j. craig mudge ee380 stanford university 2/19/2003 1 computer technology in america’s cup yacht...

72
1 J. Craig Mudge ee380 Stanford University 2/19/2003 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium Computer Systems Laboratory Stanford University Feb 19, 2003 www.pacific-challenge.com

Upload: alannah-malone

Post on 23-Dec-2015

222 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

1J. Craig Mudge ee380 Stanford University 2/19/2003

Computer technology in America’s Cup

Yacht Racing

Dr. J. Craig Mudge

Pacific Challenge

ee380 Colloquium

Computer Systems Laboratory

Stanford University

Feb 19, 2003www.pacific-challenge.com

Page 2: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

2J. Craig Mudge ee380 Stanford University 2/19/2003

Page 3: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

3J. Craig Mudge ee380 Stanford University 2/19/2003

6 legs in America’s Cup course

Time

Min:sec

Delta in

seconds

Start 0

1 26:11 12

2 24:14 -34

3 26:37 -26

4 22:43 -14

5 27:33 -26

finish 25:43 7

Alinghi Race 2:-

Page 4: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

4J. Craig Mudge ee380 Stanford University 2/19/2003

How a sailboat moves ahead

• Downwind– Push on sails

• Upwind – Lift from sails– Lift from keel

• Context – Changes in wind strength and direction– Changes in wave shape, direction, and frequency

Page 5: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

5J. Craig Mudge ee380 Stanford University 2/19/2003

Defender vs Challenger

Video clips of last couple of days racing - what to watch for

Page 6: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

6J. Craig Mudge ee380 Stanford University 2/19/2003

Page 7: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

7J. Craig Mudge ee380 Stanford University 2/19/2003

Elementary theory

Leeway angle

Aerodynamic forces from sails

hydrodynamic

Lift dragLift drag (or resistance)

Page 8: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

8J. Craig Mudge ee380 Stanford University 2/19/2003

Tacking up wind

The boat that sails at an angle “closer to the wind”gets upwind faster

Wind directionZig-zagging up wind towards our destination

Page 9: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

9J. Craig Mudge ee380 Stanford University 2/19/2003

Polar representations of boat speed

20

5

10

Radial representation of Boat speed at different true wind angles for one windspeed

(Adapted from 12 metre designed by S Killing)

Page 10: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

10J. Craig Mudge ee380 Stanford University 2/19/2003

A list of computer usesArea Type

Design of hull Hydrodynamic modeling (to reduce drag)

Hull appendages Hydrodynamic modeling (lift and drag)

Design of sails Aerodynamic modeling; photogrammatic

Computational Fluid Dynamics (CFD)

Modeling, analysis, and visualization – sails, hulls, appendages

Two boat testing Data collection and data management

Navigation/tactics/ strategy

Performance parameters; predictions for next leg

Campaign Project/financial management, travel, web site

Weather Forecast wind patterns for each race

Sports media Visualization of race course from telemetry

Page 11: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

11J. Craig Mudge ee380 Stanford University 2/19/2003

AcknowledgementsJim Antrim, naval architect

Richard Burton, sailor and computer scientist

Margot Gerritsen, Computational Fluid Dynamics (CFD) specialist, Stanford Yacht Research

Stan Honey, record-breaking navigator

Olivier Le Diouris, sailor and software engineer

Eric Steinberg, electronics on America True Brian Tramontana, PARC multimedia

* ESPN for video clips* americascup.yahoo.com for photos* Virtual Spectator for screenshots of race course

Page 12: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

12J. Craig Mudge ee380 Stanford University 2/19/2003

Outline

Hull design- both canoe body and appendages

Sail design

Materials - hull and sails

Two-boat tuning

Winning races

Page 13: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

13J. Craig Mudge ee380 Stanford University 2/19/2003

Adding heeling/righting moments to two forces

Leeway angle

Aerodynamic forces from sails

hydrodynamic

Heeling Righting Lift DragLift Drag (or resistance)

AerodynamicHeelingmoment

Hydro-mechanicalRightingmoment

Page 14: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

14J. Craig Mudge ee380 Stanford University 2/19/2003

Lateral stability

Heeling moment from sails

Lead ballast is placed in the lower portion of the keel.

