isbn hb seafood and chronic cond lit review 16th may...

64
1 Health benefits of seafood for the prevention and management of chronic conditions: A systematic review Professor Alexandra McManus Project No. 2013/711 March 2014

Upload: dangthuy

Post on 03-Mar-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

1

   

Health  benefits  of  seafood  for  the  prevention  and  management  of  chronic  conditions:    

A  systematic  review      

   

 

Professor  Alexandra  McManus    

Project  No.  2013/711    

March  2014      

2

Health  benefits  of  seafood  for  the  prevention  and  management  of  chronic  conditions:  A  systematic  review    March  2014                  Authors  

Professor  Alexandra  McManus  Director,  Centre  of  Excellence  Science  Seafood  &  Health  (CESSH)  Curtin  University  7  Parker  Place  Technology  Park  Western  Australia  6102      Jessica  Pohlenz-­‐Saw  Dietitian  CESSH  and  Armadale  Community  Hospital    Jennifer  McManus  Research  Associate  CESSH    Dr  Wendy  Hunt  Deputy  Director,  CESSH        Contact  Details    Email:  [email protected]  Mobile:  0417  986  171      Suggested  Citation:        McManus   A,   Pohlenz-­‐Saw   J,   McManus   J,   Hunt   W.   Health   benefits   of   seafood   for   the  prevention   and   management   of   chronic   conditions:   A   systematic   review.   Centre   of  Excellence  for  Science  Seafood  &  Health  (CESSH),  Curtin  University  Report  #  31032014.  ISBN  9780987208620  

3

 

TABLE  OF  CONTENTS  

1.0   INTRODUCTION  .............................................................................................  8  

  1.1   Seafood  and  Health  .......................................................................  8  

  1.2   Seafood  and  Nutrients  ...................................................................  8  

2.0   METHODS  ....................................................................................................  15  

  2.1   Implementation  of  the  Search  Strategy  .......................................  15  

3.0   RESULTS  OF  SYSTEMATIC  LITERATURE  REVIEW  ............................................  17  

  3.1   All  Cause  Mortality  -­‐  Summary  of  evidence  ..................................  17  

  3.2   Alzheimer’s  Disease  (including  dementia,  cognitive  function,  

ageing)  -­‐    Summary  of  evidence  ...................................................  19  

  3.3   Arthritis  -­‐  Summary  of  evidence  ..................................................  20  

  3.4   Asthma,  Coronary  Obstructive  Pulmonary  Disease,  Allergic  Rhinitis  

and    Food  Allergies  -­‐  Summary  of  Evidence  ..................................  22  

  3.5   Attention  Deficit  Hyperactivity  Disorder  and  Other  Behavioural  

Issues  In    Children  -­‐  Summary  of  evidence  ...................................  23  

  3.6   Brain  Development  and  Function  -­‐  Summary  of  evidence  ............  24  

  3.7   Cancer  -­‐  Summary  of  evidence  .....................................................  27  

  3.8   Cardiovascular  Diseases  -­‐  Summary  of  evidence  ..........................  29  

  3.9   Cystic  Fibrosis  -­‐  Summary  of  evidence  .........................................  33  

  3.10   Diabetes  -­‐  Summary  of  evidence  ..................................................  34  

4

  3.11   Kidney  Disease  -­‐  Summary  of  evidence  ........................................  36  

  3.12   Liver  Disease  -­‐  Summary  of  evidence  ...........................................  37  

  3.13   Maternal  and  Child  Health  -­‐  Summary  of  evidence  ......................  37  

  3.14   Mental  Health  and  Behavioural  Conditions  -­‐  Summary  of  evidence

 ....................................................................................................  40  

  3.15   Metabolic  Syndrome  -­‐  Summary  of  evidence  ...............................  42  

  3.16   Osteoporosis  -­‐  Summary  of  evidence  ...........................................  43  

  3.17   Overweight  and  Obesity  -­‐  Summary  of  evidence  ..........................  45  

  3.18   Possible  Health  Risks  -­‐  Summary  of  evidence  ...............................  46  

4.0     CONCLUSIONS  .............................................................................................  49  

5.0     REFERENCES……………………………………………………………………………………………….51  

5

Glossary  of  Terms    AD  

ADHD  

ALA  

AR  

BMI  

CESSH  

CF  

CHD  

COPD  

CVD  

DHA  

EPA  

FSANZ  

GI  

HDL  

HIV  

LDL  

MI  

n-­‐3s  

NHMRC  

NSAID  

Omega-­‐3s  

Omega-­‐6s  

PUFAs  

RA  

RDI  

SFA  

TG  

T2DM  

VHDL  

Alzheimer’s  Disease  

Attention  deficit  hyperactivity  disorder  

Alpha-­‐linolenic  acid    

Allergic  Rhinitis  (hay  fever)  

Body  mass  index  

Centre  of  Excellence  Science  Seafood  &  Health  

Cystic  fibrosis  

Coronary  heart  disease  

Chronic  obstructive  pulmonary  disease  

Cardiovascular  disease  

Docosahexaenoic  acid  

Eicosapentaenoic  acid  

Food  Standards  Australia  and  New  Zealand  

Glycaemic  index  

High  density  lipoproteins  

Human  Immunodeficiency  Virus  

Low  density  lipoproteins  

Myocardial  infarction  

Omega-­‐3s  (PUFAs)  

National  Health  &  Medical  Research  Council  

Non  steroidal  anti  inflammatory  drugs  

Omega  3  poly  unsaturated  fatty  acids  

Omega  6  poly  unsaturated  fatty  acids  

Poly  unsaturated  fatty  acids  

Rheumatoid  arthritis  

Recommended  daily  intake  

Saturated  fatty  acids  

Triglyceride  

Type  2  diabetes  mellitus  

Very  high  density  lipoproteins  

 

6

Non-­‐Technical  Summary  

 2013/711   Health  benefits  of   seafood   for   the  prevention  and  management  of   chronic       conditions:  A  systematic  review    PRINCIPAL  INVESTIGATOR:     Professor  Alexandra  McManus  ADDRESS:   Centre  of  Excellence  for  Science,  Seafood  and  Health  (CESSH)     Curtin  University       7  Parker  Place,  Technology  Park  WA  6102  

PO  Box  U1987,  Perth  WA  6845     Telephone:  08  9266  2115  Fax:  08  9266  2508  

 OBJECTIVES:      

The  objectives  of  the  project  are:  

1. To  conduct  a  systematic  review  of  the  health  benefits  of  seafood  in  relation  to  chronic  

conditions.    

2. Present  evidence  from  systematic  review  by  chronic  condition  as    

• summary  dot  points  and    

• text  bites  in  layman’s  language  (that  could  be  used  directly  by  the  industry).        

 

METHODS:  

A  systematic  review  of  literature  was  conducted  using  a  comprehensive  research  strategy  to  

identify   evidence   supporting   the   health   benefits   of   seafood   for   the   prevention   and  

management   of   chronic   conditions.   A   total   of   526   publications   met   the   selection   criteria  

based   the   list  of   terms  within   the   search   strategy.   Two   reviewers   independently   reviewed  

and   assessed   each   publication   and   rated   the   strength   of   evidence   based   on   the   National  

Health  and  Medical  Research  Council  (NHMRC)  Hierarchy  of  Evidence.  The  ratings  of  the  two  

reviewers   were   then   compared   and   those   with   different   ratings   were   discussed   and   an  

agreed  level  of  evidence  assigned.  A  total  of  281  publications  had  a  sufficiently  high  level  of  

evidence   linking   seafood   to   the   prevention   or   management   of   chronic   health   conditions,  

thus  were  included  in  the  review.    

 

RESULTS:  

Significant   levels   of   evidence   supported   the   regular   consumption   of   seafood   for   the  

prevention  and  management  of  several  chronic  conditions.  The  strongest  evidence  is  around  

the  reduction  of  risk  for  all  cause  mortality,  coronary  heart  disease  (CHD),  diabetes,  mental  

health  disorders,  and  nutrition  related  cancers.  There  is  also  strong  evidence  supporting  the  

benefits   of   regular   seafood   consumption   that   is   high   in  Omega-­‐3s   (n-­‐3),   for   optimal   brain  

7

development   and   function,   management   of   inflammatory   conditions   (such   as   arthritis,  

asthma  and  hay  fever)  plus  control  of  inflammation  associated  with  lung  cancer  and  chronic  

pulmonary  obstructive  disorder  (COPD),  a  common  condition  associated  with  impaired  lung  

function.    

 

Evidence  shows  the  regular  consumption  of  seafood  high   in  Omega-­‐3s  delays   the  onset  of  

Alzheimer’s  disease   (AD)   in  susceptible  people  and  slows  the  progression  of   the  disease   in  

those  already  affected.  There  is  emerging  evidence  supporting  a  seafood  rich  diet  for  people  

with   cystic   fibrosis   (CF),   kidney   disease,   liver   disease   and   osteoporosis.   Further,   eating  

seafood   as   the   main   protein   source   can   provide   significant   benefits   in   the   dietary  

management  of  overweight  and  obesity.  

 

There  are  many  health  benefits  that  can  be  gained  from  ingesting  Omega-­‐3s  either  through  

eating  seafood  or  via  supplementation.  However,  seafood  also  contains  many  nutrients  that  

help  the  body  to  perform  efficiently  and  effectively.  These  include:  

• lean  protein  for  cell  repair  and  energy  

• vitamin  D  and  calcium  for  bone  and  teeth  health    

• calcium  for  muscle,  heart  and  nerve  function  

• selenium  to  prevent  cell  damage  and  promote  healing  and  immune  function    

• iodine  (together  with  selenium)  to  regulate  thyroid  function  and  metabolism    

• iron  to  help  the  blood  carry  oxygen  to  cells  and  for  energy  production  and  

• zinc  to  aid  healing  and  for  normal  growth  and  development.  

 

CONCLUSIONS:  

This   report  provides  a   summary  of  evidence   supporting   the  health  benefits  of   seafood   for  

the  prevention  and  management  of  chronic  conditions.  A  balanced  diet  high  in  seafood,  aids  

in   the   prevention   and  management   of  many   of   the   common   chronic   conditions   affecting  

people   today.   The   promotion   of   healthy   eating   should   be   integral   to   health   promotion  

initiatives   across   the   lifespan,   not   only   to   improve   better   long   term  health   outcomes,   but  

also   to   reduce   the   significant   health   care   costs   associated   with   the   high   prevalence   of  

nutrition-­‐related  chronic  conditions  in  Australia  and  around  the  world.  

      OUTCOMES ACHIEVED TO DATE • Systematic  review  of  literature  on  the  health  benefits  of  seafood  for  the  prevention  and  

management  of  chronic  conditions.  

• Evidence  about  the  links  between  seafood  and  chronic  conditions  presented  in  layman’s  

language  of  seafood  to  a  number  of  common  chronic  conditions  affecting  humans.  

8

1.0   INTRODUCTION  

1.1   Seafood  and  Health  

In  the  1950’s  it  was  noted  that  Eskimos  native  to  both  Greenland  and  Alaska  had  a  

low  incidence  of  heart  disease  despite  having  a  diet  high  in  oil.  They  also  had  a  lower  

incidence  (new  cases)  and  morbidity  (existing  cases)  of  coronary  heart  disease  (CHD).  

The   causal   nutrient   thought   to   be   ingested   daily   by   all   of   these   populations   was  

Omega-­‐3s   from  seafood.   Since   this  discovery   in   the  1950s,   there  has  been   intense  

interest  in  finding  what  other  health  benefits  could  be  gained  from  marine  sourced  

Omega-­‐3  long  chain  polyunsaturated  fatty  acids  (PUFAs)  (Omega-­‐3s).1  We  now  know  

that   the  consumption  of  oily   fish,   seafood  and   fish  oils  have  been  positively   linked  

with   brain   development,   cognitive   function   and   a   reduced   risk   of   many   chronic  

conditions   including   coronary   heart   disease,   some   cancers,   diabetes,   arthritis,  

dementia  and  Alzheimer’s  Disease.1-­‐7  

Although   much   of   the   research   has   focussed   on   Omega-­‐3s   and   its   many   health  

benefits,   other   nutrients   in   seafood   also   provide   significant   health   benefits.   For  

example,  seafood  is  an  excellent  source  of  lean  protein.  The  superior  macronutrients  

combined  with  healthy  Omega-­‐3s,  make  seafood  a  superfood  for  health.  In  addition,  

seafood  offers  a  wide  array  of  highly  bio  micronutrients.  In  fact,  seafood  is  the  best  

dietary  source  of  many  nutrients.6  

 

1.2   Seafood  and  Nutrients  

The  key  nutrients   in  seafood  that  provide  benefits   to  human  health  are  Omega-­‐3s,  

protein,  vitamins  A,  B12,  D  and  E,  iodine,  selenium,  calcium,  zinc  and  iron.    

