Stress rupture strengths of 249.0-T63 permanent mold castings at various temperatures and isostress cal-culations of CLMP

Temperature (T) Stress, Time (t), CLMP = 20

°F °R ksi h log t C + log t T(C + log t)

300 760 52.0 0.24 –0.620 19.4 14,72945.0 45 1.653 21.7 16,45640.0 102 2.009 22.0 16,727

350 810 45.0 0.59 –0.229 19.8 16,01538.0 21 1.322 21.3 17,27134.0 69 1.839 21.8 17,69025.0 746 2.873 22.9 18,527

400 860 34.0 3.6 0.556 20.6 17,67830.0 15 1.176 21.2 18,21122.0 273 2.436 22.4 19,295

Isostress, Temperature (T1) Time (t1),Temperature (T2) Time (t2), (T1 log t1) –

ksi °F °R h log t1 T1 log t1 °F °R h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP

45.0 300 760 45 1.653 1256.3 350 810 0.59 –0.229 –185.5 1441.8 50 28.842.5 300 760 100 2.000 1520.0 350 810 3.5 0.544 440.6 1079.4 50 21.634.0 350 810 69 1.839 1489.6 400 860 3.6 0.556 478.2 1011.4 50 20.230.0 350 810 200 2.301 863.8 400 860 15 1.176 1011.4 852.5 50 17.025.0 350 810 746 2.873 2327.1 400 860 88 1.944 1671.8 655.3 50 13.1

Overall average CLMP 20.2

Fig. 249.0-1 Archival Larson-Miller parametric master curve for stressrupture strengths of 249.0-T63 sand castings. CLMP = 12.9

Fig. 249.0-2 Larson-Miller parametric master curve for stress rupturestrengths of 249.0-T63 sand castings. CLMP = 20

Page 152: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

148 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. 270.0-1 Archival Larson-Miller parametric master curve for 0.2% creep strengths of 270.0-T7 sand castings. CLMP = 26.0

354.0-T61

Table 354-1 Stress rupture strengths of 354.0-T61 permanent mold castings at various temperatures and isostress calcula-tions of CLMP

Temperature Stress, Time (t), CLMP = 17 CLMP = 20oF oR ksi h log t C + log t T(C + log t) C + log t T(C + log t)

350 810 44.0 0.292 –0.535 16.5 13,337 19.5 15,76742.0 3.14 0.497 17.5 14,173 20.5 16,60339.0 30 1.477 18.5 14,966 21.5 17,39637.0 51.5 1.712 18.7 15,157 21.7 17,58735.0 90 1.954 19.0 15,353 22.0 17,78329.0 430 2.633 19.6 15,903 22.6 18,33325.0 885 2.947 19.9 16,157 22.9 18,587

400 860 39.0 0.36 –0.442 16.6 14,240 19.6 16,82037.0 1.05 0.023 17.0 14,640 20.0 17,22030.0 21.5 1.332 18.3 15,766 21.3 18,34625.0 623 1.792 18.8 16,161 21.8 18,74125.0 69.7 1.843 18.8 16,205 21.8 18,78515.0 615 2.789 19.8 17,019 22.8 19,59913.0 940 2.973 20.0 17,177 23.0 19,757

Isostress, Temperature (T1) Time (t), Temperature (T2) Time (t2), (T1 log t1) –ksi oF oR h log t1 T1 log t1

oF oR h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP

39.0 350 810 30 1.477 1196.4 400 860 0.36 –0.442 –380.1 1576.5 50 31.537.0 350 810 51.5 1.712 1386.7 400 860 1.05 0.023 19.8 1366.9 50 27.335.0 350 810 90 1.954 1582.7 400 860 3 0.477 410.2 1172.5 50 23.530.0 350 810 300 2.477 2006.4 400 860 21.5 1.332 1145.5 860.9 50 17.225.0 350 810 885 2.947 2387.1 400 860 623 1.792 1541.1 846.0 50 16.925.0 350 810 885 2.947 2387.1 400 860 69.7 1.843 1585.0 802.1 50 16.0

Overall average = 22.1

270.0-T7

Page 153: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Data Sets / 149

Fig. 354.0-1 Archival Larson-Miller parametric master curve for stressrupture strengths of 354.0-T61 permanent mold castings.

CLMP = 17.0

Fig. 354.0-2 Larson-Miller parametric master curve for stress rupturestrengths of 354.0-T61 permanent mold castings. CLMP =

20.0

C355.0-T6

Table 355-1 Stress rupture strengths of 355.0-T6 permanent mold castings at various temperatures and isostress calcula-tions of CLMP incorrectTemperature Stress, Time (t), CLMP = 20

°F °R ksi h log t C + log t T(C + log t)

300 760 40.0 0.092 –1.036 20.0 15,17338.0 32 1.505 22.5 17,10436.5 273 2.436 23.4 17,81135.0 661 2.820 23.8 18,10334.0 677.5 2.831 23.8 18,11233.0 1114 3.049 24.0 18,277

350 810 35.0 14 1.125 22.1 17,92130.0 270.5 2.432 23.4 18,98025.0 703 2.847 23.8 19,316

400 860 26.0 36 1.556 22.6 19,39819.0 308 2.489 23.5 20,20115.0 653 2.819 23.8 20,484

500 960 20.0 0.367 –0.435 20.6 19,74210.0 63.0 1.799 22.8 21,8877.5 248.0 2.394 23.4 22,458

Isostress Temperature (T1) Time (t), log Temperature (T2) Time (t2), (T1 log t1) –ksi oF oR h t1 T1 log t1

oF oR h log t2 T2 log t2 (T2 log t2) T2 – T1 CLMP

35.0 300 760 661 2.820 2143.2 350 810 14 1.125 911.3 1232.0 50 24.625.0 350 810 703 2.847 2306.1 400 860 50 1.699 1461.1 844.9 50 16.920.0 400 860 200 2.301 1978.9 500 960 0.367 –0.435 –417.6 2396.5 100 24.0

Overall average = 21.8

Page 154: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

150 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Fig. C355.0-1 Archival Larson-Miller parametric master curve for stress rupture strengths of C355.0-T6 permanent mold castings. CLMP = 14.0

Fig. C355.0-2 Larson-Miller parametric master curve for stress rupture strengths of C355.0-T6 permanent mold castings. CLMP = 21.0

Page 155: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

The aluminum alloy and temper designation system was devel-oped by and is administered by the Aluminum Association, Inc.,and is published both in Aluminum Standards and Data (The Aluminum Association, Arlington, VA, 2006) and as AmericanStandards Institute (ANSI) Standard H35.1. This system is nowrecognized worldwide under the International Accord for Alu-minum Alloy Designation. The original system was recognizedprimarily for wrought alloys, but more recently the parallel sys-tem for casting alloys has also been widely used.

Alloy Designations

Aluminum alloy designations are divided into two types de-pending on how they are produced: wrought products (sheet andplate, extruded shapes, forgings, and rolled shapes) or cast prod-ucts (sand castings, die castings, permanent mold castings, etc.).As indicated, the wrought category is a broad one, since aluminumalloys may be shaped by virtually every known process. Cast al-loys are those that are poured molten into sand (sand casting) orhigh-strength steel (permanent mold or die casting) molds and areallowed to solidify to produce the desired shape. Ingot to be sub-sequently fabricated into wrought products is designated by thewrought alloy system.

Each wrought or cast aluminum alloy is designated by a numberto distinguish it as a wrought or cast alloy and to categorize thealloy. A wrought alloy is given a four-digit number. The first digitclassifies the alloy by alloy series, or principal alloying element.The second digit, if different than 0, denotes a modification in thebasic alloy. The third and fourth digits form an arbitrary numberthat identifies the specific alloy in the series. The categories ofwrought alloys are shown in Table A1.1.

Cast alloys are assigned a three-digit number followed by a dec-imal point and a fourth digit. As for wrought alloys, the first digitsignifies the alloy series or principal addition; the second and thirddigits identify the specific alloy; the digit after the decimal pointindicates whether the alloy composition is for the final casting(0.0) or for ingot (0.1 or 0.2). A capital letter prefix (A, B, C, etc.)indicates a modification of the basic alloy. The categories of castalloys are shown in Table A1.2.