Extreme ballast from bulb (20 tons of a 24 ton IACC boat)

Page 15: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

15J. Craig Mudge ee380 Stanford University 2/19/2003

Alternative to lead bulb for righting moment

Sydney Harbour 18 ft skiffs

Page 16: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

16J. Craig Mudge ee380 Stanford University 2/19/2003

More 18 ft skiffs from Sydney

A very influential design - on modern racing yachts - on latest Olympic class (49er)

Yendys 1924

Page 17: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

17J. Craig Mudge ee380 Stanford University 2/19/2003

Newer IACC boats are much narrower

Page 18: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

18J. Craig Mudge ee380 Stanford University 2/19/2003

Resistance components - upwindup

right Wave

(pushing the water)

Viscous(friction from wetted surface)

heel

ed Added wavesInduced (from leeway)

Heel(extra viscous+wave)

(Fig 5.4, Larsson, 2000)

Page 19: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

19J. Craig Mudge ee380 Stanford University 2/19/2003

Appendages: side force and resistance

Side force (also called Lift)From both keel and rudder

Lift/drag tradeoffAspect ratio

Bulb shape

Turbulence

Tip vortices if depth is limited

End wall not practical, so Winglets used

Winglets also provide lift when boat heeled

Page 20: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

20J. Craig Mudge ee380 Stanford University 2/19/2003

Surface pressure and Streamlines around bulb

From M Sawley (2002) at Switzerland’s EPFL, in Lausanne, an advisor to Alinghi

Page 21: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

21J. Craig Mudge ee380 Stanford University 2/19/2003

An overview of numerical modeling in yacht design

• Fundamental tool is a predictor of performance to compare different designs – Called a VPP (Velocity Prediction Program) -- since early 70s – Given a wind speed and wind angle, a VPP predicts boat

speed, heel, and leeway

Page 22: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

22J. Craig Mudge ee380 Stanford University 2/19/2003

(Milgram, 1998)

Modeling boat speed - VPP

Page 23: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

23J. Craig Mudge ee380 Stanford University 2/19/2003

An overview of numerical modeling in yacht design

• Fundamental tool is a predictor of performance to compare different designs – Called a VPP (Velocity Prediction Program) -- since early

70s – Given a wind speed and wind angle, a VPP predicts boat

speed, heel, and leeway• The balance equations are solved

– Keel lift and side force– Sails lift and drag– Overturning moment

• Modeling these forces in the balance equations is (currently) approximate – Navier Stokes equations (set of differential equations governing the

motion of a fluid) are central part – Models are combination of empirically based and approx of N-S equations

Page 24: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

24J. Craig Mudge ee380 Stanford University 2/19/2003

Overall Hull Design process

1. Decide range of wind strength, sea state

2. Coarse exploration of shapes by numerical modeling, incl CFD

3. Then tank testing

4. Then build one real thing

5. Refine with two-boat testing

Page 25: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

25J. Craig Mudge ee380 Stanford University 2/19/2003

An overview of numerical modeling in yacht design …contd.

Computational Fluid Dynamics (CFD)

RANS (Reynolds-Averaged Navier-Stokes) is a more computationally tractable form of the N-S equations.

In RANS, the flow variables are split into one time-averaged (mean) part, and one turbulent part. The mean values are solved. And the turbulent part is expressed in terms of the mean part.

Page 26: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

26J. Craig Mudge ee380 Stanford University 2/19/2003

An overview of numerical modeling in yacht design …contd.

SGI Origin 3800 128 MIPS R14000 Pc (500Mhz; 64 GB RAM)

Swiss T1 64 DEC Alpha ev6 Pc (500 Mhz; 32GB RAM)

Dell Precision 530 2 Pentium Xeon Pc (1.7 GHz, 2GB RAM)

Largest RANS simulations: 5 million mesh cells: 10 hours on 16 Pc

c.f. AC2000 campaign: 2 million mesh cells: 10 hours on 12 Pc Origin 2000

Typical computer resources are these at EPFL, Lausanne

Page 27: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

27J. Craig Mudge ee380 Stanford University 2/19/2003

Unveiling January 7, 2003 Alinghi

Oracle

Page 28: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

28J. Craig Mudge ee380 Stanford University 2/19/2003

Different winglet configurations and bulb shapes

Page 29: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

29J. Craig Mudge ee380 Stanford University 2/19/2003

Different winglet configurations and bulb shapes

Oracle

Alinghi

Team NZ

(based on photos at the unveiling 1/7/03)

Page 30: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

30J. Craig Mudge ee380 Stanford University 2/19/2003

Universities working in yacht design• University of Auckland• Technical University of Berlin• Chalmers University of Technology• Kiel University• EPFL, Lausanne, Switzerland• MIT• University of Maryland• University of Michigan• University of Southampton• Stanford Yacht Research• Center for Turbulence Research, Stanford

Page 31: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

31J. Craig Mudge ee380 Stanford University 2/19/2003

Outline

Hull design

Sail designMaterials

Two-boat tuning

Winning races

Page 32: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

32J. Craig Mudge ee380 Stanford University 2/19/2003

Positioning and shaping

Crew positions the sails according to required angle of attack

- from polars

Sailors shape the sail using control lines attached to the edge of a sail

Page 33: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

33J. Craig Mudge ee380 Stanford University 2/19/2003

What is the right shape?• Sailmaker designs each sail for a range of

wind strength and wave type. (Sailor selects a sail from the suite, according to expected conditions.)