 

Marine  Sourced  Omega-­‐3s    

Evidence  clearly  shows  the  link  between  health  benefits  and  consumption  of  seafood  

high  in  Omega-­‐3s.  These  benefits  include:  brain  and  retinal  (eye)  foetal  development;  

cognitive   development;   mental   health   improvements   (depression,   schizophrenia,  

dementia  and  attention  deficit  hyperactivity  disorder  (ADHD);  lower  risk  of  CHD  and  

9

protection  against  heart   arrhythmia;  plus  greater  arterial  plaque   stability   and  anti-­‐

thrombotic  properties.  There  is  also  evidence  of  the  role  of  Omega-­‐3s  in  maintaining  

immune   function   and   reducing   inflammation   for   the   treatment   of   all   forms   of  

inflammatory  arthritis.  Oily  fish  are  the  richest  source  of  Omega-­‐3s.  The  two  Omega-­‐

3s  with  proven  health  benefits  are  eicosapentaenoic  acid  (EPA)  and  docosahexaenoic  

acid  (DHA).  The  most  abundant  source  of  EPA  and  DHA  are  marine  based  sources.  It  

should  be  noted   that   there   is   another  Omega-­‐3   fatty   acid   that  offers   some  health  

benefit  being  alpha-­‐linolenic  acid  (ALA),  which  is  found  in  some  plants.  ALA  must  be  

converted  to  EPA  and  DHA  after  ingestion  to  be  of  use  to  the  body.    Herein  lies  the  

problem.  Conversion  rates  of  ALA  to  EPA  and  DHA  are  typically  very  low  at  around  3-­‐

8%   making   it   very   difficult   to   consume   enough   plant-­‐based   ALA   to   gain   any  

substantial  benefit.  Clearly   the  consumption  of  Omega-­‐3s   from  seafood   is   the  best  

way  to  gain  many  additional  health  benefits.  

For   those   who   do   not   or   cannot   eat   seafood,   Omega-­‐3   fortified   foods   and  

supplements   are,   however,   recent   research   indicates   that   there   are   dramatic  

variations  in  the  benefits  offered  from  these  products.  For  example,  the  shelf  life  of  

Omega-­‐3   fortified   foods   and   supplements   have   been   questioned   in   light   of   their  

susceptibility   to   oxidation.   By-­‐products   of   oxidation   such   as   peroxides,   present  

safety   concerns   to   humans.   Eating   seafood   is   the   best  way   to   gain   the   significant  

health  benefits  offered  from  Omega-­‐3s.  Those  choosing  to  get  their  Omega-­‐3s  from  

supplements  or   fortified   foods   should  make   sure   they  consider   if   the  products  are  

from  reputable  sources,  been  stored  correctly  and  are  well  within  their  use  by  dates.          

 

Protein  

Approximately   half   of   the   human   body’s   dry   weight   is   comprised   of   protein.   It   is  

essential   for   human  health   and   survival   plus   is   a   vital  macronutrient   that  must   be  

consumed   regularly   to   meet   the   needs   of   the   human   body.   Proteins   are   large  

molecules  that  serve  as   foundations   for  most  of   the  body’s  cells.  They  are  vital   for  

the  development  and  maintenance  of  muscle,  blood,  skin  and  bone.    

10

Protein   plays   an   important   role   in   antibody   production,   regulation   of   body  

composition,   glucose   metabolism,   satiety,   cell   signalling,   gastrointestinal   health,  

bacterial   flora   and   digestive   function.   It   also   provides   the   basis   for   production   of  

some  enzymes  and  hormones  such  as  adrenaline,  thyroid  hormones  and  insulin.    

Protein   is  a  valuable   source  of  energy.  Animal   sourced  dietary  proteins   tend   to  be  

complete  sources  of  protein;   that   is,   they  contain   the   full   complement  of  essential  

amino  acids,  the  building  blocks  of  all  proteins.  Fish  protein  tends  to  be  high  in  lysine,  

sulphur  containing  amino  acids  and  threonine:  essential  amino  acids  that  are  limited  

in  cereal-­‐based  diets.  Evidence  suggests  that  marine  proteins  are  superior  to  other  

protein   sources   and   offer   some   protection   against   many   lifestyle   diseases  

(overweight/obesity)   due   to   their   amino   acid   compositions.   Furthermore,  

consumption   of   seafood   protein   has   been   positively   associated   with   increased  

insulin  sensitivity  (in  diabetics),  reduced  inflammation  and  lower  blood  pressure.    

 

Vitamin  D  

Vitamin  D  is  important  in  regulating  calcium  and  phosphorous  in  bone  mineralisation.  

It   is   also   vital   to   thyroid   function,   insulin   production,   immunity,   skin   conditions,  

muscle  strength  and  has  been  linked  to  the  prevention  of  some  cancers.    

Widespread  awareness  of  the  causal   link  between  sun  exposure  and  skin  cancer   in  

Australia  and  New  Zealand  has  diminished  the  amount  of  vitamin  D  that  the  general  

population  obtains  from  the  sun.  Sunscreen  and  clothing  act  as  barriers  preventing  

not  only  sun  damage  but  also  the  synthesis  of  vitamin  D.  Vitamin  D  deficiency  and  

rickets  (osteomalacia)  are  current  health  concerns  across  Australia  and  New  Zealand.  

At   risk   populations   include   dark-­‐skinned   individuals,   seniors,   people   with   limited  

mobility  and  those  who  cover  themselves  when  outdoors.    

The  food  chain  of  marine  animals  tends  to  concentrate  vitamin  D  and  makes  seafood  

the   best   dietary   source   of   vitamin   D.   Prevention   of   vitamin   D   deficiency   can   be  

achieved  with  a  diet  high  in  oily  fish  together  with  limited  sunlight  exposure  (around  

10  minutes  each  day).  

 

11

Iodine  

Iodine   is   vital   for   the   effective   functioning   of   the   thyroid   gland   and   for   thyroid  

hormone  production.  The  thyroid  facilitates  normal  growth,  metabolism,  cell  oxygen  

consumption  and  the  development  of  the  central  nervous  system.  Up  until  the  early  

1990s,  the  iodine  status  of  Australians  was  satisfactory,  however  the  iodine  intake  of  

the  Australian  population  is  now  considered  inadequate.    

Iodine   is   found   in   most   seafood,   with   shellfish   containing   the   most   abundant  

quantities.   Fish   and   seafood   have   the   highest   concentration   of   iodine   relative   to  

other   foods   commonly   consumed.   Regular   seafood   consumption   as   a   part   of   a  

healthy  diet  will  improve  iodine  status.  

 

Selenium    

Selenium   is  protective  against  oxidative  stress,  which   is  a  primary  cause  of  cellular  

damage.  It  also  assists  in  regulating  the  function  of  the  thyroid  (together  with  iodine)  

and  supports  healthy  immune  function.  Selenium  is  present  in  most  finfish.  Selenium  

in   fish   is   highly   bio   suggesting   that   fish   is   a   superior   source   of   dietary   selenium  

relative  to  other  sources.    

In   addition   to   the  nutritional   benefit   of   selenium   consumption,   emerging   research  

suggests  that  selenium  acts  as  a  counteractive  agent  to  mercury.   It   is  possible  that  

methylmercury   accumulation   in   some   fish   populations   may   be   moderated   by  

selenium.  

 

Calcium  

Calcium   is   important   for   developing   and  maintaining   bones   and   teeth,   as   well   as  

supporting  healthy  function  of  muscles,  nerves  and  the  heart.  Skeletal  calcium  serves  

as  a  reservoir  for  the  supply  of  calcium  to  the  body  when  required.  If  calcium  is  not  

consumed   regularly   these   stores   are   depleted   affecting   bone   health.   Adequate  

dietary  calcium  is  required  throughout   life  to  prevent   loss  of  bone  mineral  density,  

fragility  fractures,  osteopenia  and  osteoporosis.    

12

Bony  fish  such  as  sardines  and  tinned  salmon  are  rich  in  calcium.  The  ingestion  of  at  

least  250g  of  seafood  per  week  (2-­‐3  serves)  has  been  associated  with  greater  bone  

mineral  density.    

Excessive  dietary   fibre   intake  and  alcohol  use   can   interfere  with   calcium  uptake   in  

the  body.  Effective  calcium  absorption  also  depends  on  adequate  levels  of  vitamin  D  

within  the  body.    

 

Vitamin  B12  

Vitamin  B12  is  important  to  DNA  synthesis  (cell  replication),  red  blood  cell  production  

and  neurological   function.  Deficiency  of   vitamin  B12   is   associated  with  megoblastic  

anaemia  (loss  of  red  blood  cells),  nervous  system  disorders,  myelopathy  (spinal  cord  

disease),   memory   impairment,   dementia,   depression   and   cerebrovascular   (blood  

vessels  that  supply  the  brain)  disorders.  Clams,  octopus,  oysters,  fish  and  fish  roe  are  

excellent  sources  of  vitamin  B12.  Researchers  have  identified  that  dietary  vitamin  B12  

sourced  from  fish  is  more  bio  than  that  from  meat  and  eggs.  

 

Vitamin  A    

Vitamin  A  plays  an   important   role   in   supporting  normal  vision,   reproduction,  bone  

growth  and   immune  function.   It   is  also  essential   to  healthy  respiratory  and  urinary  

tract  linings,  and  to  the  health  of  skin  and  mucous  membranes.    

Most  fish  and  shellfish  contain  vitamin  A,  with  the  best  marine  sources  being  oily  fish.  

Animal   sourced   vitamin   A   (retinol)   is   efficiently   absorbed   and   used   by   the   body.  

Plant  sources  of  vitamin  A  (β-­‐carotene)  are  less  efficiently  absorbed.    

 

Vitamin  E  

Vitamin   E   is   a   highly   efficacious   antioxidant   that   is   important   to   the   skin,   nervous  

system,   heart   and   circulatory   system.   Vitamin   E   protects   vitamins   A   and   C   by  

preventing  their  oxidation.  The  highest  marine  source  of  vitamin  E  is  oily  fish.  

13

 

Zinc  

While  only  small  amounts  of  this  essential  trace  element  are  required,  zinc  acts  as  a  

catalyst  for  over  100  specific  enzymes  necessary  for  human  metabolism.  Zinc  plays  a  

role   in   optimal   growth   and   development,   and   in   the   efficient   functioning   of   the  

immune   system.   Zinc   deficiency   may   result   in   stunted   growth,   vulnerability   to  

infection  and  adverse  pregnancy  outcomes.    

Zinc   rich   food   should   be   consumed   regularly   so   that   optimal   zinc   levels   are  

maintained  in  the  body.  Zinc  binds  to  protein,  therefore  seafood  -­‐  a  source  of  both  

zinc  and  protein  -­‐  optimises  the  body’s  ability  to  use  dietary  zinc.  Oysters  are  known  

to  be  one  of  the  richest  natural  sources  of  zinc.  

 

Iron  

Iron   plays   a   vital   role   in   the   transportation   of   oxygen   throughout   the   body   in   the  

blood  and  is  associated  with  growth,  healing  and  immune  function.  It  is  also  critical  

for  energy  production  and   cell   replication  within   the  body.  Research   suggests   that  

many   Australian   women   are   not   consuming   adequate   levels   of   iron,   particularly  

during   important   life   events   such   as   pregnancy   and   menopause.   Increasing   the  

consumption  of  iron  rich  seafood  within  a  balanced  diet  can  play  an  important  role  

in  addressing  this  imbalance.  Furthermore,  the  body  more  readily  uses  iron  found  in  

seafood  than  plant  sources.    