Temper Designations

Specification of an aluminum alloy is not complete without des-ignating the metallurgical condition, or temper, of the alloy. Atemper designation system, unique for aluminum alloys, was de-veloped by the Aluminum Association and is used for all wroughtand cast alloys. The temper designation follows the alloy designa-tion, the two being separated by a hyphen. Basic temper designa-tions consist of letters; subdivisions, where required, are indicatedby one or more digits following the letter. The basic tempers are:

• F—As-Fabricated. Applies to the products of shapingprocesses in which no special control over thermal conditionsor strain hardening is employed. For wrought products, thereare no mechanical property limits.

• O—Annealed. Applies to wrought products that are annealedto obtain the lowest strength temper and to cast products that

Appendix 1

Aluminum Alloy and Temper Designation Systems

Table A1.1 Designation system for wrought aluminum alloysAlloy series Description or major alloying element

1xxx 99.00% minimum aluminum2xxx Copper3xxx Manganese4xxx Silicon5xxx Magnesium6xxx Magnesium and silicon7xxx Zinc8xxx Other element9xxx Unused series

Table A1.2 Designation system for cast aluminum alloysAlloy series Description for major alloying element

1xx.x 99.00% minimum aluminum2xx.x Copper3xx.x Silicon plus copper and/or magnesium4xx.x Silicon5xx.x Magnesium6xx.x Unused series7xx.x Zinc8xx.x Tin9xx.x Other elements

Parametric Analyses of High-Temperature Data for Aluminum Alloys J. Gilbert Kaufman, p 151-152 DOI: 10.1361/paht2008p151

Copyright © 2008 ASM International® All rights reserved. www.asminternational.org

Page 156: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

152 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

are annealed to improve ductility and dimensional stability.The O may be followed by a digit other than zero.

• H—Strain-Hardened (Wrought Products Only). Applies toproducts that have their strength increased by strain hardening,with or without supplementary thermal treatments to producesome reduction in strength. The H is always followed by twoor more digits (see Table A1.3).

• W—Solution Heat Treated. An unstable temper applicableonly to alloys that spontaneously age at room temperatureafter solution heat treatment. This designation is specific onlywhen the period of natural aging is indicated, for example, Wl/2 hr.

• T—Thermally Treated to Produce Stable Tempers Other thanF, O, or H. Applies to products that are thermally treated, withor without supplementary strain hardening, to produce stabletempers. The T is always followed by one or more digits (seeTable A1.4).

The major subdivision indicating more detailed variationswithin the H and T tempers are covered in Tables A1.3 and A1.4.For more detailed information about the Aluminum Associationaluminum alloy and temper systems, readers are referred to Alu-minum Standards and Data, English and metric editions, The Alu-minum Association, Arlington, VA, 2006.

Table A1.4 Subdivisions of T temper: thermally treated

First digit indicates specific sequence of treatments:T1—Cooled from an elevated-temperature shaping process and naturally aged

to a substantially stable conditionT2—Cooled from an elevated-temperature shaping process, cold worked, and

naturally aged to a substantially stable conditionT3—Solution heat treated, cold worked, and naturally aged to a substantially

stable condtionT4—Solution heat treated and naturally aged to a substantially stable conditionT5—Cooled from an elevated-temperature shaping process and then artificially

agedT6—Solution heat treated and then artificially agedT7—Solution heat treated and overaged/stabilizedT8—Solution heat treated, cold worked, and then artificially agedT9—Solution heat treated, artificially aged, and then cold workedT10—Cooled from an elevated-temperature shaping process, cold worked, and

then artificially agedSecond digit indicates variation in basic treatment:Examples:

T42 or T62—Heat treated to temper by user Additional digits indicate stress relief:

Examples:TX51 or TXX51—Stress relieved by stretchingTX52 or TXX52—Stress relieved by compressingTX54 or TXX54—Stress relieved by combination of stretching and compressing

Table A1.3 Subdivisions of H temper: strain hardened

First digit indicates basic operations:H1—Strain hardened onlyH2—Strain hardened and partially annealedH3—Strain hardened and stabilizedH4—Strain hardened, lacquered, or painted

Second digit indicates degree of strain hardening:HX2—Quarter hardHX4—Half hardHX8—Full hardHX9—Extra hard

Third digit indicates variation of two-digit temper.

Page 157: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

The following list of terms is associated primarily with alu-minum alloys and products and with parametric analysis of creepdata. The list is not intended to include every term likely to beused within the aluminum industry, but it is hoped that most of theterms that are unique to the industry are defined. Many of theseterms come from the Aluminum Association publication Alu-minum Standards and Data and are republished with the permis-sion of the Aluminum Association. ANSI. American National Standards InstituteASME. American Society of Mechanical EngineersAWS. American Welding Societyage hardening. An aging process that results in increased strengthand hardness aging. Precipitation from solid solution resulting in a change inproperties of an alloy, usually occurring slowly at room tempera-ture (natural aging) and more rapidly at elevated temperatures (ar-tificial aging).annealing. A thermal treatment to soften metal by removal ofstress resulting from cold working or by coalescing precipitatesfrom solid solution.artificial aging. See agingcasting (noun). An object formed by pouring or pumping moltenmetal into a mold or set of dies and allowing it to solidify.casting (verb). The act of pouring or pumping molten metal into amold (made of sand, metal, ceramic, or graphite) or a set of metaldies.cold working. Plastic (i.e., permanent) deformation of metal atsuch temperature and rate that strain hardening occurs.corrosion, exfoliation. Corrosion that progresses approximatelyparallel to the metal surface, causing layers of the metal to be ele-vated by the formation of corrosion product.corrosion, galvanic. Corrosion associated with the current of gal-vanic cell consisting of two dissimilar conductors in an electrolyteor two similar conductors in dissimilar electrolytes. Aluminumwill corrode if it is anodic to the dissimilar metal.corrosion, intergranular. Corrosion occurring preferentially atgrain boundaries (also termed “intercrystalline corrosion”).corrosion, pitting. Localized corrosion resulting in small pits orcraters in a metal surface.corrosion, stress-cracking. Failure by cracking resulting fromselective directional attack caused by the simultaneous interac-tion of sustained tensile stress at an exposed surface with thechemical or electrochemical effects of the surface environment.The term often is abbreviated SCC or scc, which correctly standsfor stress-corrosion cracking.

creep rupture. A type of loading of a material usually character-ized by uniform constant loading for some period of time, eitherthe time to develop a specific amount of strain, or until the mate-rial ruptures; also sometimes called stress rupture.creep rupture strength. Stress at fracture of a material subjectedto sustained constant loading; referred to herein as stress rupturestrength.creep strain. Strain induced in a material by sustained loading.die casting. A casting produced by the die casting process, inject-ing molten metal under pressure into a mold chamber, which isformed by metal die.elongation. The percentage increase in distance between twogage marks that results from stressing the specimen in tension tofracture. The original gage length is usually 50 mm (2 in.) for flatspecimens. For cylindrical specimens, the gage length is 5D formetric usage and 4D for U.S. standards. Elongation values dependto some extent on size and form of the test specimen. For exam-ple, the values obtained from sheet specimens will be lower forthin sheet than for thicker sheet; those obtained in 5D will belower than those for 4D.endurance limit. The limiting stress below which a material willwithstand a specified large number of cycles of stress.extrusion. A product formed by pushing material through a die.fatigue. The tendency for a metal to break under conditions of re-peated cyclic stressing considerably below the ultimate tensilestrength.filler alloy. The alloy used as weld wire in gas metal arc weldingaluminum alloys.forging. A product formed to the required shape and size by work-ing in impression dies.fracture toughness. A generic term for measure of resistance tolow-ductility extension of a crack. The term is sometimes re-stricted to results of a fracture mechanics test, which is directlyapplicable in fracture control. It may also be measured in relativeterms by notch-tensile or tear testing.grain size. A measure of crystal size usually reported in terms ofaverage diameter in millimeters, grains per square millimeter, orgrains per cubic millimeter.hardness. Resistance to plastic deformation, usually by indenta-tion. The term also may refer to stiffness or temper, or to resist-ance to scratching, abrasion, or cutting. heat treatable alloy. An alloy that may be strengthened by a suit-able thermal treatment.heat treating. Heating and cooling a solid metal or alloy in such away as to obtain desired conditions or properties. Commonly used