• Want nice laminar flow, without separation and turbulence

• Lift vs drag curve; polars again

• Both wind tunnels and CFD used

Page 34: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

34J. Craig Mudge ee380 Stanford University 2/19/2003

Vertical characteristics of wind

As we go from deck to top of mast, the wind increases in strength and apparent direction

Has implications for both sail designers and sailors (sail trimming)

8

7

5

Apparent wind is the wind we feel on the boat, as opposed to the true wind.

Page 35: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

35J. Craig Mudge ee380 Stanford University 2/19/2003

Design of downwind sails

Page 36: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

36J. Craig Mudge ee380 Stanford University 2/19/2003

Wind tunnels in sail design University of Auckland Twisted Flow Wind Tunnel

Courtesy U Auckland,Seahorse magazine

Page 37: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

37J. Craig Mudge ee380 Stanford University 2/19/2003

Outline

Hull design

Sail design

Materials - hull, sails, and rigTwo-boat tuning

Winning races

Page 38: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

38J. Craig Mudge ee380 Stanford University 2/19/2003

Ocean racers have to be stronger

Courtesy Richard Bennett

Page 39: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

39J. Craig Mudge ee380 Stanford University 2/19/2003

Forces on rig and hull

Page 40: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

40J. Craig Mudge ee380 Stanford University 2/19/2003

Page 41: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

41J. Craig Mudge ee380 Stanford University 2/19/2003

Prominent logo of sponsor

Page 42: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

42J. Craig Mudge ee380 Stanford University 2/19/2003

OneAustralia 1995

Page 43: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

43J. Craig Mudge ee380 Stanford University 2/19/2003

Older sail material

Courtesy: Mariners’ Museum

Page 44: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

44J. Craig Mudge ee380 Stanford University 2/19/2003

Materials and shapingFlax Cotton Japara silk various polyesters (with or without film) (Kevlar is the best known of the aramid fibers) Carbon

Desired 3D shape in CAD model

Panel shape Mold shape

Sew panels Apply layers (liquid/fiber)

Page 45: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

45J. Craig Mudge ee380 Stanford University 2/19/2003

Improved sail shape with modern materials

Page 46: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

46J. Craig Mudge ee380 Stanford University 2/19/2003

Novel designs

Lexcen keel

Oracle kite

Canting keel

Page 47: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

47J. Craig Mudge ee380 Stanford University 2/19/2003

Ben Lexcen’s winged keel 1983C

ourt

esy:

R

osen

feld

Page 48: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

48J. Craig Mudge ee380 Stanford University 2/19/2003

Oracle kite

Page 49: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

49J. Craig Mudge ee380 Stanford University 2/19/2003

Canting keel and canard

(Reichel-Puch, Dynayacht, 2002)

Wild Oats and Schock 40

Page 50: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

50J. Craig Mudge ee380 Stanford University 2/19/2003

Outline

Hull design

Sail design

Materials

Two-boat tuningWinning races

Page 51: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

51J. Craig Mudge ee380 Stanford University 2/19/2003

Why two-boat tuning

• Shortcomings of numerical modeling and tank testing

• Sensors not accurate enough– A two boat lead at end of a 3 mile leg

requires boat speed 0.7% accuracy; – Accuracy on wind direction, strength also

difficult hard to get accuracy;

Page 52: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

52J. Craig Mudge ee380 Stanford University 2/19/2003

Instruments and data logging on J/105 Kookaburra

Data from instruments:- Wind speed (true and apparent); Boat position; Heading; Boat speed (through water and over the ground); Etc etc

Page 53: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

53J. Craig Mudge ee380 Stanford University 2/19/2003

A leg of a race selected for further analysis

Page 54: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

54J. Craig Mudge ee380 Stanford University 2/19/2003

Log of Wind Oscillations during a race

221º 299º

Page 55: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

55J. Craig Mudge ee380 Stanford University 2/19/2003

Two-boat tuning – Team NZ

Page 56: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

56J. Craig Mudge ee380 Stanford University 2/19/2003

Outline

Hull design

Sail design

Materials

Two-boat tuning

Computer use in America’s Cup races

Page 57: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

57J. Craig Mudge ee380 Stanford University 2/19/2003

Performance

• Performance is a function of– Preparation before the race– Start– Boatspeed

• Design of hull and appendages• Design of sails • Boat handling by crew• Strategy• Tactics• Helmsman’s skill