     

14

Summary  

In  summary,  Omega-­‐3s  are  essential  for  human  health.  Humans  cannot  make  them  

in  sufficient  amounts  so  they  need  to  consume  them  everyday.  Seafood  is  the  best  

nutritional   source   of   Omega-­‐3s   with   evidence   of   health   benefits   to   humans.  

However,   there   is   much   more   to   seafood   than   just   Omega-­‐3s.   It   is   a   superfood  

providing  an  array  of  nutrients  that  help  to  keep  us  healthy.    

 

Seafood  is  a  great  source  of:  

• lean  protein  to  build  strong  muscles  and  bones    

• vitamin  D  for  bone  strength  and  healthy  immune  systems  

• iodine  essential  for  thyroid  function,  growth  and  for  the  nervous  system  

• selenium  to  protect  cells,  regulate  thyroid  function  and  support  our  immune  

system  

• calcium  for  bone  growth  and  prevention  of  osteoporosis  

• vitamin  B12  for  blood  production,  cell  development,  and  brain  and  nervous  

system  function  throughout  life      

• vitamin   A   for   heart,   eye,   kidney   and   lung   health,   plus   cell   production   and  

function  

• vitamin  E  for  smooth  muscle  growth,  brain  function,  protection  of  cells  from  

damage  and  to  help  the  body  to  use  Omega-­‐3s  

• zinc  for  normal  growth  and  to  help  the  body  to  use  protein  

• iron   to   allow   the   body   to   transport   oxygen   in   red   blood   cells,   for   energy  

production  and  for  growth,  healing  and  immune  function.  

 

 

 

15

2.0   METHODS  

A   research   associate   experienced   in   seafood   and   health   systematic   reviews  

conducted  an  initial   literature  search  and  developed  a  list  of  possible  search  terms.  

The   research   team   associated   with   this   project   reviewed   the   search   terms   and  

consulted  a  senior  librarian  to  develop  a  comprehensive  search  strategy.  The  search  

strategy   was   informed   by   the   following   key   terms:   seafood,   health,   specific   and  

generalised   chronic   conditions,   health   benefits   and   nutrition.   Search   terms   were  

used   individually   and   in   combination.   The   search   strategy   was   used   to   guide   the  

systematic   review   of   evidence   supporting   the   health   benefits   of   seafood   for   the  

prevention  and  management  of  chronic  conditions.  

Using  the  search  strategy,  published  peer-­‐reviewed  articles  (in  English)  were  sourced  

from  the   following  databases:  Archive  of   Life  Sciences;  Proquest;  PubMed;  Science  

Direct;  Taylor  and  Francis;  The  Cochrane  Collaboration;  Web  of  Knowledge;  Web  of  

Science;   and   Wiley   Interscience.   Other   sources   of   information   searched   were:  

national   and   international   seafood-­‐based   databases;   seafood   industry   websites   or  

databases;  major  national  and  international  academic  libraries;  electronic  sources  of  

information   (e.g.  Google,  Google   Scholar,   international   websites);   Departments   of  

Health  within  Australia;  and  educational  institutions.    

 

2.1   Implementation  of  the  Search  Strategy  

The  search  strategy  identified  526  publications  that  met  the  search  criteria.  The  full  

version  of  each  article  was   sourced  and  an  Endnote  database   file   created  of   these  

references.  Key  search  words  were   linked  to  each  reference   in  Endnote  to  assist   in  

sorting  and  summarising  the  published  evidence.    

Publications  were  then  independently  reviewed  by  two  trained  researchers,  one  an  

accredited  dietitian  and  the  other  a  very  experienced  reviewer  who  has  completed  

the   Cochrane   Systematic   Review   training   program   (considered   to   be   the   gold  

standard  for  the  conduct  of  systematic  reviews).  

 

 

16

The  NHMRC  Evidence  Hierarchy  was  used   as   the   framework   for   assessing   the   526  

journal   articles   (www.nhmrc.org.au)   identified   as  meeting   the   criteria   for   possible  

inclusion  in  this  review.  The  NHMRC  Evidence  Hierarchy  framework  is  a  valid  tool  for  

the  effective  management  and  critical  review  of  large  amounts  of  evidence.    

The  levels  of  evidence  outlined  in  the  NHMRC  framework  for  assessment  include:    

• I  -­‐  high  level  systematic  reviews  -­‐  randomised  control  trials  and  similar  studies    

• II  -­‐  randomised  controlled  trial    

• III-­‐1  -­‐  pseudo-­‐randomised  controlled  trials    

• III-­‐2  -­‐  comparative  studies  with  concurrent  controls    

• III-­‐3  -­‐  comparative  studies  without  concurrent  studies  and    

• IV  -­‐  case  series  with  either  post-­‐test  or  pre-­‐test/post  test  outcomes.  

 

Following   the   assigned   level   of   evidence   to   each   study   by   the   two   researchers  

(independent  of  each  other),  their  assessments  were  compared.  Where  differences  

in  the  level  assigned  was  evident,  the  two  researchers  discussed  the  reasons  for  their  

assigned   score   and   made   a   joint   decision   about   what   evidence   level   should   be  

assigned  to  each  of  these  articles.  The  articles  were  then  sorted  by  health  or  chronic  

condition,  critically  reviewed  and  the  evidence  summarised.  The  main  outcomes  of  

each  of  the  publications  included  in  the  systematic  review  are  stated  in  point  form  in  

the  results   section  of   this   report.  A   total  of  281  articles  met   the  criteria   thus  were  

included  in  the  review  

     

17

3.0   RESULTS  OF  SYSTEMATIC  LITERATURE  REVIEW  

Key   findings   from   the   systematic   literature   review   are   presented   herein   by   either  

health   or   chronic   conditions.   Evidence   for   each   chronic   condition   consists   of   a  

general   summary  of  evidence   (boxed)   followed  by  a   list   (in  dot  point   form)  of   the  

main  outcomes  of  each  of  the  studies  included  in  this  review.  References  are  listed  

at   the   end   of   this   report.   Only   those   studies   with   strong   and   credible   scientific  

evidence  (using  the  NHMRC  Hierarchy  of  Evidence  levels  as  a  guide)  are  included  in  

this  review  (see  the  methods  section).  

 

3.1   All  Cause  Mortality  -­‐  Summary  of  evidence  

There   are   significant   risk   reductions   in   all   cause   mortality   associated   with   the  

consumption   of   1-­‐2   serves   of   seafood   each   week   especially   for:   coronary   health  

diseases  (CHD);  inflammatory  conditions;  neurodegenerative  diseases;  mental  health  

and  behavioural  disorders;  immune  responses;  and  some  cancers.  

Health   benefits   are   gained   from   ingesting   Omega-­‐3   polyunsaturated   fatty   acids  

(Omega-­‐3s)  found  in  abundance  in  most  seafood,  particularly  oily  fish.  The  Omega-­‐3s  

that  provide  benefits  are  EPA  and  DHA.  The  best  dietary  source  of  EPA  and  DHA   is  

seafood.   Seafood   is   also   a   readily   digestible   source   of   lean   protein   and   is   a   good  

source  of  vitamin  D,  selenium  and   iodine.  Evidence  shows  that   individuals  who  eat  

one  or  more  serves  of  seafood  per  week  (as  part  of  a  healthy  diet)  report  a  higher  

level  of  health  compared  with  non-­‐seafood  eaters.    

 

All  Cause  Mortality  –  Main  outcomes  of  studies  

• Regular  fish  and  Omega-­‐3  consumption  is  associated  with  a  significant  reduction  

of   risk  of   total  mortality.  One   to   two   serves  of   fish  per  week,   especially   those  

high  in  Omega-­‐3s,  decrease  the  risk  of  total  mortality  by  17%.  15  

• Observational   evidence   has   shown   that   higher   circulating   individual   and   total  

Omega-­‐3  levels  are  associated  with  lower  total  mortality,  especially  CHD  death,  

in  older  adults.  16  

18

• When  used  as  a  secondary  prevention  strategy,  Omega-­‐3s  appear   to  modestly  

reduce   all-­‐cause   mortality   and   restenosis   (recurrence   of   blocked   arteries   or  

heart  values).  8  

• Early  supplementation  of  1  g/d  of  Omega-­‐3s  after  a  myocardial  infarction  (MI)  is  

recommended  to  reduce  the  risk  of  all-­‐cause  mortality.  9,  10  

• There  is  clear  evidence  that  Omega-­‐3s  (particularly  EPA  and  DHA)  are  beneficial  

to  human  health.  Evidence  shows   they  exert  benefits  on  cardiovascular  heath,  

inflammatory   disorders,   neurodegenerative   diseases,   mental   health,  

behavioural   disorders,   immune   responses,   age   related   factors   and   some  

cancers.  1,  7,  11,  12  

• The   individual  metabolic   and  physiological   effects  of   EPA  and  DHA  vary   in   the  

body.  13  

• The   body   processes   marine   sourced   Omega-­‐3s   more   efficiently   than  

supplements.  14  

• The  health  benefits  of  seafood  consumption  go  beyond  those  derived  from  the  

Omega-­‐3   PUFA,   with   seafood   also   providing   high   quality   protein,   vitamin   D,  

selenium,  iodine  and  other  bioactive  components.  17-­‐20  

• Cross   sectional   data   shows   that   individuals  who   consume   fish   at   least   once   a  

week  have  higher  self-­‐reported  general  health.  21  

• Evidence   strongly   supports   the   establishment   of   a   RDI   (Recommended   Daily  

Intake)  of  Omega-­‐3s.23    

• The  2-­‐3  serves  of  seafood/fish  recommended  each  week  should  include  at  least  

one  serve  high   in  Omega-­‐3’s   in  order   to  attain   sufficient  Omega-­‐3s   for  human  

health.  22    

• Many  (USA)  adults  are  not  consuming  the  recommended  levels  of  Omega-­‐3s  in  

their  diet.  Governing  authorities  should  consider  supplementation  in  food  or  the  

promotion   of   fish   oil   capsules   to   assist   the   population   to   meet   the  

recommended  intake  levels.24    

 

19

3.2   Alzheimer’s  Disease  (including  dementia,  cognitive  function,  ageing)  -­‐     Summary  of  evidence  

A   diet   high   in   fish,   nuts,   salad   dressings,   poultry,   tomatoes,   fruit,   cruciferous   (e.g.  

broccoli,   brussels   sprouts,   cabbage)   and   dark   green   leafy   vegetables   is   strongly  

associated   with   a   lower   risk   of   AD.   Post   mortem   examinations   of   the   brains   of  

people  with  AD  show  a  lack  of  DHA  in  the  grey  matter.  Evidence  shows  that  eating  at  

least   2   serves   of   Omega-­‐3   rich   seafood   each   week   reduces   the   risk   of   dementia,  

delays  the  onset  of  AD  in  susceptible  people  and  slows  cognitive  decline.  A  balanced  

diet  high  in  seafood  has  the  potential  to  significantly  reduce  the  public  health  burden  

of  AD  and  contribute  to  healthy  ageing.    