Appendix 2

Terminology and Nomenclature

Parametric Analyses of High-Temperature Data for Aluminum Alloys J. Gilbert Kaufman, p 153-154 DOI: 10.1361/paht2008p153

Copyright © 2008 ASM International® All rights reserved. www.asminternational.org

Page 158: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

154 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

as a shop term to denote a thermal treatment to increase strength.Heating for the sole purpose of hot working is excluded from themeaning of this definition. See solution heat treating; aging.ingot. A cast form suitable for remelting or fabricating. long transverse direction. For plate, sheet, and forgings, the di-rection perpendicular to the longitudinal direction that is also atright angles to the thickness of the product. See also longitudinaland short transverse directions. longitudinal direction. The direction of major metal flow in aworking operation. See also long and short transverse directions.mechanical properties. Those properties of a material that are as-sociated with elastic and inelastic reaction when force is applied,or that involve the relationship between stress and strain, for exam-ple, modulus of elasticity, tensile strength, endurance limit. Theseproperties often are incorrectly referred to as physical properties.microporosity. Extremely fine porosity in castings caused by shrinkage or gas evolution, apparent on radiographic film asmottling.modulus of elasticity. The ratio of stress to corresponding strainthroughout the range where they are proportional. As there arethree kinds of stresses, so there are three kinds of moduli of elas-ticity for any material modulus in tension, in compression, and inshear.natural aging. See agingoffset. Yield strength by the offset method is computed from aload-strain curve obtained by means of an extensometer. Astraight line is drawn parallel to the initial straight line portion ofthe load-strain curve and at a distance to the right correspondingto 0.2% offset (0.002 mm per mm, or 0.002 in. per in., of gagelength). The load reached at the point where this straight line in-tersects the curve divided by the original cross-sectional area(mm2, or in.2) of the tension test specimen is the yield strength.parameter. A compound factor involving two or more independ-ent variables, such as time and temperature.parametric analysis. Analysis of some property or characteristicby a compound factor involving two or more variables such astime and temperature.permanent-mold casting. A casting process that uses a long-lifemold, usually metal, into which molten metal is poured by gravity.Metals cast are usually aluminum alloys, although a few produc-ers pour iron into water-cooled metal dies.physical properties. The properties, other than mechanical proper-ties, that pertain to the physics of a material, for example, density,electrical conductivity, heat conductivity, thermal expansion.precipitation hardening. See agingprecipitation heat treating. See agingpreheating. A high-temperature soaking treatment to provide a de-sired metallurgical structure. Homogenizing is a form of preheating.quenching. Controlled rapid cooling of a metal from an elevatedtemperature by contact with a liquid, a gas, or a solid.sand castings. Metal castings produced in sand molds.shear strength. The maximum stress that a material is capable ofsustaining in shear.

short transverse direction. For wrought products, the directionthrough the thickness perpendicular to both longitudinal and longtransverse directions.solution heat treating. Heating an alloy at a suitable temperaturefor sufficient time to allow soluble constituents to enter into solidsolution where they are retained in a supersaturated state afterquenching.specimen. That portion of a sample taken for evaluation of somespecific characteristic or property.stabilizing. A low-temperature thermal treatment designed to pre-vent age softening in certain strain-hardened alloys containingmagnesium.strain. A measure of the change in size or shape of a body understress, referred to its original size or shape. Tensile or compressivestrain is the change, due to force, per unit of length in an originallinear dimension in the direction of the applied force. strain hardening. Modification of a metal structure by coldworking, resulting in an increase in strength and hardness with aloss in ductility.stress. Force per unit of area. Stress is normally calculated on thebasis of the original cross-sectional dimensions. The three kindsof stresses are tensile, compressive, and shear.stress-corrosion cracking (SCC). See corrosion, stress-crackingstress rupture. A type of loading of a material usually character-ized by uniform constant loading for some period of time, eitherthe time to develop a specific amount of strain, or until the mate-rial ruptures; also sometimes called creep rupture.stress rupture strength. Stress at fracture of a material subjectedto sustained constant loading; also sometimes referred to as creeprupture strength.temper. The condition produced by either mechanical or thermaltreatment, or both, and characterized by a certain structure andmechanical properties.tensile strength. In tensile testing, the ratio of maximum load tooriginal cross-sectional area; also called ultimate tensile strengthor ultimate strength.ultimate tensile strength. See tensile strengthwelding. Joining two or more pieces of aluminum by applyingheat or pressure, or both, with or without filler metal (GMAC orMIG and GTIC or TIG, respectively), to produce a localizedunion through fusion or recrystallization across the interface.(Cold welding is a solid-state welding process in which pressureis used at room temperature to produce coalescence of metals withsubstantial deformation at the weld.)welding wire. Aluminum alloy wire for use as filler metal in join-ing by welding; also called filler alloy.work hardening. See strain hardeningwrought product. A product that has been subjected to mechani-cal working by such processes as rolling, extruding, forging, andso on.yield strength. The stress at which a material exhibits a specifiedpermanent set during tensile, compressive, or shear loading. Theoffset used for aluminum and its alloys is 0.2% of gage length.

Page 159: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Appendix 3

Nominal Compositions and Typical Mechanical Properties of Some Aluminum Alloys

Table A3.1 Nominal compositions of wrought aluminum alloy

Alloy Silicon, % Copper, % Manganese, % Magnesium, % Chromium, % Nickel, % Zinc, % Titanium, %

1xxx(a) . . . . . . . . . . . . . . . . . . . . . . . .

2024 . . . 4.4 0.6 1.5 . . . . . . . . . . . .2219(b) . . . 6.3 0.30 . . . . . . . . . . . . 0.06

3003 . . . 0.12 1.2 . . . . . . . . . . . . . . .3004 . . . . . . 1.2 1 . . . . . . . . . . . .

4043 5.2 . . . . . . . . . . . . . . . . . . . . .

5050 . . . . . . . . . 1.4 . . . . . . . . . . . .5052 . . . . . . . . . 2.5 0.25 . . . . . . . . .5083 . . . . . . 0.7 4.4 0.15 . . . . . . . . .5154 . . . . . . . . . 3.5 0.25 . . . . . . . . .5183 . . . . . . 0.8 4.8 0.15 . . . . . . . . .5356 . . . . . . 0.12 5.0 0.12 . . . . . . 0.135454 . . . . . . 0.8 2.7 0.12 . . . . . . . . .5456 . . . . . . 0.8 5.1 0.12 . . . . . . . . .5554 . . . . . . 0.8 2.7 0.12 . . . . . . 0.12

6061 0.6 0.28 . . . 1.0 0.20 . . . . . . . . .6063 0.40 . . . . . . 0.7 . . . . . . . . . . . .

Note: From Aluminum Standards and Data, The Aluminum Association, 2006. Values are nominal, i.e., middle range of limits for elements for which a com-position range is specified. Aluminum and normal impurities constitute balance of composition. (a) Percent minimum aluminum: for 1060, 99.60%; for 1100, 99.00%; for 1145, 99.45%; for 1350, 99.50%. (b) Also contains 0.10% V plus 0.18% Zr.

Table A3.2 Nominal compositions of aluminum alloy castings

Alloy Silicon, % Copper, % Manganese, % Magnesium, % Chromium, % Nickel, % Zinc, % Titanium, %

A201.0(a) . . . 4.5 0.30 0.25 . . . . . . . . . 0.25224.0 5.0 0.35249.0 4.2 0.38 0.38 . . . . . . 3.0 0.18270(b) . . . . . . . . . . . . . . . . . .

354.0 9.0 1.8 . . . 0.5 . . . . . . . . . . . .

C355.0 5.0 1.25 . . . 0.5 . . . . . . . . . . . .

Note: Based on casting industry handbooks. Values are nominal, i.e., average of range of limits for elements for which a range is shown; values are represen-tative of separately cast test bars, not of specimens taken from commercial castings. Aluminum and normal impurities constitute balance of composition.(a) Also contains 0.7% Ag. (b) Not published.