– Navigation

Page 58: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

58J. Craig Mudge ee380 Stanford University 2/19/2003

Currents Hauraki Gulf, NZ Feb 19

Time: 1400

Courtesy

David Brayshaw, GoFlow

Page 59: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

59J. Craig Mudge ee380 Stanford University 2/19/2003

Currents Hauraki Gulf, NZ Feb 19

Time: 1139Maximum ebb

Courtesy David Brayshaw, GoFlow

Page 60: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

60J. Craig Mudge ee380 Stanford University 2/19/2003

The start

Page 61: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

61J. Craig Mudge ee380 Stanford University 2/19/2003

The start

Display of computed parameterstime to starttime to line tack+acceleration+ travel time (for boat speed, index into polars)

This nice result is helped by accurately estimating time to the starting line (Alinghi Race 3)

Page 62: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

62J. Craig Mudge ee380 Stanford University 2/19/2003

On each legDisplay

time to next marktime in each tack remainingtime to layline

target boat speedetc

Predict next leg- given assumptions on wind

and mark, use polars to display:-course, wind angles,

Page 63: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

63J. Craig Mudge ee380 Stanford University 2/19/2003

Topics not covered

• Effect of mast on flow past mainsail

• Trim tabs on aft end of keel• Heads-up display in navigator’s sunglasses • Modeling interaction of hull and sails

• Modeling of currents

• Analysis of materials and structure of hulls

• Techniques in rig design and analysis

Page 64: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

64J. Craig Mudge ee380 Stanford University 2/19/2003

BibliographyJoubert, P N. and Oosannen van, P. The Development of the Winged Keel for

Twelve Metre Yachts, Rev. 1986.Killing, Steve.Yacht Design Explained, Norton, New York, 1998.Larsson, L and Eliasson, R. Principles of Yacht Design, 2nd ed. International Marine,

Camden, 2000.Milgram, Jerome H. Fluid Mechanics for Sailing Vessel Design, Annual Review of

Fluid Mechanics, 1998 30:613-653.Marchaj, C A. Sail Performance. International Marine, London, 1996.Sawley, M L. Numerical Flow Simulation for the America’s Cup. EPFL

Newsletter,2002.Whidden, Tom. The art and science of sails, St. Martins Press, New York,1990.

• Email [email protected] for a copy of this bibliography

Page 65: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

65J. Craig Mudge ee380 Stanford University 2/19/2003

High performance yachts in the future

1. Materials– Surfaces

• Low drag (MEMS?)• Vortex generators (a la Formula 1 cars) – also slots, porosity

2. Control of sail shape– Auto-adjust (but without stored energy)

3. Rig and masts4. Better numerical modeling

– Downwind sail design– Sail shape optimization, including design in unsteady

conditions (waves, …)– Coupling of accurate CFD to structural analysis– Hull-sail interaction

Some possibilities

Rules will have to change in some cases.

Page 66: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

66J. Craig Mudge ee380 Stanford University 2/19/2003

Page 67: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

67J. Craig Mudge ee380 Stanford University 2/19/2003

Page 68: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

68J. Craig Mudge ee380 Stanford University 2/19/2003

■ Design shape flying shape

■ Square-rigged

■ Twist onset flow small

■ Extensive experimental data

280 ft

160ft

65ft

Maltese Falcon ideal test case

■ Prototype testing appealing

Stanford Yacht Research

(Gerritsen, Doyle, Perkins)

Page 69: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

69J. Craig Mudge ee380 Stanford University 2/19/2003

Page 70: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

70J. Craig Mudge ee380 Stanford University 2/19/2003

Kiwi clip on or hula

Page 71: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

71J. Craig Mudge ee380 Stanford University 2/19/2003

3DL

Contrast with panelled sails

Page 72: J. Craig Mudge ee380 Stanford University 2/19/2003 1 Computer technology in America’s Cup Yacht Racing Dr. J. Craig Mudge Pacific Challenge ee380 Colloquium

72J. Craig Mudge ee380 Stanford University 2/19/2003

Review: computer useArea Type

Design of hull Hydrodynamic modeling (to reduce drag)

Hull appendages Hydrodynamic modeling (lift and drag)

Design of sails Aerodynamic modeling; photogrammatic

Computational Fluid Dynamics (CFD)

Modeling, analysis, and visualization – sails, hulls, appendages

Two boat testing Data collection and data management

Navigation/tactics/ strategy

Performance parameters; predictions for next leg

Campaign Project/financial management, travel, web site

Weather Forecast wind patterns for each race

Sports media Visualization of race course from telemetry