 

Alzheimer’s  Disease  -­‐  Main  outcomes  of  studies  

• Research   has   revealed   that   a   diet   high   in   fish,   nuts,   salad   dressings,   poultry,  

tomatoes,   fruit,   cruciferous   and   dark   green   leafy   vegetables   is   strongly  

associated  with  a  lower  risk  of  AD.  25  

• Reduced   risk  of  dementia   is   thought   to  be  associated  with   the  consumption  of  

marine  sourced  Omega-­‐3s:  EPA  and  DHA.  26    

• Post-­‐mortem   examinations   have   revealed   that   the   brains   of   persons   with   AD  

contain  less  DHA  in  the  grey  matter  of  the  frontal  lobe  and  hippocampus.  27  

• Large   population   based   studies   consistently   reveal   that   Omega-­‐3s   retard  

cognitive  decline  over  time.  28  

• Elevated   levels   of   lipid   peroxidation   have   been   observed   in   people   with   mild  

cognitive   impairment  and  AD.  Higher   intakes  of  EPA  and  DHA  appear  to  reduce  

lipid  peroxidation  amongst  the  elderly.  29  

• Dietary  Omega-­‐3s  are  shown  to  be  beneficial  in  balancing  the  ratio  of  Omega-­‐3s  

to  Omega-­‐6s  in  the  brains  of  normal  subjects,  thereby  reducing  the  potential  of  

damage  to  the  brain.  26    

• Emerging  evidence   suggests   that   genetic   variations  may   influence   the  effect  of  

EPA  and  DHA  on  cognitive  decline.  30  

20

• Promotion  of   the  evidence  to   increase  the  consumption  of  sustainable  seafood  

as  part  of  a  healthy  diet  has  the  potential  to  significantly  reduce  the  human  and  

public  health  burden  of  AD  in  the  future.  2  

• Evidence  supports  2-­‐3  serves  of  fish  each  week  can  prevent  cognitive  decline.  31  

• Omega-­‐3s  promote  active  cognitive  function  in  seniors.  32  

• In   post  menopausal   women,   high   levels   of   EPA   and   DHA   in   red   blood   cells   is  

associated  with  reduced  atrophy  of  the  brain  during  normal  ageing.33    

 

3.3   Arthritis  -­‐  Summary  of  evidence  

Seafood  high   in  Omega-­‐3s   is  beneficial   in   the  management  of   inflammation  within  

the  body.  Arthritis   is  a  condition  that  results  in  significant  inflammation  around  the  

joints   of   the   body.   It   is   often   painful   and   extremely   debilitating,   impacting   on   a  

person’s  ability  to  do  everyday  activities.  Moderate  to  high  intake  of  oily  fish  high  in  

Omega-­‐3s   appears   to   be   protective   against   osteoarthritis   and   rheumatoid   arthritis  

(RA).   Evidence   supports   daily   consumption   of   oily   fish   such   as   fresh   salmon,  

mackerel,  herring  or  sardines  for  this  debilitating  condition.  Daily  ingestion  of  fish  oil  

also  provides  significant  benefits  to  those  with  RA.  Fish  oil  (1000  mg/day)  is  currently  

used   as   an   adjunct   to   approved   medications   for   arthritis   and   can   enhance   the  

effectiveness  of  conventional  RA  treatments.    

Fish   oil   supplementation   for   people   at   risk   of   developing   or   who   have   arthritis,  

should   be   prescribed   by   a   medical   practitioner   as   part   of   an   overall   medication  

management  plan.  

 

Arthritis  -­‐  Main  outcomes  of  studies  

• Evidence  shows  that  fish  intake  is  beneficial  in  the  management  of  inflammatory  

diseases.  1,  34      

• A  number  of  molecular  mechanisms  demonstrating  the  anti-­‐inflammatory  effects  

of  Omega-­‐3  PUFA  have  been  proposed.  35  

21

• Adequate  levels  of  Omega-­‐3  PUFA  are  important  for  appropriate  immune  system  

responses.  36  

• Dietary  intakes  of  Omega-­‐3s  are  associated  with  lower  levels  of  inflammation.159  

Supplementation   of   1.25   g/day   of  Omega-­‐3   PUFA   for   four  months   significantly  

lowered  levels  of  inflammatory  molecules.  37  

• Moderate  to  high  intake  of  fish  appears  to  be  protective  in  RA.  An  increase  of  30  

g   of   oily   fish   per   day   (8   g   fat/100   g   fish   –   fresh   salmon,   mackerel,   herring;  

processed  mackerel  herring,  sardines)  has  been  associated  with  a  49%  reduced  

risk  of  developing  RA.  38    

• Dietary   fish   oil   supplementation   has   demonstrable   benefits   for   RA   and   other  

inflammatory/  autoimmune  conditions  (e.g.  bowel  disease  and   immunoglobulin  

A  nephropathy)  and  may  also  reduce  pharmacological  dosages  required  to  treat  

RA.  39  

• Supplementation  of  Omega-­‐3  PUFA   in  children  with   juvenile   idiopathic  arthritis  

reduces   inflammatory  responses,  clinical  manifestations  and  the  required  doses  

of  non-­‐steroidal  anti-­‐inflammatory  drugs  (NSAID).  40  

• Ingestion   of   Omega-­‐3   fatty   acid   supplements   has   consistently   shown  

improvements  in  joint  tenderness  and  swelling,  amount  and  duration  of  morning  

stiffness  and  disease  activity  in  those  with  RA.  39,  40  

• Fish  oil  is  currently  used  as  an  adjuvant  to  approved  medications  for  arthritis  and  

studies   support   its   efficacy   in   conjunction  with  NSAIDs.  Recent   research   shows  

that  supplementation  of  the  Omega-­‐3  fatty  acid  EPA  enhances  the  effectiveness  

of  conventional  RA  treatments.  41  While  consumption  of  fish  and  fish  oil  does  not  

prove  efficacious  in  all  cases,  some  individuals  have  been  able  to  discontinue  or  

reduce  NSAID  therapy  while  continuing  fish  oil  ingestion.  39,  42-­‐45  

• 1000  mg/day   of   Omega-­‐3s   significantly   reduced   triglyceride   levels   in   patients  

with  active  RA.  46  

 

22

3.4   Asthma,  Coronary  Obstructive  Pulmonary  Disease,  Allergic  Rhinitis  and     Food  Allergies  -­‐  Summary  of  Evidence  

Evidence  supports  the  anti-­‐inflammatory  benefits  of  a  diet  rich  in  Omega-­‐3s.  This  is  

true   for   asthma  where   Omega-­‐3s   reduce   inflammation   by   positively   impacting   on  

lipid  profiles.  Recent  research  suggests  that  eating  fish,  seafood  or  supplementing  n-­‐

3  PUFA  during  pregnancy  may  protect  some  children  from  asthma,  eczema  and  food  

allergies.  Fish  consumption  in  the  first  year  of  life  is  associated  with  a  reduced  risk  of  

asthma  and   allergic   rhinitis   (AR)   (hay   fever)   in   childhood.   Children  who  eat   fish   at  

least   once   a   week   have   a   reduced   risk   of   respiratory   conditions   compared   with  

children  who  do  not  each   fish.  Children   should  be  encouraged   to  eat  a  varied  and  

balanced  diet  with  at  least  one  serve  of  oily  fish  each  week.    

 

Asthma,  COPD,  Allergic  Rhinitis  and  Food  Allergies  -­‐  Main  outcomes  of  studies  

• An   Omega-­‐3s   rich   diet   reduces   inflammation   associated   with   asthma   by  

positively  manipulating  lipid  profiles.  47  

• Recent   research   suggests   that   eating   fish,   seafood   or   Omega-­‐3   supplements  

during  pregnancy  may  protect  some  children  from  asthma  48-­‐51  eczema  and  food  

allergies.  50  

• Fish   consumption   in   the   first   year   of   life   is   associated   with   a   reduced   risk   of  

asthma  and  allergic  rhinitis  in  childhood.  52,  53  

• Epidemiological   studies   in   Australia   reveal   that   school   children   who   eat   fish  

more  than  once  a  week  have  one-­‐third  the  risk  of  airway  hyper-­‐responsiveness  

compared  with  children  who  do  not  eat  fish  regularly.  54  

• Diets   rich   in   Omega-­‐3s,   from   either   dietary   sources   or   supplements,   are  

associated  with  a  reduced  risk  of  asthma  and  airway  diseases.  49,  51,  55,  56  

• Consumption   of   highly   processed   fish   sticks   during   pregnancy   significantly  

increases   asthma   risk   in   children   (odds   ratio   2.04).   This   negative   outcome   is  

thought  to  be  associated  with  the  trans  fat  content  of  the  processed  fish  sticks.  48  

23

• Emerging   evidence   indicates   that   Omega-­‐3   supplementation   can   improve   the  

pulmonary  function  in  athletes  undertaking  intense  physical  training.  57    

• Observations   have   shown   that   adherence   to   a   Mediterranean   diet   pattern  

during   pregnancy   and   childhood   (which   includes   fish)   may   have   protective  

effects  from  asthma  and  allergic  disorders  in  childhood.  58  

 

3.5   Attention  Deficit  Hyperactivity  Disorder  and  Other  Behavioural  Issues  In     Children  -­‐  Summary  of  evidence  

Almost  4  in  100  children  in  Australia  have  ADHD.  Research  has  shown  that  children  

with   ADHD   often   exhibit   poor   behaviours   if   they   have   low   levels   of   circulating  

Omega-­‐3s.  Diets  high  in  Omega-­‐3s  have  resulted  in  improvements  in  the  behaviour  

of   children   with   ADHD.   Omega-­‐3s   may   also   assist   in   the   management   of   co-­‐

morbidities   associated   with   ADHD   such   as   mood   and   impulsivity   disorders,  

oppositional  defiance  disorder,  obsessive-­‐compulsive  disorder  and  depression.    

 

Attention  Deficit  Hyperactivity  Disorder  and  other  Behavioural  Issues  In  Children  -­‐  

Main  outcomes  of  studies  

• Approximately   4   of   every   100   children   in   Australia   have   ADHD   (The   Royal  

Children's   Hospital   Melbourne   www.rch.org.au).   Significant   co-­‐morbidities   of  

ADHD   include  mood   and   impulsivity   disorders,   oppositional   defiance   disorder,  

obsessive-­‐compulsive   disorder   and   depression.   Sixty   percent   of   these   remain  

throughout  life.  59,  60  

• Evidence  of   the   role   of   seafood  or   fish   oil   supplements   in   the  management   of  

attention  disorders  such  as  ADHD  is  mounting.60-­‐66  Diets  high  in  Omega-­‐3s  have  

been   shown   to   correlate   with   the   marked   improvement   in   the   behaviours   of  

children  with  ADHD.  59,  60  Children  with  ADHD  should,  therefore,  be  encouraged  

to  consume  Omega-­‐3s.  67  

• Low   levels   of  Omega-­‐3s  may   contribute   to   adverse  ADHD   symptoms.68   Further  

research  is  required  to  confirm  if  Omega-­‐3s  could  be  an  effective  treatment  for  

ADHD  and  what  levels  are  required  to  provide  positive  outcomes.  69  

24

• Australian   children   do   not   consume   the   recommended   levels   of   Omega-­‐3s  

(particularly  DHA)   required   for  optimum  health  benefits.   This   can  be  explained  

by  the  low  consumption  of  seafood/fish  in  children.  70  

 

3.6   Brain  Development  and  Function  -­‐  Summary  of  evidence  

DHA  and  EPA  are  polyunsaturated   fatty  acids,  essential   to   the  development  of   the  

brain   during   pregnancy   and   for   optimal   cognition   as   we   grow.   DHA   is   highly  

concentrated  in  the  brain.  DHA  and  EPA  support  the  composition  and  function  of  the  

central   nervous   system.   Adequate   Omega-­‐3   intake   in   the   first   year   of   life   is  

particularly   important.   Fish   intake   has   been   linked   to   academic   performance.  

Improvements   are   evident   in   processing   speed,   visual-­‐motor   coordination,  

perceptual  integration,  attention  and  executive  function.  

There   is   good   evidence   showing   that   cognitive   ability   is   influenced   by   the   ratio   of  

Omega-­‐3s   (marine   sourced)   to   Omega-­‐6s   (plant   based)   in   the   body.   For   example  

higher   levels   of   Omega-­‐3s   compared   with   Omega-­‐6s   is   predictive   of   improved  

cognition  in  children.  Conversely,  low  levels  of  red  blood  cell  Omega-­‐3  is  associated  

with  poor  cognitive  performance  in  children.    

A   diet   high   in   seafood   is   associated   with   reductions   in   depression,   behavioural  

problems,   mood   and   impulsivity   disorders.   There   is   emerging   evidence   that  

adequate  levels  of  Omega-­‐3s  in  early  childhood  and  into  adulthood  may  prevent  or  

reduce  aggression  and  hostility.    