Parametric Analyses of High-Temperature Data for Aluminum Alloys J. Gilbert Kaufman, p 155-158 DOI: 10.1361/paht2008p155

Copyright © 2008 ASM International® All rights reserved. www.asminternational.org

Page 160: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

156 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table A3.3 Typical mechanical properties of wrought aluminum alloys

Tension

Alloy & temper

Ultimate strength,

ksi

Yield strength,

ksi

Elongation Hardness BrinellNumber

500 kg/10 mmShear ultimate

strength, ksi

Fatigue endurance limit(c), ksi

Modulus(d) of elasticity

103, ksi2 in.(a), % 4D(b), %

1100-O 13 5 35 45 23 9 5 10.01100-H12 16 15 12 25 28 10 6 10.01100-H14 18 17 9 20 32 11 7 10.01100-H16 21 20 6 17 38 12 9 10.01100-H18 24 22 5 15 44 13 9 10.02024-T861 72 65 . . . 6 135 42 18 10.62219-T6 60 42 10 . . . . . . . . . 15 10.62219-T851 66 51 10 . . . . . . . . . 15 10.63003-O 16 6 30 40 28 11 7 10.03003-H12 19 18 10 20 35 12 8 10.03003-H14 22 21 8 16 40 14 9 10.03003-H16 26 25 5 14 47 15 10 10.03003-H18 29 27 4 10 55 16 10 10.03004-O 26 10 20 25 45 16 14 10.03004-H32 31 25 10 17 52 17 15 10.03004-H34 35 29 9 12 63 18 15 10.03004-H36 38 33 5 9 70 20 16 10.03004-H38 41 36 5 6 77 21 16 10.05050-O 21 8 24 . . . 36 15 12 10.05050-H32 25 21 9 . . . 46 17 13 10.05050-H34 28 24 8 . . . 53 18 13 10.05050-H36 30 26 7 . . . 58 19 14 10.05050-H38 32 29 6 . . . 63 20 14 10.05052-O 28 13 25 30 47 18 16 10.25052-H32 33 28 12 18 60 20 17 10.25052-H34 38 31 10 14 68 21 18 10.25052-H36 40 35 8 10 73 23 19 10.25052-H38 42 37 7 8 77 24 20 10.25083-O 42 21 . . . 22 . . . 25 . . . 10.35083-H116 46 33 . . . 16 . . . . . . 23 10.35083-H321 46 33 . . . 16 . . . . . . 23 10.35154-O 35 17 27 . . . 58 22 17 10.25154-H32 39 30 15 . . . 67 22 18 10.25154-H34 42 33 13 . . . 73 24 19 10.25154-H36 45 36 12 . . . 78 26 20 10.25154-H38 48 39 10 . . . 80 28 21 10.25454-O 36 17 22 . . . 62 23 . . . 10.25454-H32 40 30 10 . . . 73 24 . . . 10.25454-H34 44 35 10 . . . 81 26 . . . 10.25454-H111 38 26 14 . . . 70 23 . . . 10.25456-O 45 23 . . . 24 . . . . . . 10.35456-H116 51 37 . . . 16 90 30 . . . 10.35456-H321 51 37 . . . 16 90 30 . . . 10.36061-O 18 8 25 30 30 12 9 10.06061-T4, T451 35 21 22 25 65 24 14 10.06061-T6, T651 45 40 12 17 95 30 14 10.06063-O 13 7 . . . . . . 25 10 8 10.06063-T4 25 13 22 . . . . . . . . . . . . 10.06063-T5 27 21 12 . . . 60 17 10 10.06063-T6 35 31 12 . . . 73 22 10 10.06063-T83 37 35 9 . . . 82 22 . . . 10.0Note: From Aluminum Standards and Data, The Aluminum Association, 2006. Values are representative of separately cast test bars, not of specimens taken from commercial castings. For tensileyield strengths, offset = 0.2%.(a) Elongation measured over a 2 in. gage length on 1/16 in. thick sheet-type specimens. (b) Elongation measured over 2 in. gage length (4D) in 1/2 in. diameter specimens. (c) Based on500,000,000 cycles of completely reversed stress using R.R. Moore type of machines and specimens. (d) Average of tension and compression moduli; compressive modulus is nominally about2% greater than the tension modulus.

Page 161: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Appendix 3: Nominal Compositions and Typical Mechanical Properties of Some Aluminum Alloys / 157

Table A3.3M Typical mechanical properties of wrought aluminum alloys—Metric

Alloy & temper

Tension

Hardness Brinellnumber

500 kg/10 mmShear ultimatestrength, MPa

Fatigue endurance

limit(c), MPa

Modulus(d) of elasticity,

GPa

Ultimate strength,

MPa

Yield strength,

MPa

Elongation

50 mm(a), % 5D(b), %

1100-O 90 35 35 42 23 60 35 691100-H12 110 105 12 22 28 70 40 691100-H14 125 115 9 18 32 75 50 691100-H16 145 140 6 15 38 85 60 691100-H18 165 150 5 13 44 90 60 692024-T851 495 460 6 . . . 135 300 125 732219-T62 415 290 10 . . . . . . . . . 105 732219-T81, T851 455 350 10 . . . . . . . . . 105 733003-O 110 40 30 37 28 75 50 693003-H12 130 125 10 18 35 85 55 693003-H14 150 145 8 14 40 95 60 693003-H16 175 170 5 12 47 105 70 693003-H18 200 185 4 9 55 110 70 693004-O 180 70 20 22 45 110 95 693004-H32 215 170 10 15 52 115 105 693004-H34 240 200 9 10 63 125 105 693004-H36 260 230 5 8 70 140 110 693004-H38 285 250 5 5 77 145 110 695050-O 145 55 24 . . . 36 105 85 695050-H32 170 145 9 . . . 46 115 90 695050-H34 190 165 8 . . . 53 125 90 695050-H36 205 180 7 . . . 58 130 95 695050-H38 220 200 6 . . . 63 140 95 695052-O 195 90 25 27 47 125 110 705052-H32 230 195 12 16 60 140 115 705052-H34 260 215 10 12 68 145 125 705052-H36 275 240 8 9 73 160 130 705052-H38 290 255 7 7 77 165 140 705083-O 290 145 . . . 20 . . . 170 . . . 715083-H116 315 230 . . . 14 . . . . . . 160 715083-H321 315 230 . . . 14 . . . . . . 160 715154-O 240 115 27 . . . 58 150 115 705154-H32 270 205 15 . . . 67 150 125 705154-H34 290 230 13 . . . 73 165 130 705154-H36 310 250 12 . . . 78 180 140 705154-H38 330 270 10 . . . 80 195 145 705454-O 250 115 22 . . . 62 160 . . . 705454-H32 275 205 10 . . . 73 165 . . . 705454-H34 305 240 10 . . . 81 180 . . . 705454-H111 260 180 14 . . . 70 160 . . . 705456-O 310 160 . . . 22 . . . . . . . . . 715456-H116 350 255 . . . 14 90 205 . . . 715456-H321 350 255 . . . 14 90 205 . . . 716061-O 125 55 25 27 30 85 60 696061-T4, T451 240 145 22 22 65 165 95 696061-T6, T651 310 275 12 15 95 205 95 696063-O 90 50 . . . . . . 25 70 55 696063-T4 170 90 22 . . . . . . . . . . . . 696063-T5 185 145 12 . . . 60 115 70 696063-T6 240 215 12 . . . 73 150 70 696063-T83 255 240 9 . . . 82 150 . . . 69

Note: From Aluminum Standards and Data, Metric Edition, The Aluminum Association, 2006. Values are representative of separately cast test bars, not of specimens taken from commercial castings.For tensile yield strengths, offset = 0.2%.(a) Elongation measured over a 50 mm gage length on 1.60 mm thick sheet-type specimens. (b) Elongation measured over 50 mm gage length (5D) in 12.5 mm diameter specimens. (c) Based on500,000,000 cycles of completely reversed stress using R.R. Moore type of machines and specimens. (d) Average of tension and compression moduli; compressive modulus is nominally about2% greater.

Page 162: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

158 / Parametric Analyses of High-Temperature Data for Aluminum Alloys

Table A3.4 Typical mechanical properties of aluminum alloy castings

Alloy & temper

Tension

Hardness Brinell number500 kg/10 mm

Shear ultimate strength, ksi

Fatigue endurance limit(a), ksi

Modulus of elasticity(b),

103 ksiUltimate

strength, ksi

Yield strength,

ksiElongation

2 in. or 4D, %

A201.0-T7 68 60 6 146 40.00 14 10.5224.0-T72 55 40 10 123 35 9 10.5A249.0-T63 69 60 6 . . . . . . . . . . . .354.0-T61 48 37 3 . . . . . . . . . . . .C355.0-T6 48 28 8 90 . . . . . . 10.2

Note: From Aluminum Casting Technology, American Foundrymen’s Society, 1993. Values are representative of separately cast test bars, not of specimens takenfrom commercial castings For tensile yield strengths, offset = 0.2%. Data not published for alloy 270.0-T6.(a) Based on 500,000,000 cycles of completely reversed stress using R.R. Moore type of machines and specimens. (b) Average of tension and compression moduli; compressive modulus is nominally about 2% greater than the tension modulus.

