it can be difficult to determine the ages of objects by sight alone. e.g. it can be difficult to...

13
Half-life Measuring the speed of radioactive decay

Upload: genevieve-moke

Post on 30-Mar-2015

215 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: It can be difficult to determine the ages of objects by sight alone. e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity

Half-lifeMeasuring the speed of radioactive decay

Page 2: It can be difficult to determine the ages of objects by sight alone. e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity

Why?It can be difficult to determine the ages of objects by sight alone.

e.g. It can be difficult to tell which students in a classroom are oldest.

Radioactivity provides a method to determine age by comparing the relative amount of remaining radioactive material to the amount of stable products formed.

Page 3: It can be difficult to determine the ages of objects by sight alone. e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity

The Importance of Carbon

Remember from our look at compounds, that most living organisms are based on organic molecules (i.e. contain carbon). Carbon has two main forms: a stable carbon-12 isotope and a radioactive isotope, carbon-14, and these exist naturally in a constant ratio.

In nature, carbon-12 appears 98.9% of the time, while one carbon-14 atom appears for every 1 trillion normal atoms.

Page 4: It can be difficult to determine the ages of objects by sight alone. e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity

Carbon dating measures the ratio of carbon-12 and carbon-14.

When an organism dies, carbon-14 stops being created and slowly decays.

Measuring the relative amounts of carbon-12 : carbon-14 is called radiocarbon dating.

What we find is that half of a sample of carbon-14 every 5730 years, regardless of the original size of the sample—this is the half-life of carbon-14.

So radiocarbon dating can be used to provide the age of any organism or organic material… less than 50 000 years old (… more on why later!)

Using radiocarbon dating, these cave paintings of horses,

from France, were determined to have been drawn 30 000 years ago.

Page 5: It can be difficult to determine the ages of objects by sight alone. e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity

Half-life measure the rate of radioactive decay.

Half-life = time required for half of a radioactive sample to decay.

The half life for a radioactive element is a constant rate of decay.

e.g. Strontium-90 has a half-life of 29 years. If you have 10 g of strontium-90 today, there will be 5 g remaining in 29 years.

Half-lives of many common radioisotopes are listed on pg.12 of your data booklet.

Page 6: It can be difficult to determine the ages of objects by sight alone. e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity

When using your table of radioisotopes you must consider:

Parent isotope = the original, radioactive material.

Daughter isotope = the stable product of the radioactive decay.

The rate of decay remains constant, but some elements require one step to decay, while others decay over many steps before reaching a stable daughter isotope.

Carbon-14 decays into nitrogen-14 in one step

Uranium-235 decays into lead-207 in fifteen steps.

Thorium-235 decays into lead-208 in ten steps.

Page 7: It can be difficult to determine the ages of objects by sight alone. e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity

Example: Watch the decay of a50.0 g radioactive sample of C-14

50.0 gAfter 1st half-life

25.0 g

12.5 g

After 2nd half-life

After 3rd half-life

6.25 g3.125

g After 4th half-life

Remember: Every time a half-life passes half of a radioactive sample decays (i.e. is reduced by a half!)

1.625 g

After 5th half-life

Page 8: It can be difficult to determine the ages of objects by sight alone. e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity

Decay curvesDecay curves show the rate of decay for radioactive elements.

The curve shows the relationship between half-life and percentage of original substance remaining.

Page 9: It can be difficult to determine the ages of objects by sight alone. e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity

Back to our Example…

After 1st half-life

After 2nd half-life

After 3rd half-life

After 4th half-life

Half-life 0 1 2 3 4 5Time 0 5730 11460 17190 22920 28650Amount (g)

Percentage (%)

50.0

100%

25.0

50%

12.5

25%

6.25

12.5%

3.125

6.25%

1.625

3.125%

After 5th half-life

Page 10: It can be difficult to determine the ages of objects by sight alone. e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity

Graphing our Example:Mass vs. Half-life

0 1 2 3 4 5 60

10

20

30

40

50

60

Decay Curve for Radioisotope sam-

ple

This type of graph is called an Exponential Decay graph--- it decreases very quickly to start with and approaches zero after a long time (~10 half-lives)

Half-lives

Mass

of

Sam

ple

(g

)

Page 11: It can be difficult to determine the ages of objects by sight alone. e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity

Graphing our Example:% Remaining vs. Time

0 10000 20000 30000 400000

20

40

60

80

100

Decay Curve for Radioisotope Sam-

ple

Notice: It doesn’t matter which method you use to plot the data, the shape of the curve is the same!

Time (years)

Perc

en

tage o

f Sam

ple

(%

)

Page 12: It can be difficult to determine the ages of objects by sight alone. e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity

0

1000

0

2000

0

3000

0

4000

0

5000

0

6000

00

102030405060708090

100

Note: After about 10 half-lives (for Carbon-14 approximately 50000 years) there is so little sample remaining that you cannot measure it accurately enough!

Time (years)

Mass

of

Sam

ple

(g

)

So why is C-14 dating only useful for samples less than 50000 years?

Page 13: It can be difficult to determine the ages of objects by sight alone. e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity

The Potassium-40 Clock

Radioisotopes with very long half-lives can help determine the age of very old things.

The potassium-40/argon-40 clock has a

half-life of 1.3 billion years.

Argon-40 produced by the decay of

potassium-40 becomes trapped in rock.

Ratio of potassium-40 : argon-40

shows age of rock.