Headaches   are   one   of   the   most   common   debilitating   conditions   in   adults,  

particularly  for  daily  sufferers.  There  is  strong  emerging  evidence  that  a  diet  high  in  

Omega-­‐3s  and  low  in  Omega-­‐6s  can  reduce  the  number  of  headache  days  per  month  

and  reduce  the  duration  of  daily  headaches  in  this  population.    

 

   

25

Brain  Development  and  Function  -­‐  Main  outcomes  of  studies  

• DHA   and   EPA   are   essential   for   foetal   and   neonatal   brain   development   and  

maturation.  Fatty  acids  accumulate  quickly  during  periods  of  rapid  brain  growth  

and  development  during  gestation  (particularly  in  the  last  trimester)  and  in  the  

first  year  of  life.  71,  72  

• During   foetal   development   there   is   a   large   accumulation   of  Omega-­‐3   PUFA   in  

retinal   membranes.   There   is   also   some   evidence   supporting   maternal   DHA  

intake   as   beneficial   to   the   visual   development  of   the   foetus  with  benefits   still  

detected  in  late  childhood.  73    

• Emerging  evidence   suggests   that  prenatal   and   childhood  DHA   intake   can  have  

beneficial   effects   on   memory   processing   as   children   develop.   Selection   of  

seafood  products  with   low   levels  of  neurotoxic  pollutants   is  necessary   for   this  

association.  74  

• Fish   intake   (high   in  Omega-­‐3s)   has   been  positively   linked   to   the   cognitive   and  

academic  performance  of  school-­‐aged  students.  75,  76  

• Improvements   in   processing   speed,   visual-­‐motor   coordination,   perceptual  

integration,   attention   and   executive   function   are   evident   with   Omega-­‐3  

supplementation.77  

• Approximately   4   of   every   100   children   in   Australia   have  ADHD.   Significant   co-­‐

morbidities   of   ADHD   include   mood   and   impulsivity   disorders,   oppositional  

defiance   disorder,   obsessive-­‐compulsive   disorder   and   depression.   In   60%   of  

cases  of  childhood  ADHD,  symptoms  or  difficulties  remain  throughout  life.  59,  60  

• There  is  emerging  evidence  for  the  role  of  seafood  or  fish  oil  supplements  in  the  

management  of  attention  disorders  such  as  ADHD.  60-­‐66  Diets  high  in  Omega-­‐3s  

have   resulted   in   a   marked   improvement   in   the   behaviours   of   children   with  

ADHD.59,   60,   68   78     Therefore,   children   with   ADHD   should   be   encouraged   to  

consume  Omega-­‐3  PUFA.  67  

• Recent   data   indicated   that   26%  of  Australians   aged   16-­‐24   years   had   a  mental  

health  disorder   in   the  12  months  prior   to   the   survey.  79  Adolescents  may  have  

additional   compounding   concerns   of:   poor   diet   (e.g.   processed  meats,   sugars,  

26

fats,   and   salt);   adverse   socioeconomic   conditions;   increased   screen   time;   risky  

health  behaviours;  alcohol  misuse;  smoking  and  risky  sexual  behaviours.  5  

• Strong  evidence  supports  the  benefits  of  a  diet  high  in  Omega-­‐3s  as  an  adjunct  

therapy   for   people   with   depression,   behavioural   problems,   mood   and  

impulsivity   disorders.   80   Research   has   shown   that   low   levels   of   red   blood   cell  

DHA  have  a  positive  correlation  with  clinical  depression  scores   in  children  with  

juvenile  bipolar  depression.  81  

• Emerging  evidence  supports  adequate  levels  of  Omega-­‐3s  in  early  development  

and  into  adulthood  to  aid  in  the  prevention  of  aggression  and  hostility.  5  

• A   12   week   dietary   intervention   high   in   Omega-­‐3’s   and   low   in   Omega-­‐6’s  

significantly  reduced  the  number  of  headache  days  per  month  and  the  headache  

hours  per  day  in  people  who  previously  suffered  from  daily  headaches.  82    

• Cognitive  ability  is  influenced  by  the  ratio  of  Omega3’s  to  Omega-­‐6’s  in  children.  

Higher   levels   of   Omega-­‐3s   are   predictive   of   significantly   improved   cognitive  

development.  83  

• DHA  is  highly  concentrated   in  the  brain.  DHA  and  EPA  support  the  composition  

and   function  of   the  central  nervous  system.  Animal  studies  have  demonstrated  

loss  of  function  of  the  brain  and  eye  with  DHA  depletion.  84    

• The  risk  of  poor  language  development  outcomes  is  increased  with  lower  levels  

of  DHA.85    

   

27

 

3.7   Cancer  -­‐  Summary  of  evidence  

High-­‐level  evidence  supports  fish  consumption  as  protective  in  reducing  the  risk  and  

mortality   rate   associated   with   certain   nutrition   related   cancers   (particularly   in  

males).   Specifically,   evidence   supports   the   association   of   a   balanced   diet   high   in  

Omega-­‐3s  with   a   significant   reduction   in   the   risk  of  ovarian,   prostate,   lung,   breast  

and  colorectal   cancers.  Emerging  evidence  supports   the  consumption  of  Omega-­‐3s  

in   reducing   the   incidence   of   pancreatic   and   bladder   cancer   plus   colorectal  

adenomas.   Inflammation  associated  with  existing   lung  cancer   can  be   reduced  with  

regular  ingestion  of  Omega-­‐3s.  Furthermore,  at  least  2  grams  of  EPA  per  day  helps  to  

maintain  weight  and  muscle  mass  during  chemotherapy.  

Women  are  particularly  susceptible   to  bone   loss   following  menopause.  There   is  an  

additional  risk  of  bone  loss  for  those  women  who  are  both  menopausal  and  breast  

cancer   survivors   due   to   the   effects   of   common   cancer   treatments.   One   study   has  

found   that   supplementation  of   4g/day   of  Omega-­‐3s   for   3  months  was   effective   in  

reducing   the   amount   of   bone   loss   in   these   women.   It   is   important   to   note   that  

supplementation   for  menopausal   women   (including   those   who   have   had   cancers)  

should  be  part  of  an  overall  treatment  program  overseen  by  a  medical  practitioner.  

 

Cancer  -­‐  Main  outcomes  of  studies  

• High   fish   intake   has   been   associated  with   significant   reductions   in   the   risk   of  

some  nutrition  related  cancers,  particularly  ovarian  and  colorectal  cancer.  86-­‐91  

• High-­‐level  evidence  supports  fish  consumption  as  protective  in  reducing  the  risk  

of  and  mortality  rates  of  cancer  in  males,  particularly  prostate  and  lung  cancers.  92-­‐97  

• There   is   increasing   evidence   demonstrating   an   association   between   Omega-­‐3  

PUFA  intake  and  a  decreased  risk  of  breast  cancer.  90  

• Epidemiological  studies  assessing  the  benefits  of  fish  and  seafood  consumption  

associated  with  the  risk  of  lung,  prostate,  breast,  colorectal,  ovarian,  pancreatic,  

28

skin   (basal   cell   carcinoma),   stomach   and   non-­‐Hodgkin   lymphoma   show  

promising  results.61,  92,  94,  98-­‐102  

• Although  further  research  is  necessary,  emerging  evidence  shows  benefits  from  

Omega-­‐3  PUFA  provision  during  the  treatment  of  breast  and  colorectal  cancer.  102-­‐106  Emerging  evidence  also  supports  the  ingestion  of  pharmaceutical  Omega-­‐

3   fish  oil   emulsion  post  gastric   tumour   resection   to   reduce  damage  caused  by  

inflammation  of  the  liver.107    

• Emerging  evidence   links  high   intakes  of  Omega-­‐3  PUFA   (particularly  DHA)   and  

non-­‐fried   fish   to   a   lower   incidence   of   pancreatic   cancer.   108   Evidence   from  

cellular   models   indicates   that   DHA   may   affect   the   metastatic   potential   of  

bladder  and  pancreatic  cancer  cells.  109  

• Adenomatous  and  hyperplastic  polyps  are  often  precursors  for  colorectal  cancer.  

High   intakes   of   Omega-­‐3   PUFA   have   been   associated   with   a   reduced   risk   of  

colorectal  adenomas  in  women.  110  

• Intake   of   Omega-­‐3   PUFA   has   been   shown   to   increase   the   quality   of   life   and  

functional   status   in   patients   with   non-­‐small   cell   lung   cancer   undergoing  

multimodality   treatment.   111   Supplementation   of   ≥   2   g/day   of   EPA   provided  

benefits   in   maintaining   weight   and   muscle   mass   during   chemotherapy  

treatment.   Positive   associations   were   also   observed   between   increased  

concentrations  of  EPA  and  rates  of  muscle  gain.  112,  113  

• Women  who  are  both  postmenopausal  and  breast  cancer  survivors  are  at  risk  of  

accelerated  bone  loss  due  to  common  cancer  treatments.  Short-­‐term,  high  dose  

of   fish   oil   (4g   per   day   for   3   months)   can   reduce   bone   resorption   in   this  

population.  114  (Supplementation  should  be  part  of  an  overall  treatment  regime  

developed  and  administered  by  a  medical  practitioner  for  these  women).  

 

 

29

3.8   Cardiovascular  Diseases  -­‐  Summary  of  evidence  

The  evidence  is  clear  –  fish  and  Omega-­‐3s  are  beneficial  to  heart  and  cardiovascular  

health.  As   little   as  one   serve  of  oily   fish  per  week   can   reduce   the   risk  of   coronary  

heart   disease   and   stroke.   Two   or   more   serves   per   week   provides   increased  

protection   against   all   CVDs.   Eating   fish   regularly   significantly   reduces   the   risk   of  

heart  attack.  This  is  thought  to  be  due,  in  part,  to  the  impact  that  Omega-­‐3s  have  in  

reducing  triglyceride  (TG)  levels   in  the  blood,  which  is  beneficial  to  heart  health.     If  

there   is  no  previous  history  of  heart  disease,   this   reduced   risk  may  be  as  much  as  

35%  (compared  with  those  eating  no  fish).  The  reasons  for  this  reduced  risk  include  

decreased   cholesterol   levels,   lower   blood   pressure,   lower   resting   heart   rate,   and  

softer  artery  walls.  To  gain  the  maximum  benefits  from  eating  fish  it  is  best  to  either  

pan   fry   fillets   or  whole   fish   in   a   small   amount   of   oil,   or   bake   fish.   (Remember,   by  

deep-­‐frying   fish   in   oil,   most   of   the   health   benefit   is   negated.)   Oily   fish   such   as  

salmon,  mackerel  and  sardines  provide  the  highest  benefit.    