Table A3.4M Typical mechanical properties of some aluminum casting alloys—Metric

Alloy & temper

TensionHardness

Brinell number500 kg/10 mm

Shear ultimate strength, MPa

Fatigue endurance

limit(a), MPaModulus of

elasticity(b), GPaUltimate

strength, MPaYield

strength, MPaElongation in 5D,

%

201.0-T7 470 415 6 . . . . . . 95 . . .224.0-T72 380 275 10 123 240 60 73A249.0-T63 475 415 6 . . . . . . . . . . . .354.0-T61 330 255 3 . . . . . . . . . . . .C355.0-T6 330 195 8 90 . . . . . . 70

Note: From Aluminum Casting Technology, American Foundrymen’s Society, 1993. Values are representative of separately cast test bars, not of specimens takenfrom commercial castings For tensile yield strengths, offset = 0.2%. Data not published for alloy 270.0-T6.(a) Based on 500,000,000 cycles of completely reversed stress using R.R. Moore type of machines and specimens. (b) Average of tension and compression moduli; compressive modulus is nominally about 2% greater than the tension modulus.

Page 163: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

All of the data and archival graphs presented in this volumewere originally generated in English/engineering units, and so thatsystem of units is given greater prominence throughout the book.Where convenient, calculated conversions to International Stan-dard (SI)/metric values are presented in secondary position.

Creep and stress rupture strengths are presented in ksi (kilo-pounds per square inch). Conversions to SI/metric are made onthe basis that 1 ksi = 6.897 MPa (megaPascals).

Temperatures are presented in °F (degrees Fahrenheit). Con-versions to °C (degrees Celsius) are made as 5/9(oF – 32). Asnoted in the section “Rate Process Theory and the Development ofParametric Relationships,” the parametric analyses discussedherein require the use of absolute temperature. Since English/en-gineering units are given first position, °R (degrees Rankine,equal to (°F + 460) was used in all parametric calculations. It isimportant to note that the results of utilizing K (degrees Kelvin),the absolute scale for SI/metric, gives exactly the same resultswhen used in parametric analyses as does the English/engineeringabsolute scale. The respective values for all temperatures used inthe tests presented herein are compared:

Temperature conversions°F °R °C K

150 610 66 339200 660 93 366212 672 100 373250 710 121 394300 760 149 422350 810 177 450375 835 191 464400 860 204 477450 910 232 505500 960 260 533550 1010 288 561600 1060 316 589650 1110 343 616700 1160 371 644750 1210 399 672

Larson-Miller Parameter (LMP). Using the two different ab-solute temperature systems will result in different values of theLMP, even though the final result of extrapolation in the two sys-tems will provide the same results. As an illustration, for a valueof CLMP = 20 and a 1000 h rupture life, the respective LMP valuesin the two systems will be:

Temperature Time Log C + log t LMP = T(C + log t)

°F °R °C K (t), h time CLMP = 20 in °R in K

150 610 66 339 1000 3 23 14,030 7,787200 660 93 366 1000 3 23 15,180 8,426212 672 100 373 1000 3 23 15,456 8,579250 710 121 394 1000 3 23 16,330 9,065300 760 149 422 1000 3 23 17,480 9,703350 810 177 450 1000 3 23 18,630 10,342375 835 191 464 1000 3 23 19,205 10,662400 860 204 477 1000 3 23 19,780 10,981450 910 232 505 1000 3 23 20,930 11,620500 960 260 533 1000 3 23 22,080 12,259550 1010 288 561 1000 3 23 23,230 12,898600 1060 316 589 1000 3 23 24,380 13,537650 1110 343 616 1000 3 23 25,530 14,176700 1160 371 644 1000 3 23 26,680 14,815750 1210 399 672 1000 3 23 27,830 15,453

Appendix 4

SI/Metric Unit Conversions

Parametric Analyses of High-Temperature Data for Aluminum Alloys J. Gilbert Kaufman, p 159 DOI: 10.1361/paht2008p159

Copyright © 2008 ASM International® All rights reserved. www.asminternational.org

Page 164: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Cast Alloys201.0-T7

permanent mold castings, stress rupture strengths at various temperatures and isostress calculations, 144(T)

sand castings, archival LMP stress rupture strengths master curve,144(F)

224.0-T6 and T62 sand castingsLMP stress rupture strengths master curves (CLMP = 11.0 and 16.0),

146(F)stress rupture strengths at various temperatures and isostress

calculations, 145(T)249.0-T63

permanent mold castings, stress rupture strengths at various temperatures and isostress calculations, 147(T)

sand castings, archival LMP stress rupture strengths master curves(CLMP = 12.9 and 20), 147(F)

270.0-T7 sand castings, archival LMP 0.2 % creep strengths mastercurve, 148(F)

354.0-T61 permanent mold castingsarchival LMP stress rupture strengths master curves (CLMP = 17.0 and

20.0), 149(F)stress rupture strengths at various temperatures and isostress

calculations, 148(T)355.0-T6 permanent mold castings

archival LMP stress rupture strengths master curves (CLMP = 14.0 and20.0), 150(F)

stress rupture strengths at various temperatures and isostress calculations, 149(T)

Wrought Alloys1100-H14

short-life isostress calculations, 28(T)short-life stress rupture strength LMP calculations, 29(T)short-life stress rupture strength LMP master curves, 37(F)stress rupture strength data summary, 5stress rupture strength long-life test results vs. extrapolated

values, 30(T)stress rupture strengths at various temperatures, 23(T), 33(F)

1100-H18archival LMP master curve (plate), 40(F)archival LMP master curve (rod), 39(F)stress rupture strength at various temperatures and CLMP isostress

calculations, 31(T)stress rupture strengths at various temperatures, 23(T)

1100-Oarchival DSP stress rupture strength master curve, 35(F)archival LMP 0.1% creep strength master curve, 37(F)archival LMP 0.2% creep strength master curve, 38(F)archival LMP 0.5% creep strength master curve, 38(F)archival LMP 1% creep strength master curve, 39(F)archival LMP master curve, 34(F)archival MHP stress rupture strength master curve, 35(F)archival stress rupture strength LMP master curve, short-life data,

36(F)archival stress rupture strength LMP master curve with varying

CLMP, 36(F)long-time extrapolated stresses, 26(T)

MHP constant determinations, 34(F)short-life isostress calculations, 28(T)short-life stress rupture strength LMP calculations, 29(T)stress rupture strength data summary, 5stress rupture strength long-life test results vs. extrapolated values,

30(T)stress rupture strengths at various temperatures, 23(T), 32(F)stress rupture strengths with four CLMP values, 24–25(T)

2024-T851archival activation energy calculations, 42(T)archival DSP stress rupture strength master curve, 47(F)archival isostress calculations for CLMP, 41(T)archival LMP stress rupture strengths master curve, 43(F)archival MHP stress rupture strengths master curve, 46(F)archival stress rupture strength extrapolations to 10,000 hours, 48(F)LMP stress rupture strengths master curve with varying CLMP, 48(F)MHP constant determinations, 45(F)semi-log archival LMP stress rupture strengths master curve, 49(F)stress rupture strengths at various temperatures, 42(F), 43(F), 44(F)stress rupture strengths data summary, 5–6stress rupture strengths with isostress calculations, 41(T)

2219-T6 forgingsCartesian and semilog LMP archival stress rupture strengths master

curves, 55(F)semi-log LMP stress rupture strengths master curve, 54(F)stress rupture strengths with isostress calculations, 51(T)

2219-T851archival LMP stress rupture strengths master curve, 53(F)extrapolated long-life stress rupture strengths, 52(T)isostress calculations, 52(T)stress rupture strengths with isostress calculations, 50(T)

3003-H12archival LMP stress rupture strengths master curve, 62(F)isostress calculations, 58(T)LMP stress rupture strengths master curve, 63(F)stress rupture data, 56(T)

3003-H14archival LMP stress rupture strengths master curve, 62(F)isostress calculations, 58(T)LMP stress rupture strengths master curve, 63(F)stress rupture data, 57(T)

3003-H18archival LMP stress rupture strengths master curve, 63(F)isostress calculations, 58(T)LMP stress rupture strengths master curve, 63(F)stress rupture data, 57(T)

3003-Oarchival DSP stress rupture strengths master curve, 61(F)archival LMP stress rupture strengths master curve, 59(F), 60(F)archival MHP stress rupture strengths master curve, 61(F)isostress calculations, 58(T)LMP constant value effect, long-time extrapolated stresses, 58(T)LMP stress rupture strengths master curve, 63(F)MHP constant determinations, 60(F)stress rupture data, 56(T)stress rupture strength extrapolation to 100,000 hours, 62(F)stress rupture strengths at various temperatures, 58(F), 59(F)stress rupture strengths data summary, 6

3004-H14, stress rupture data, 64(T)3004-H18, stress rupture data, 64(T)

Index

Copyright © 2008 ASM International®. All rights reserved. Parametric Analyses of High-Temperature Data for Aluminum Alloys (#05202G) www.asminternational.org

Page 165: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

162 / Index

3004-H19, stress rupture data, 65(T)3004-H32

archival LMP stress rupture strengths master curve, 66(F)LMP stress rupture strengths master curve, 67(F)stress rupture data, 64(T)

3004-H34, stress rupture data, 64(T)3004-H38

archival LMP stress rupture strengths master curve, 67(F)LMP stress rupture strengths master curve, 67(F)stress rupture data, 64(T)

3004-H39, stress rupture data, 65(T)3004-O

archival LMP stress rupture strengths master curve, 66(F)LMP stress rupture strengths master curve, 67(F)stress rupture data, 64(T)

4043 and 5356, as-welded with 6061-T651LMP stress rupture strengths master curves comparison (tested

as-welded), 140(F)4043, as-welded with 6061-T651

heat treated and aged after welding, LMP stress rupture strengths master curves comparison, 140(F)

heat treated and aged after welding, stress rupture data and isostresscalculations, 123(T)

isostress calculations, 119(T)stress rupture strengths, 117–118(T)supplemental stress rupture strengths for different lots, 120–121(T)

4043 filler alloy, as-welded with 6061-T6archival LMP minimum creep rate strengths master curve (Lot A),

138(F)archival LMP stress rupture strengths master curve (Lot B, CLMP =

13.7), 136(F)archival LMP stress rupture strengths master curve (Lot C, CLMP =

21.3), 137(F)archival LMP stress rupture strengths master curves (CLMP = 21.7,

24.647, and 25.3), 135(F)archival LMP stress rupture strengths master curves (CLMP = 27.0 and

29.0), 136(F)archival LMP stress rupture strengths master curves (Lot B, CLMP =

15.4 and 16.9), 137(F)composite archival LMP stress rupture strengths master curve

(CLMP = 20.3), 138(F)extrapolated stress rupture strengths, CLMP variations comparison

(Lots A, B, and C), 122(T)stress rupture strengths at various temperatures, 134(F)tested as-welded, LMP stress rupture strengths mastercurves

comparison, 139(F)5050-O

archival LMP stress rupture strengths master curve, 69(F)stress rupture data, 68(T)

5052-H32archival LMP stress rupture strengths master curve, 74(F)isostress calculations, 73(T)LMP stress rupture strengths master curve comparison, 75(F)stress rupture data, 70–71(T)

5052-H34archival LMP stress rupture strengths master curve, 74(F)LMP stress rupture strengths master curve comparison, 75(F)stress rupture data, 71(T)

5052-H38archival LMP stress rupture strengths master curve, 75(F)isostress calculations, 73(T)LMP stress rupture strengths master curve comparison, 75(F)stress rupture data, 71(T)

5052-H1125052 plate of various tempers, LMP stress rupture strengths master

curves comparison, 77(F)archival LMP stress rupture strengths master curves, 76–77(F)AW 5052 filler wire, stress rupture data, 72(T)isostress calculations, 73(T)stress rupture data, 71(T)

5052-Oarchival LMP stress rupture strengths master curve, 73(F)isostress calculations, 73(T)LMP stress rupture strengths master curve comparison, 75(F)LMP stress rupture strengths master curves comparison with 5083

and 5456, 111(F)

stress rupture data, 70(T)weld stress rupture strengths comparison with 5083 and 5456

plate, 107(T)5083-H321 AW 5183

archival LMP stress rupture strengths master curve (CLMP = 14.9),81(F)

isostress calculations, 80(T)LMP stress rupture strengths master curve (CLMP = 16.6), 81(F)LMP stress rupture strengths master curves comparison with 5052

and 5456, 111(F)stress rupture data, 78–79(T)weld stress rupture strengths comparison with 5052 and 5456

plate, 107(T)5154-O

archival LMP stress rupture strengths master curve, 83(F)isostress calculations, 83(T)stress rupture data, 82(T)

5454-H32archival LMP stress rupture strengths master curve (CLMP = 15.5),

100(F)archival LMP stress rupture strengths master curves (CLMP = 16.3 and

17.06), 101(F)5454-H32 AW 5554

archival LMP stress rupture strengths master curve, 103(F)isostress calculations, 91(T)LMP stress rupture strengths master curve comparison with 5454-O

and 5454-H34, 104(F)stress rupture strengths at various temperatures, 90(T)

5454-H34archival LMP stress rupture strengths master curve (CLMP = 14.3),

102(F)archival LMP stress rupture strengths master curve (rolled and drawn

rod), 103(F)isostress calculations, 91(T)LMP stress rupture strengths master curve comparison with 5454-O

and 5454-H32 welded with 5554, 104(F)LMP stress rupture strengths master curves comparison with

6061-T651, 141(F)stress rupture strengths at various temperatures, 88(T)stress rupture strengths comparison with 6061-T651, 125–126(T)

5454-Oarchival CLMP isostress calculations, 84(T)archival DSP activation energy calculations, 84(T)archival DSP stress rupture strengths master curve, 96(F)archival LMP minimum creep rate strengths master curves

(Lot B plate, CLMP = 17.595 and 15.735), 99(F)archival LMP stress rupture strengths master curve (CLMP = 14.3),

93(F)archival LMP stress rupture strengths master curve (CLMP = 15.375),

98(F)archival LMP stress rupture strengths master curve (Lot 2 plate), 98(F)archival LMP stress rupture strengths master curves (rolled and drawn

rod and Lot 1 plate), 97(F)archival MHP stress rupture strengths master curve, 95(F)isostress calculations, 91(T)LMP stress rupture strengths master curve comparison with 5454-H34

and 5454-H32 AW 5554, 104(F)LMP stress rupture strengths master curve (various CLMP values),

100(F)long-life stress rupture strengths test results vs. short-life extrapolated

values, 89(T)lot-to-lot variation effects on LMP extrapolated stresses, 85(T)MHP constant determinations, 94(F)semi-log archival LMP stress rupture strengths master curve, 104(F)stress rupture strength data summary, 6–7stress rupture strengths at various temperatures, 92(F)stress rupture strengths at various temperatures with LMP

calculations, 86–87(T)stress rupture strengths at various temperatures with LMP

extrapolations, 94(F)5456-H116, short-time high-temperature exposure calculations, 106(T)5456-H321

AW 5556, LMP stress rupture strengths master curves (CLMP = 13 and14.6), 108(f)

AW 5556, LMP stress rupture strengths master curves comparisonwith 5052 and 5083, 111(f)

Page 166: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Index / 163

AW 5556, stress rupture data and isostress calculations, 105(T)AW 5556, weld stress rupture comparisons with 5052 and 5083 plate,

107(T)high-temperature tensile properties, 106(T)isostress calculations of CLMP, 106(T)LMP tensile yield strengths master curves (CLMP = 46 and 54), 110(T)tensile properties and tensile yield strengths at various temperatures,

109(F)6061-T6

archival LMP minimum creep rate strength master curve, 134(F)archival LMP stress rupture strengths master curve