 

Cardiovascular  Diseases  -­‐  Main  outcomes  of  studies  

• Fish  and  Omega-­‐3  intake  is  beneficial  to  heart  115-­‐121  and  cardiovascular  health.  1,  

122-­‐129  One  serve  of  fish  per  week  reduces  the  risk  of  CHD  and  stroke.130,  131  Two  

or  more  serves  of  fish  each  week  provides  increased  protection  against  all  CVDs.  132-­‐134  

• Supplementation  of  1  g/day  of  Omega-­‐3s  has  beneficial  effects  on  a  number  of  

associated   disease   factors   in   patients  with   CHD.   135   Some   of   these   favourable  

effects  appear  to  act  in  a  dose-­‐dependent  manner  to  supplementation.  136  

• Consumption   of   Omega-­‐3s   is   associated   with   a   reduced   risk   of   CVD,   cardiac  

events  (heart  attack)  and  mortality.  137-­‐142  For  people  with  pre-­‐existing  coronary  

disease,   increasing   fish   consumption   or   fish-­‐oil   supplementation   is   associated  

with  reduced  coronary  mortality  and  sudden  death.  142,  143    

• High-­‐level   evidence   supports   supplementation   of   Omega-­‐3s   for   at   least   six  

months  in  people  at  high  risk  of  CVD  will  decrease  the  risk  of  all  types  of  cardiac  

events  by  10%,  cardiac  death  by  9%  and  coronary  event  by  18%.  144  

30

• For  subjects  previously  free  of  known  CHD,  consumption  of  ≥  250  mg  of  Omega-­‐

3s   daily   is   associated  with   a   reduced   risk   of   sudden   cardiac   death   (35.1%)   and  

total  fatal  coronary  events  (16.6%).  145  

• Regular   consumption   of   Omega-­‐3s   may   decrease   cholesterol   levels.   14676-­‐78   79  

Some   studies   suggest   that   supplementation   of   Omega-­‐3s   together  with   other  

cholesterol   lowering   methods   (statins   and   phytosterols)   have   supplementary  

effects.   126,   143,   147,   148   Other   researchers   dispute   the   benefits   of   combining  

Omega-­‐3s  with  statin  therapy  for  reducing  elevated  cholesterol  levels.  144  

• High-­‐level  evidence  demonstrates  that  supplementation  of  1800  mg  of  EPA  per  

day   is   effective   at   lowering   the   risk   of   a  major   coronary   event   in   people  with  

high  cholesterol  levels.  149  

• Supplementation  of  4  g/d  of  Omega-­‐3s  has  been  shown  to  significantly  decrease  

elevated  serum  TG  concentrations.   10,  126,  143  Similar  results  have  been  found   in  

healthy   men   and   women   with   fish   and/or   Omega-­‐3s   consumption,   with  

beneficial  effects  on  TG  levels.  13,  150,  151    

• Regular  consumption  of  fish  and  Omega-­‐3s  found  in  fish  and  seafood  can  lower  

blood  pressure  in  a  dose  dependent  manner.  150,  152,  153  Supplementation  of  3g  of  

Omega-­‐3s  per  day  can  significantly  lower  elevated  blood  pressure  levels.  153  

• Supplementation  of  Omega-­‐3s  has  positive  effects  on  blood  vessels   showing  a  

significant  reduction  in  arterial  stiffness.  154  

• High-­‐level   evidence   shows   that   intake   of   Omega-­‐3s   has   favourable,   dose  

dependent  effects  on  heart  rate.  136,  155  

• The   risk   of   cerebrovascular   disease   is   reduced   with   high   levels   of   fish  

consumption.  88  This  includes  a  reduced  risk  of  death  from  stroke  and  all-­‐cause  

ischemic   heart   disease   (blockage   of   the   arteries)   in   both   men   and   women.  

Consumption  of  one  serve  of  fish  per  week  has  shown  to  significantly  reduce  the  

incidence  of  ischemic  stroke.  16  118,  141,  156  

• The   effects   of   EPA   and   DHA   supplementation   appear   to   have   gender   specific  

responses  on  thrombotic  risk  factors.  157  

31

• A  high  level  of  plasma  fibrinogen  is  a  known  risk  factor  for  both  CHD  and  stroke.  

Emerging   observational   evidence   indicates   that   high   serum   concentrations   of  

Omega-­‐3s  may  decrease  plasma  fibrinogen  levels.  158  

• Research  has  found  that  individuals  who  consume  large  amounts  of  fish  have  a  

15%  lower  risk  of  heart  failure  than  those  who  consume  very  little  fish.  10,  159  

• High-­‐level  evidence  shows  that  Omega-­‐3  supplementation  has  been  associated  

with  a  34%  decrease   in  the  odds  of  developing  postoperative  atrial   fibrillation.  160  

• Fish   and/or   Omega-­‐3s   consumption   is   associated   with   lower   levels   of  

inflammatory  markers   indicating  a   lower  risk  of  CHD  151,  161,  162  Consumption  of  

0.6   g/day   of   Omega-­‐3s   appears   to   be   the   optimal   level   for   the   maximal  

reduction  of  inflammatory  level  markers.  161    

• People   with   human   immunodeficiency   virus   (HIV)   often   develop   dyslipidemia  

(abnormal  amounts  of  lipoproteins)  as  a  result  of  infections  and  treatment.  This  

puts   these   patients   at   higher   risk   of   CVD.   Studies   have   shown   that   Omega-­‐3  

supplementation   in   conjunction   with   standard   lipid   lowering   treatments  

enhances  the  reduction  of  serum  TG  levels  in  HIV  patients.  163  

• Consuming  Omega-­‐3s   in   place   of   saturated   fatty   acids   (SFA)   reduces   CHD   risk.  

When  these  PUFA  are   in  the  form  of  Omega-­‐6s  these  beneficial  effects  are  not  

observed.  164  Similarly,  the  shorter  chain  Omega-­‐3  ALA  does  not  exert  the  same  

cardiovascular  health  benefits  as  the  longer  chained  EPA  and  DHA  165  

• Consumption  of  fish,  as  part  of  the  Mediterranean  diet,  has  been  associated  with  

a  lower  risk  of  vascular  events.  166  

• The   National   Heart   Foundation   of   Australia   recommends   that   Australians  

consume   500  mg/d   of   combined   EPA   and  DHA   to   lower   their   risk   of   CHD   and  

1000  mg/d  for  adults  with  existing  CHD.  For  people  with  elevated  TGs,  a  starting  

dose  of  1000  mg  of  Omega-­‐3s  daily  is  recommended  increasing  to  4000  mg/d  if  

appropriate.   167   (Higher   levels   of   supplementation   should  be  part   of   an  overall  

32

treatment   and   management   plan   developed   and   administered   by   a   medical  

practitioner.)    

• The   benefits   of   eating   fish   can   depend   on   the   way   it   is   prepared   for  

consumption.  168  Broiled  or  baked  fish  maintains  the  health  benefits  better  than  

deep   fried   fish;   with   fried   fish   showing   no   association   with   a   lowered   risk   of  

ischemic  heart  disease.  16  Consumption  of  non-­‐fried  fish  containing  Omega-­‐3s  is  

associated  with  a  lower  odds  ratio  of  atherosclerosis.  169,  170  

• Consumers  of  fish  oil  supplements  and  EPA/DHA  enriched  concentrates  need  to  

consider   accuracy   of   content   claims,   oxidative   stability,   negligible   levels   of  

environmental   contaminants   and   the   appropriate   accompanying   presence   of  

physiological  antioxidants,  when  purchasing  these  products.  171  

• Despite   knowledge   of   the   benefits   of   fish   oil   and   favourable   attitudes   toward  

nutritional   therapy,   family  physicians   infrequently   recommend   fish  oils   to  CVD  

patients.  172    

• High   levels  of  Omega-­‐3s  within   the   red  blood   cells  of  patients  with  peripheral  

artery  disease  are  associated  with  lower  levels  of  inflammation.  173  

• The  anti-­‐inflammatory  properties  of  Omega-­‐3s  may  have  a  beneficial  effect  on  

chronic  chagasic  cardiomyopathy,  an  inflammatory  disease  of  the  heart.  174  

• Lower   levels   of   Omega-­‐3s   in   the   blood   were   associated   with   higher   levels   of  

atrial  fibrillation  in  patients  with  chronic  heart  failure.  175  

• A  diet  high   in  Omega-­‐3s   reduces  TG   levels,  which   is  beneficial   to  heart  health  

(reduces  risk  of  CVD).  176  177  

• Prescription-­‐only  EPA  supplementation  of  2g/day  was  effective  in  lowering  very  

high   level   of   TGs.   This   has   implications   for   those   at   high   risk   of   diabetes   and  

CVD.  178  

• A   combination   of   statins   with   Omega-­‐3   supplementation   reduced   the   risk   of  

subsequent   adverse   cardiovascular   outcomes   following   myocardial   infarction.  179  

33

• Strong   evidence   supports   a   high   dose   Omega-­‐3   supplementation   (at   least  

1g/day)   as   a   protective   measure   against   cardiac   death,   sudden   death   and  

myocardial  infarction  in  patients  with  existing  CVD.  180  

• Use   of   Omega-­‐3s   following   adverse   cardiac   events   in   a   hospital   setting   has  

proven  an  effective  adjunct  therapy  in  reducing  cardiac  arrhythmic  events.181  

• Some   large   studies   have   reported   little   or   no   association   between   Omega-­‐3s  

and  CVD   risk.   182-­‐184  However,  many  of   these   studies  do  not  measure  baseline  

Omega-­‐3  levels  or  other  dietary  and  health  factors  that  impact  on  Omega-­‐3s  in  

the   body.   Other   studies   have   used   macro   or   self-­‐reported   measures   which  

reduced  the  accuracy  of  findings.  There  is  a  call  for  the  uniform  implementation  

of  standardised  and  valid  measures  of  Omega-­‐3s  such  as  the  Omega-­‐3  Index.185    

3.9   Cystic  Fibrosis  -­‐  Summary  of  evidence  

Cystic   fibrosis   (CF)   is   a   genetic   condition   mainly   affecting   the   cells   of   the   lungs,  

pancreas,   liver   and   digestive   systems.   There   is   strong   evidence   that   the   regular  

consumption   of   Omega-­‐3s   in   the   management   of   CF   can   help   to   reduce  

inflammation  and  mucus  levels.    

 

Cystic  Fibrosis  -­‐  Main  outcomes  of  studies  

• High-­‐level   evidence   suggests   regular   intake   or   supplementation   of   Omega-­‐3s  

can  provide  some  anti-­‐inflammatory  benefits  for  people  with  CF  with  relatively  

few  adverse  effects.  186,  187  

   

34

 

3.10   Diabetes  -­‐  Summary  of  evidence  

Seafood  is  an  excellent  source  of  lean  protein.  It  is  also  low  in  saturated  fat  and  high  

in  important  Omega-­‐3s.  There  is  substantial  evidence  that  Omega-­‐3s  play  a  key  anti-­‐

inflammatory   role   in   the   body.   Omega-­‐3s   also   assist   in   the   prevention   and  

management  of  CVD,  a  condition  many  diabetics  are  highly  susceptible  to.    

Seafood  is  second  only  to  the  sun  as  a  source  of  Vitamin  D.  People  with  diabetes  are  

more  prone  to  deficiency  of  this  vitamin,  and  can  benefit  from  regular  consumption  

of   seafood   as   a   part   of   a   healthy   diet.   Evidence   suggests   that  men   should   aim   to  

consume  600mg  of  Omega-­‐3s  each  day  and  women  500mg.  Generally  this  equates  

to  2-­‐3  serves  (100g)  of  seafood  each  week.  Seafood  high   in  Omega-­‐3s  are  sardines  

(canned  or  fresh),  Atlantic  salmon  (canned  or  fresh),  rainbow  trout,  bream,  oysters,  

mussels  and  mullet.      

Diabetes  is  often  associated  with  high  levels  of  TGs  and  general  inflammation  within  

the  body.  At   least   2   g/day  of  Omega-­‐3s   can   reduce  TG   levels   in  most  people  with  

nutrition-­‐related   diabetes.   For   those   with   uncontrolled   diabetes,   4   g/day   of   ethyl  

EPA  (a  prescription  only  medication)  can  assist   in  the  control  of  both  high   levels  of  

triglycerides  and  inflammation.    

Recent   advances   in   diabetes   research   have   shown   a   positive   link   between   the  

genetic  makeup  of  individuals  and  the  level  of  benefit  that  can  be  gained  from  a  diet  

high   in   Omega-­‐3s.   Further   research   in   this   area   could   lead   to   tailored   Omega-­‐3  

supplementation  that  will  maximize  individual  health  benefits.          