(except extrusions), 128(F)as-welded with 4043 filler alloy

archival LMP minimum creep rate strengths master curve (Lot A),138(F)

archival LMP stress rupture strengths master curve (Lot B, CLMP =13.7), 136(F)

archival LMP stress rupture strengths master curve (Lot C, CLMP =21.3), 137(F)

archival LMP stress rupture strengths master curves (CLMP = 21.7,24.647, and 25.3), 135(F)

archival LMP stress rupture strengths master curves (CLMP = 27.0and 29.0), 136(F)

archival LMP stress rupture strengths master curves (Lot B, CLMP =15.4 and 16.9), 137(F)

composite archival LMP stress rupture strengths master curve (CLMP = 20.3), 138(F)

extrapolated stress rupture strengths, CLMP variations comparison(Lots A, B, and C), 122(T)

stress rupture strengths at various temperatures, 134(F)tested as-welded, LMP stress rupture strengths mastercurves

comparison, 139(F)AW 5356, archival LMP stress rupture strengths master curve, 139(F)isostress calculations, 115(T)LMP stress rupture strengths master curves comparison with

6061-T651, 130(F)stress rupture data, 114(T)

6061-T651archival LMP 0.1% creep strengths master curve

(rolled and drawn rod), 131(F)archival LMP 0.5% creep strengths master curve

(rolled and drawn rod), 132(F)as-welded with 4043 and 5356, LMP stress rupture strengths master

curvescomparison (tested as-welded), 140(F)

as-welded with 4043heat treated and aged after welding, LMP stress rupture strengths

master curves comparison, 140(F)heat treated and aged after welding, stress rupture data and isostress

calculations, 123(T)isostress calculations, 119(T)stress rupture strengths, 117–118(T)supplemental stress rupture strengths for different lots, 120–121(T)

AW 5154, stress rupture strengths and isostress calculations, 124(T)isostress calculations, 113(T)LMP stress rupture strengths master curve (varying CLMP values,

129(F)LMP stress rupture strengths master curves comparison with

5454-H34, 141(F)LMP stress rupture strengths master curves comparison with 6061-O,

130(F)LMP stress rupture strengths master curves comparison with 6061-T6,

130(F)long-time stress rupture test results compared with extrapolated

values, 116(T)stress rupture data (1.25-inch thick plate), 112(T), 116(T)stress rupture strengths at various temperatures (long-transverse

specimen), 127(F)stress rupture strengths comparison with 5454-H34, 125–126(T)

6061-T6511archival LMP 0.1% creep strengths master curve (extruded rod),

131(F)archival LMP 0.2% creep strengths master curve (extruded rod), 132(F)archival LMP 0.5% creep strengths master curve (extruded rod),

133(F)archival LMP 1% creep strengths master curve (extruded rod), 133(F)

6061-OLMP stress rupture strengths master curves comparison with

6061-T651, 130(F)stress rupture data and isostress calculations, 115(T)

6063-T5, archival LMP minimum creep rate strength master curve (extruded shapes), 142(F)

6063-T5 and T6LMP stress rupture strengths master curves comparison (extruded

shapes), 143(F)stress rupture data and isostress calculations, 142(T)

6063-T6, archival LMP minimum creep rate strength master curve (extruded shapes), 143(F)

Aactivation energy

2024-T851 plate, archival calculations (DSP stress rupture strengths),6, 42(T)

5454-O plate, archival calculations (DSP stress rupture strengths), 6, 84(T)

Dorn-Sherby parameter and, 4rate process theory and, 3

Alcoa/MPC program, 6061-T651 isostress calculations, 113(T)alloys, see 201-355.0 (casting alloys); 1100-6063 (wrought alloys)aluminum alloy properties overview, 1Aluminum Association, Inc., 152aluminum-copper alloy, see 2024-T851aluminum-magnesium alloy, see 5454-Oaluminum-manganese alloy, see 3003-OAluminum Standards and Data, 1archival LMP master curves overview, 13–14

CCartesian vs. semi-log plotting, LMP extrapolations and, 9–10casting alloys, see 201-355.0 (casting alloys)CLMP value

described, 1–2development of, 3calculations for 1100-O and 2024-T851, 5calculations for 3003-O and 5454-O, 6constant value effect, 1100-O long-time extrapolated stresses,

26(T)constant value effect, 3003-O long-time extrapolated stresses, 58(T)selection of constant, effects on data extrapolations, 8–9

commercially pure aluminum, see 1100-Oconversions, 159corrosion performance, application of LMP and, 18–20creep rupture data, software for analysis of, 14–15, 15(F), 16(F)creep strength units, 159

DDorn-Sherby parameter, DSP

described, 1development of, 4for 1100-O and H14, 5for 2024-T851, 62024-T851 archival activation energy calculations, 42(T)2024-T851 archival stress rupture strengths master curve, 47(F)for 3003-O, 63003-O archival stress rupture strengths master curve, 61(F)for 5454-O, 65454-O archival activation energy calculations, 84(T)5454-O archival stress rupture strengths master curve, 96(F)

Hhigh-temperature tensile data, application of LMP to aluminum alloys, 18

Iisostress calculations

2024-T851 stress rupture strengths, 41(T)

Page 167: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

164 / Index

2219-T6 forgings, stress rupture data and extrapolated strengths, 51(T)

2219-T851 plate, 52(T)2219-T851 stress rupture data, 50(T)3003-O, H12, H14, and H18, 58(T)5050-O stress rupture data, 68(T)5052-O, H32, H38, and H112, 73(T)5083-H321 AW 5183, 80(T)5154-O, 83(T)5454-O, 5454-H34, and 5454-H32 AW 5554, 91(T)5454-O archival CLMP calculations, 84(T)5454-O stress rupture strengths short-life data, 89(T)5456-H321 AW 5556, 105(T)5456-H321 tensile and yield strengths, 106(T)6061-0 and T6, 115(T)6061-T651, 113(T)6061-T651 AW 4043, 119(T)6061-T651 AW 4043, heat treated and aged after welding,

123(T)6063-T5 and T6, 142(T)casting alloys, 201.1-T7 permanent mold castings, 144(T)casting alloys, 224.0-T6 and T62 sand castings, 145(T)casting alloys, 249.0-T63 permanent mold castings, 147(T)casting alloys, 354.0-T61 permanent mold castings, 148(T)casting alloys, 355.0-T6 permanent mold castings, 149(T)short-life 1100-O and 1100-H14 data, 28(T)

isostress plots1100-O stress rupture strength and M-F constant determination,

34(F)2024-T851 stress rupture strength and M-F constant determination,

45(F)rate process theory and, 3–4

LLarson-Miller parameter, see LMPlimitations of parametric analysis, 12–13LMP

1100-O and H14, short-life stress rupture strength calculations, 29(T)6061-T6 AW 4043, stress rupture strengths at various temperatures,

134(F)comparisons of different alloy products, tempers, and welds, 16–18see also CLMP value

LMP archival master curvespresentation overview, 13–141100-H18 plate, 40(F)1100-H18 rod, 39(F)1100-O, 34(F)1100-O (varying CLMP values), 36(F)6061-T6, minimum creep rate strength, 134(F)6061-T6 AW 4043 (Lot A), minimum creep rate strength, 138(F)6063-T5 extruded shapes, minimum creep rate strength, 142(F)6063-T6 extruded shapes, minimum creep rate strength, 143(F)data fitting effects, 10

LMP, casting alloysA201.0-T7 sand castings, archival stress rupture strengths master

curve, 144(F)224.0-T62 sand castings, stress rupture strengths master curves

(CLMP = 11.0 and 16.0), 146(F)249.0-T63 sand castings, archival stress rupture strengths master

curves (CLMP = 12.9 and 20), 147(F)270.0-T7 sand castings, archival 0.2% creep strengths master curve,

148(F)354.0-T61 permanent mold castings, archival stress rupture strengths

master curves (CLMP = 17.0 and 20.0), 149(F)355.0-T6 permanent mold castings, archival stress rupture strengths

master curves (CLMP = 14.0 and 20.0), 150(F)LMP creep strengths master curves

1100-O 0.1%, 37(F)1100-O 0.2%, 38(F)1100-O 0.5%, 38(F)1100-O 1%, 39(F)6061-T651 archival 0.1% (rolled and drawn rod), 131(F)6061-T651 archival 0.5% (rolled and drawn rod), 132(F)6061-T6511 archival 0.1% (extruded rod), 131(F)