 

Diabetes  -­‐  Main  outcomes  of  studies  

• Regular   fish   consumption   should   be   part   of   a   healthy   diet   for   diabetic  

management.  188,  189  

• A  weak   positive   association   has   been   observed   between   fish   and  Omega-­‐3   FA  

intake,  and  the  risk  of  developing  type  2  diabetes  mellitus  (T2DM).  190  

35

• Physical  activity,  a  body  mass  index  (BMI)  less  than  25,  and  a  Mediterranean  diet  

high   in   fruit,   vegetables,   carbohydrates  with  a   low  glycaemic   index   (GI)  or  high  

fibre,  and  30-­‐35%  total  fat  (high  in  monounsaturated  fatty  acids  and  Omega-­‐3s,  

and   low   in   saturated   fat)   appears   to   be   preventative   against   T2DM.   191,   192  

Adherence   to   a   Mediterranean   diet   pattern   has   been   associated   with   a   12%  

reduction  in  the  likelihood  of  developing  T2DM.  193  

• Regular   fish   consumption   by   women   with   T2DM   was   associated   with   a   lower  

incidence  of  both  CHD  and  total  mortality.  188    

• Albuminuria   (albumin   in   the   urine)   is   an   indicator   of   kidney   damage.   Research  

has   found   that   greater   fish   consumption   was   associated   with   a   lower   risk   of  

macro  albuminuria  in  people  with  diabetes.  194  

• High-­‐level   evidence   demonstrates   that   Omega-­‐3   PUFA   supplementation   in  

people   with   T2DM   can   significantly   decrease   TGs   and   very-­‐low   density  

lipoprotein  (VLDL)  cholesterol  levels.  195  However,  in  some  cases  Omega-­‐3  PUFA  

supplementation   increased   low-­‐density   lipoprotein   (LDL)   cholesterol   levels.   196,  

197  This  may  be  a  factor  of  the  macro  measurements  used  therefore  this  finding  

requires  further  investigation.  

• Fish   oil   can   impair   glucose   tolerance   in   individuals   with   high   phospholipid  

Omega-­‐6:  Omega-­‐3  ratios.  Fish  oil  supplementation  for  these  individuals  should  

either  be  avoided  or  accompanied  by  decreases  in  Omega-­‐6  dietary  intakes.  198    

• A   large   cohort   study   found   that  higher   consumption  of   total,  white  or  oily   fish  

was  associated  with  a  25%  reduction  in  the  risk  of  developing  T2DM.  199  

• At  least  2  g/day  of  DHA+EPA  significantly  reduced  triglycerides  levels.  177  176  

• 4  g/day  of  ethyl  EPA  (prescription  medication)  significantly  reduced  triglyceride  

levels  and   inflammation   in  patients  with  diabetes.   It  was  particularly  beneficial  

to  patients  with  uncontrolled  diabetes.  200    

• Oily  fish  high  in  Omega-­‐3s  offers  significant  protection  against  T2DM.  201  

• Research   has   shown   a   clear   positive   link   between   the   influence   of   genetic  

variation   on   fasting   glucose   and   fasting   insulin   levels   in   response   to  Omega-­‐3  

36

supplementation.   This   has   implications   for   the   development   of   tailored  

treatment  of  diabetes  based  on  metabolic  differences.  Further  research  should  

focus  on  the  influence  of  genes  on  glucose  and  insulin  responses  in  the  presence  

of  Omega-­‐3s.  202  

 

3.11   Kidney  Disease  -­‐  Summary  of  evidence  

There   is   evidence   of   a   connection   between   the   consumption   of   Omega-­‐3s,   and  

better   kidney   health.   A   diet   high   in   seafood   helps   to   maintain   a   healthy   weight,  

which  in  turn,  helps  to  regulate  blood  pressure  and  blood  glucose,  both  implicated  in  

kidney  disease.  As  kidney  disease   is  often  associated  with  CVD,   it  appears   that   the  

consumption   of   Omega-­‐3s   may   be   beneficial   for   those   with   end-­‐stage   kidney  

disease.  

 

Kidney  Disease  -­‐  Main  outcomes  of  studies  

• Emerging   evidence   has   linked   Omega-­‐3   PUFA   and   fish   intakes   with   the  

maintenance  of  kidney  health.  203  

• Patients   with   kidney   disease   are   at   high   risk   of   developing   CVD.   Promising  

evidence  suggests  that  the  cardio-­‐protective  role  of  Omega-­‐3  PUFA  on  CVD  risk  

factors  and  disease  factors,  may  be  beneficial  for  patients  with  end  stage  kidney  

disease.  204,  205  

• Omega-­‐3  PUFA  supplementation  has  beneficial  effects  on   insulin   resistance   206  

and  inflammatory  markers  in  patients  undergoing  haemodialysis.  162  

• Omega-­‐3   supplementation   of   3g/day   in   patients  with   end   stage   renal   disease  

reduced  their  risk  of  CVD.  207  

• A   diet   high   in   Omega-­‐3s   reduced   systemic   inflammation   and   improved   lipid  

levels  in  renal  transplant  patients.  207,  208  

   

37

 

3.12   Liver  Disease  -­‐  Summary  of  evidence  

A   balanced   diet   high   in   seafood   offers   real   benefits   in   the   prevention   and  

management  of  diabetes  and  obesity,  both  primary  risk  factors  for  liver  disease.  The  

consumption   of   seafood   as   part   of   a   health   diet   may   help   to   prevent   fatty   liver  

disease  (hepatic  steatosis).    

 

Liver  Disease  -­‐  Main  outcomes  of  studies  

• Emerging   evidence   suggests   that   Omega-­‐3   PUFAs   may   be   beneficial   for   the  

prevention  or  management  of  non-­‐alcoholic  fatty  liver  disease.  209  210  211  

 

3.13   Maternal  and  Child  Health  -­‐  Summary  of  evidence  

As  expectant  mothers  know,  good  nutrition  is  vitally  important  for  their  own  health  

during  pregnancy  and  their  baby’s  development.  Nutrition   is  particularly   important  

for  the  optimal  development  of  the  brain  and  central  nervous  system  and  Omega-­‐3s  

play   a   very   important   role   in   both.   In   short,   Omega-­‐3s   are   essential   to   brain  

development   during   pregnancy,   particularly   DHA   –   the   most   important   Omega-­‐3  

fatty  acid  for  brain  development.  (These  benefits  continue  after  a  child  is  born.)  

Regular  consumption  of   fish  during  pregnancy  has  been  associated  with  decreased  

rates   of   premature   delivery,   increased   birth   weight   and   lower   hypertension,   all  

factors  that  improve  long-­‐term  outcomes  for  infants.  Some  studies  have  shown  that  

Omega-­‐3s   present   in   the   breast  milk   of  mothers  who   eat   fish   are   associated  with  

(healthy)  infant  weight  gain,  height,  and  BMI.  Others  have  found  that  a  mother’s  fish  

consumption   is   linked   with   higher   child   development   scores,   improved   language  

skills  and  sound  visual  development.  

Pregnancy  can  be  a  time  of  heightened  anxiety  for  expectant  mothers.  As  noted,  a  

balanced   diet   rich   in  Omega-­‐3s   is   essential   for   good  health   but   has   the   additional  

benefit  of  reducing  high  levels  of  anxiety  during  pregnancy.    

   

38

Maternal  and  child  health  -­‐  Main  outcomes  of  studies  

• Evidence  supports  a  diet  high   in  Omega-­‐3s  as  being  beneficial   to  the  health  of  

women  throughout  the  lifespan.212  This  is  most  important  during  pregnancy  and  

breastfeeding  as  maternal  nutrition   is   important   to  development  of   the   foetal  

and  infant  brain.  213  

• Seafood   is   an   excellent   source   of   Omega-­‐3s,   which   are   essential   for   optimal  

foetal   neural   development.   50,   214,   215   Positive   associations   exist   between   long  

chain   Omega-­‐3   PUFA   supplementation   and   the   neurodevelopment   of   the  

offspring.   50,  216,  217   The   ideal   dose   of  Omega-­‐3   PUFA,   composition   and   ratio   of  

EPA:DHA  to  maximise  child  development  requires  further  investigation.218    

• High   levels   of   fish   intake   during   pregnancy   have   been   associated   with   longer  

gestation,   217   increased   birth   weight   and   lower   rates   of   hypertension   during  

pregnancy.  50,  219,  220,  221,  222,  223  

• Observations   show   that   the   total   amount  of   PUFA   in   a  mother’s   breast  milk   is  

positively  associated  with  weight  gain,  height  and  BMI  in  premature  infants.  224  

• Omega-­‐3   PUFA   intakes   during   pregnancy   may   be   beneficial   on   a   number   of  

infant  birth  outcomes.  225    

• Prenatal  long  chain  PUFA  availability  is  influenced  by  maternal  diet.  Associations  

have  been  made  between  prenatal  availability  of  long  chain  PUFA  and  the  motor  

function  of  children  at  7  years  of  age.  226    

• Consumption   of   two   salmon   (high   in   Omega-­‐3s)   meals   per   week   during  

pregnancy  lowered  inflammatory  markers  in  offspring,  which  is  associated  with  a  

decreased  risk  of  CVD.  227  

• Although   further   research   is   required,   EPA   and   DHA   supplementation  may   be  

beneficial   for   women   with   perinatal   depression.   66,   228   A   small   cohort   showed  

that  pregnant  women  with   lower   levels  of  Omega-­‐3  PUFA  were  six   times  more  

likely  to  have  antenatal  depression  than  women  with  higher  levels.  229  

39

• Research   has   shown   that   the   dietary   patterns   of   girls   and   boys   should   be  

considered  separately  when  assessing  their   intake  of  Omega-­‐3s  and  thus   in  the  

development  of  targetted  dietary  interventions.  230  

• Greater   maternal   fish   consumption   has   been   linked   to   higher   child  

developmental   scores   at   18   months,   improved   performance   in   language   and  

visual  motor  skills  223,  222  and  visual  development.  73  

• Deficit  of  DHA  during  pregnancy  impacts  adversely  on  neural  development  and  

gene   expression.   Adequate  maternal   intake   of   DHA   is   essential   to   the   central  

nervous  system  development  of  infants.  85  

• Although  cause  and  effect  has  not  been  established,  a  diet  rich  in  Omega-­‐3s  can  

reduce  high  anxiety  levels  during  pregnancy.  231  

• There  are  beneficial  effects  on  child  development  of  a  maternal  seafood   intake  

of   more   than   340   g   per   week.   This   suggests   that   advice   to   limit   seafood  

consumption   could   actually   be   detrimental.   The   risks   from   loss   of   nutrients   to  

the   foetus   were   greater   than   the   risk   of   harm   from   exposure   to   trace  

contaminants  in  340  g  seafood  eaten  weekly.214,  232  

• Fish  and   seafood   intake  guidelines   for  women  who  are  pregnant,  may  become  

pregnant  or   are  breastfeeding  need   to  be   specific   about   fish   species   to  ensure  

adequate  intakes  of  Omega-­‐3  PUFA  and  minimal  intake  of  methylmercury.  233  It  

appears   that  some  pregnant  women  have   limited  knowledge  of   the  benefits  of  

Omega-­‐3  PUFA  intake  during  pregnancy.  234  

• Some  fish  and  seafood  are  potential  sources  of  pollutants  such  as  methylmercury  

that  may  adversely  affect  pregnancy  outcomes.  Thus,  advising  pregnant  women  

about   fish   consumption   requires   consideration   of   potential   risks   as   well   as  

benefits.219,  235,  236  There  are  national  guidelines  that  seek  to  minimise  any  risk  of  

consumption   of   fish   and   seafood   during   pregnancy.   These   guidelines   note   the  

health  benefits   far  outweigh   the  minimal   risk.  However,  not  enough  women  of  

childbearing  age  are  consuming  adequate  fish  for  health  benefits.  237    

 

40

3.14   Mental  Health  and  Behavioural  Conditions  -­‐  Summary  of  evidence  

There  is  an  association  between  the  consumption  of  Omega-­‐3s  from  fish  and  mental  

health  and/or  behavioural  issues.  Frequent  seafood  consumption  is  associated  with  

lower   levels  of  depression.  This   is  thought  to  be  due  to  the  ingestion  of  Omega-­‐3s,  

iodine,  selenium,  zinc  and  Vitamin  B12  –  all  found  in  seafood  and  often  deficient  in  

those  with   depression.  Most   studies   support   a   balanced   diet   high   in   oily   fish   as   a  

complimentary   therapy   for   the  prevention  and  management  of  mental   health   and  

behavioural  conditions.  Omega-­‐3s  are  essential  to  the  optimal  function  of  the  brain  

therefore  oily  fish  should  be  included  in  diets  for  good  mental  health.  Children  and  

adults  with  behavioural  issues  often  benefit  from  the  additional  fish  oil  supplements  

in  their  diet  as  they  provide  high  doses  of  DHA,  the  type  of  Omega-­‐3s  that  aids  brain  

function.    