6061-T6511 archival 0.2% (extruded rod), 132(F)6061-T6511 archival 0.5% (extruded rod), 133(F)6061-T6511 archival 1% (extruded rod), 133(F)

LMP extrapolations1100-O stress rupture strengths, 32(F)2024-T851 stress rupture strengths, 42(F), 44(F)5454-O stress rupture strengths at various temperatures, 94(F)archival master curve presentation, 13–14comparison of alloys, tempers, and products stress rupture

strengths, 15–18factors affecting usefulness of, 7–11high-temperature tensile data for aluminum alloys, 18limitations of, 12–13lot-to-lot variation effects, 85(T)microstructural changes and corrosion performance, 18–20software for creep rupture data analysis, 14–15verification of, 11–12

LMP stress rupture strengths master curves1100-H14 short-life data, 37(F)2024-T851, varying CLMP, 48(F)2024-T851 archival, 43(F)2024-T851 semi-log archival, 49(F)2219-T6 forgings, Cartesian and semi-log archival, 55(F)2219-T6 forgings, semi-log, 54(F)2219-T851 archival, 53(F)3003-H12 and H14 archival, 62(F)3003-H18 archival, 63(F)3003-O archival, 59(F), 60(F)3003-O, H12, H14, and H18, 63(F)3004-H32 archival, 66(F)3004-H38 archival, 67(F)3004-O archival, 66(F)3004-O, H32, and H38, 67(F)5050-O archival, 69(F)5052-H32, H34, H38, and 5052-O comparison, 75(F)5052-H32 and H34 archival, 74(F)5052-H38 archival, 75(F)5052-H112 and 5052 plate of various tempers comparison, 77(F)5052-H112 archival, 76-77(F)5052-O archival, 73(F)5454-H32 archival (various CLMP values), 100-101(F)5454-H32 AW 5554 archival, 103(F)5454-H34 archival, 102(F)5454-H34 archival (rolled and drawn rod), 103(F)5454-H34 comparison with 6061-T651, 141(F)5454-O archival, 93(F)5454-O archival (CLMP = 15.375), 98(F)5454-O archival (Lot 2 plate), 98(F)5454-O archival (Lot B plate), 99(F)5454-O archival (rolled and drawn rod and Lot 1 plate), 97(F)5454-O archival semi-log, 104(F)5454-O archival (varying CLMP values), 100(F)5454-O, H34, and H32 AW 5554 comparison, 104(F)5456, 5052, and 5083 as welded, comparison, 111(F)5456-H321 AW 5556, (CLMP = 13 and 14.6), 108(F)6061-T6 archival (except extrusions), 128(F)6061-T6 AW 4043 archival (composite, CLMP = 20.3), 138(F)6061-T6 AW 4043 archival (Lot A, CLMP = 18.1), 134(F)6061-T6 AW 4043 archival (Lot A, CLMP = 21.7, 24.647, and 25.3),

135(F)6061-T6 AW 4043 archival (Lot A, CLMP = 27.0 and 29.0), 136(F)6061-T6 AW 4043 archival (Lot B, CLMP = 13.7), 136(F)6061-T6 AW 4043 archival (Lot B, CLMP = 15.4 and 16.9), 137(F)6061-T6 AW 4043 archival (Lot C, CLMP = 21.3), 137(F)6061-T6 AW 4043, comparison (tested as-welded), 139(F)6061-T6 AW 5356 archival, 139(F)6061-T651 AW 4043 and 5356, comparison (tested as-welded),

140(F)6061-T651 AW 4043, comparison (heat treated and aged after

welding, 140(F)6061-T651 comparison with 5454-H34, 141(F)6061-T651 (varying CLMP values), 129(F)6063-T5 and T6 extruded shapes, comparison, 143(F)

long-life test results vs. extrapolated values1100-O and 1100-H14 stress rupture strengths, 30(T)6061-T651 stress rupture strengths, 116(T)

Page 168: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

Index / 165

long-time extrapolated stress rupture strengthsfor 1100-O, 26(T)for 2219-T851, 52(T)for 3003-O, 58(T)

lot-to-lot variability, LMP extrapolations and, 8

MManson-Haferd parameter, see MHPmaster curve scales and plotting precision, 10MHP

described, 1for 1100-O, 51100-O archival stress rupture strengths master curve, 35(F)for 2024-T851, 62024-T851 archival stress rupture strengths master curve, 46(F)for 3003-O, 63003-O archival stress rupture strengths master curve, 61(F)for 5454-O, 65454-O archival stress rupture strengths master curve, 95(F)determination of constants with 1100-O stress rupture strengths

isostress plots, 34(F)determination of constants with 2024-T851 stress rupture strengths

isostress plots, 45(F)determination of constants with 3003-O stress rupture strengths

time-temperature plots, 60(F)determination of constants with 5454-O stress rupture strengths

time-temperature plots, 94(F)development of, 3–4

microstructural changes, application of LMP and, 10–11, 18–20, 19(F)

Pparametric analysis limitations, 12–13parametric relationships, differences among and application of LMP,

MHP, and DSP, 4–7permanent mold castings, 144(T), 147(T), 148(T), 149(F), 149(T),

150(F), 151, 154

Rrate process theory description and overview, 1–4rupture test reproducibility, LMP extrapolations and, 7–8

Ssand molds, 154short-life stress rupture tests

1100-H14 LMP master curves, 37(F)extrapolated values vs. long-life test results for 1100-O and 1100-H14,

30(T)stress rupture strength

1100-H14, at various temperatures, 32(F)1100-H18 at various temperatures and CLMP isostress calculations,

31(T)1100-O, 1100-H14, and 1100-H18 at various temperatures,

23(T)1100-O and 1100-H14 short life strengths at various temperatures,

27(T)1100-O and 1100-H14 summary, 51100-O, at various temperatures, 32(F)1100-O with four CLMP values, 24–25(T)2024-T851 summary, 5–63003-O summary, 65454-O summary, 6–7long-life test results vs. extrapolated values for 1100-O and 1100-H14,

30(T)parametric relationship description, 1units, 159

Ttemperature conversions, 159tensile data, high-temperature, application of LMP to aluminum

alloys, 18tensile properties

5456-H321 at various temperatures, 109(F)5456-H321 LMP application (high-temperature), 106(T)5456-H321 LMP tensile yield strengths master curves (CLMP = 46 and

54), 110(F)tensile yield strengths, 5456-H321 at various temperatures, 109(F)testing lab variability, LMP extrapolations and, 8

Wwelds, stress rupture strength comparisons, 107(T)wrought alloys, see 1100-6063 (wrought alloys)

Page 169: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009
Page 170: J. Gilbert Kaufman Parametric Analyses of High-Temperature Data for Aluminum Alloys 2009

ASM International is the society for materials engineers and scientists, a worldwide network dedicated to advancing industry, technology, and applications of metals and materials. ASM International, Materials Park, Ohio, USA www.asminternational.org

This publication is copyright © ASM International®. All rights reserved.

Publication title Product code Parametric Analyses of High-Temperature Data for Aluminum Alloys

#05202G

To order products from ASM International:

Online Visit www.asminternational.org/bookstore

Telephone 1-800-336-5152 (US) or 1-440-338-5151 (Outside US) Fax 1-440-338-4634

Mail Customer Service, ASM International 9639 Kinsman Rd, Materials Park, Ohio 44073-0002, USA

Email [email protected]

In Europe

American Technical Publishers Ltd. 27-29 Knowl Piece, Wilbury Way, Hitchin Hertfordshire SG4 0SX, United Kingdom Telephone: 01462 437933 (account holders), 01462 431525 (credit card) www.ameritech.co.uk

In Japan Neutrino Inc. Takahashi Bldg., 44-3 Fuda 1-chome, Chofu-Shi, Tokyo 182 Japan Telephone: 81 (0) 424 84 5550

Terms of Use. This publication is being made available in PDF format as a benefit to members and customers of ASM International. You may download and print a copy of this publication for your personal use only. Other use and distribution is prohibited without the express written permission of ASM International. No warranties, express or implied, including, without limitation, warranties of merchantability or fitness for a particular purpose, are given in connection with this publication. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended. Nothing contained in this publication shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this publication shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.