In   general   seafood   is   good   for  mental   health.   People  with   a  wide   range  of  mental  

health   conditions   (e.g.   depression,   anxiety   and   bipolar   disorder)   who   eat   fish  

regularly,  say  it  made  them  feel  better  and  helped  them  manage  their  condition.    

Anxiety   and   depression   are   two   of   the   most   common   mental   health   conditions  

facing   Australians   today.   There   is   good   evidence   linking   a   balanced   diet   high   in  

Omega-­‐3s  with  reduced  depressive  symptoms  in  both  men  and  women.  There  is  also  

evidence   supporting   the   intake   of   at   least   1.2   g/day   of   Omega-­‐3s   to   reduce  

impulsivity,   anger   outbursts   and   other   symptoms   associated   with   borderline  

personality  disorder,  particularly  in  adolescents.  There  is  good  evidence  supporting  a  

diet   high   in   oily   fish   (with  or  without   fish  oil   supplements)   for   children   and   adults  

with  ADHD.  

It  is  important  to  note  that,  for  these  conditions,  nutritional  therapies  should  be  part  

of  a  tailored  treatment  program  administered  by  an  appropriately  qualified  medical  

practitioner.  

 

   

41

Mental  Health  and  Behavioural  Conditions  -­‐  Main  outcomes  of  studies  

• An  Australian  survey  found  that  approximately  20%  of  Australians  aged  16  to  85  

years  reported  a  mental  health  disorder  in  the  previous  12  months.  79,  238  

• Fish   consumption   is   associated  with   a   significantly   higher   self-­‐reported  mental  

health  status.  239,  240  

• A  mean  daily   intake  of  10  g  of   seafood   is   linked   to  a   lower  prevalence  of  poor  

cognitive  performance.  241  

• Higher  dietary  intake  of  Omega-­‐3s  offers  some  protection  against  depression.  238  

• Worldwide,  there  are  significant  negative  correlations  between  fish  consumption  

and  depression  (including  post-­‐partum),  bipolar  disorder  and  suicidal  ideation.239,  

242-­‐244  

• Emerging   evidence   suggests   there   are   benefits   of   Omega-­‐3   PUFA  

supplementation  on  depressive  symptoms  in  people  with  bipolar  disorder.  235,  245,  

246  

• Adequate   fish   intake   has   a   negative   association   with   depressed  mood,   risk   of  

recurrent  depressive  episodes  and  depressive  symptoms.  120,  247,  248  

• Emerging   evidence   shows   supplementation   of   1gm   of  Omega-­‐3   PUFA   a   day   in  

children  with  major  depression  significantly  reduces  depression  scores.  249  

• Omega-­‐3  has  a  role  in  reducing  impulsivity,  psychiatric  symptoms  and  outburst  of  

anger   in  the  treatment  of  borderline  personality  disorder.  Nutritional  strategies  

focussing  on  at   least  1.2  g/day  of  Omega-­‐3s  should  be  explored  as  a  minimally  

invasive  treatment  for  adolescents  with  borderline  personality  disorders.  250,  251  

• There   is   good   evidence   linking   Omega-­‐3   intake   and   reduced   depressive  

symptoms  in  both  men  and  women.  252,  253    

• A   growing   body   of   evidence   suggests   a   protective   effect   of   Omega-­‐3s   against  

dementia.254,  255,  255  Intake  of  at  least  one  fish  serve  per  week  reduces  the  risk  of  

Alzheimer’s  disease.  256-­‐258  

42

• Changes  to  the  traditional  Western  diets  to  include  adequate  levels  of  Omega-­‐3s  

should   be   considered   when   developing   or   modifying   food,   health   and   dietary  

policies.  259    

3.15   Metabolic  Syndrome  -­‐  Summary  of  evidence  

Metabolic  syndrome  refers  to  a  condition  where  multiple  risk   factors   for  both  CVD  

and   T2DM   occur   together.   The   main   risk   factors   are:   abdominal   fat;   high   blood  

pressure;   low   levels   of   ‘good’   cholesterol   (high   density   lipoproteins   -­‐   HDL);   high  

levels  of  ‘bad’  cholesterol  (low  density  lipoproteins  -­‐  LDL);  high  levels  of  TGs;  insulin  

resistance;  physical   inactivity  and  cigarette  smoking.  As  seafood   is  beneficial   in   the  

prevention  and  management  of  both  CVD  and  T2DM,  there  is  good  reason  to  believe  

that   the   consumption   of   seafood   (particularly   those   high   in   Omega-­‐3s)   would   be  

beneficial   in   the   prevention,   management   and   treatment   of   metabolic   syndrome.  

Some   studies   have   shown   that   a   Mediterranean   diet   pattern,   including   fish,   is  

associated   with   just   such   positive   outcomes.   Significant   health   benefits   in   adults  

were  gained  with  supplementation  of  2  g/day  of  Omega-­‐3s.  

 

Metabolic  Syndrome  -­‐  Main  outcomes  of  studies  

• Metabolic   syndrome   is   a   term   used   to   describe   a   cluster   of   risk   factors  

(abdominal   obesity,   dyslipidaemia,   hypertension   and   insulin   resistance)  

observed  in  an   individual.  With  known  beneficial  effects  of  Omega-­‐3s  on  some  

of   these   risk   factors,   it   is   likely   they   are   beneficial   in   the   management   and  

treatment  of  metabolic  syndrome.  260  

• Supplementation  of  >1  g  a  day  of  Omega-­‐3s  produced  significant  reductions   in  

the  serum  triglycerides  of  patients  with  metabolic  syndrome.  261  

• Adherence   to   a  Mediterranean  diet   pattern   (which   includes   fish)   is   associated  

with  favourable  effects  on  the  components  of  metabolic  syndrome.  262  

43

• Improvements   in   endothelial   function   and   arterial   stiffness   were   evident   in  

adults  with  metabolic  syndrome  after  supplementation  with  2  g/day  of  Omega-­‐

3s.  Reduction  in  inflammation  was  also  evident.  263  

• DHA   may   help   to   prevent   metabolic   syndrome   based   on   its   impact   on  

inflammation   and   insulin,   however   further   studies   are   required   to   establish  

adequate  doses  required  to  reduce  risk.  264  

 

3.16   Osteoporosis  -­‐  Summary  of  evidence  

A   group   of   conditions   affecting   the  muscles   and   bones   of   the   body   are   known   as  

musculoskeletal   conditions.   One   of   the   most   common   types   of   musculoskeletal  

problems  is  osteoporosis,  an  extremely  painful  and  debilitating  condition  resulting  in  

an   increased   risk   of   bone   fractures.   Common   symptoms   are   joint   pain   and  

inflammation,   stiffness,   disability   and   deformity.   Calcium   and   vitamin   D,   key  

ingredients   in   seafood,   aid   in   the   prevention   and   management   of   osteoporosis.  

Eating  fish  from  an  early  age  helps  to  lay  down  strong  bones.  Continual  consumption  

throughout   life  maintains   bone   health  with   some   evidence   that   Omega-­‐3s   reduce  

age-­‐related  bone  and  muscle  loss.    

Women  are  particularly  susceptible   to  bone   loss   following  menopause.  There   is  an  

additional  risk  of  bone  loss   in  women  who  are  both  menopausal  and  breast  cancer  

survivors  due,   in  part,   to   the  effects  of  common  cancer   treatments.  One  study  has  

found  that  supplementation  of  4g/day  of  Omega-­‐3s  for  three  months  was  effective  

in   reducing   the  amount  of  bone   loss   in   these  women.   It   is   important   to  note   that  

supplementation   for   this   group   of  women   should   be   part   of   an   overall   treatment  

program  overseen  by  a  medical  practitioner.  

 

   

44

Osteoporosis  -­‐  Main  outcomes  of  studies  

• Evidence  shows  that  fish  intake  is  beneficial  in  the  management  of  inflammatory  

diseases.  1,  34  

• A  number  of  molecular  mechanisms  demonstrating  the  anti-­‐inflammatory  effects  

of  Omega-­‐3  PUFA  have  been  proposed.  35  

• Adequate   levels   of   Omega-­‐3s   are   important   for   appropriate   immune   system  

responses.  36  

• Dietary  intakes  of  Omega-­‐3s  are  associated  with  lower  levels  of  inflammation.265  

Supplementation   of   1.25   g/day   of  Omega-­‐3   PUFA   for   four  months   significantly  

lowered  levels  of  inflammatory  molecules.  37  

• There   is   some   evidence   that   Omega-­‐3’s   reduce   age-­‐related   bone   and  muscle  

loss.  266  Women  who  are  both  postmenopausal  and  breast  cancer  survivors  are  

at  risk  of  accelerated  bone  loss  due  to  common  cancer  treatments.  Short-­‐term,  

high  dose  of  fish  oil  (4g  per  day  for  3  months)  can  reduce  bone  resorption  in  this  

population.  114,  267  

 

45

 

3.17   Overweight  and  Obesity  -­‐  Summary  of  evidence  

Excessive  weight   is   a   risk   factor   for  many  medical   and   health   conditions   including  

CVD,  diabetes,  musculoskeletal  condition  and  some  cancers.  The  more  excess  weight  

a   person   has,   the   greater   the   risk   of   developing   adverse   health   outcomes.   Being  

overweight   or   obese   can   also   make   it   more   difficult   to   prevent,   or   manage  

conditions  that  may  arise  due  to  the  additional  stress  that  excess  weight  places  on  

the  systems  of  the  body.    

Protein  has  a  superior  affect  on  satiety.  Seafood  is  a  great  source  of  lean  protein  that  

is   readily   absorbed  by   the  body.   This  means   you  only  need   to  eat   a   small   amount  

each   day   to   get   the   protein   producing   energy   you   need.   A   serve   of   100-­‐150   g   of  

seafood  is  recommended,  making  it  a  very  cost  effective  meal.    

Seafood   has   a   raft   of   essential   nutrients   that   help   the   body   and   brain   to   function  

effectively.   It   also   helps   reduce   inflammation   associated   with   obesity   making  

seafood   the   ideal   choice   for   those  wishing   to  become  healthier.   Inflammation   is   a  

common   problem   associated   with   obesity.   This   type   of   inflammation   spreads  

throughout  the  whole  body.  A  daily  dose  of  Omega-­‐3s  (460mg  EPA  and  380mg  DHA)  

offers   real   benefits   in   reducing   systemic   inflammation   associated   with   severe  

obesity.  

 

Overweight  And  Obesity  -­‐  Main  outcomes  of  studies  

• Obesity   as   a   major   risk   factor   for   CVD,   T2DM,   and   some   musculoskeletal  

conditions   and   certain   nutrition-­‐related   cancers.   268   Suggestions   have   been  

made  that  the  development  of  some  of  these  complications  is  tightly  correlated  

with  the  chronic  low-­‐grade  adipose  tissue  and  systemic  inflammation  associated  

with  obesity.  Targeted   interventions  aimed  at   reducing  weight   through  dietary  

modifications   have   had   limited   success   with   the   overweight   and   obese  

population.269   However,   recent   research   with   severely   obese,   non-­‐diabetic  

subjects  found  that  supplementation  of  460  mg  of  EPA  and  380  mg  of  DHA  each  

day  improved  adipose  and  systemic  inflammation.  270  

46

 

3.18   Possible  Health  Risks  -­‐  Summary  of  evidence  

Pollutants:  Like  any  natural  food  source,  there  is  potential  for  the  presence  of  dioxins  

and  other  pollutants   in   seafood.  Possible  pollutants   in   seafood   include  mercury  or  

other   heavy  metals.   However,  many   high-­‐quality   studies   have   concluded   that   the  

level  of  these  pollutants  in  fish  and  other  seafood  is  generally  very  low,  and  that  the  

potential  health  benefits  of  fish  consumption  outweigh  potential  risks.  Furthermore,  

emerging   evidence   indicates   that   the   when   selenium   is   present,   it   helps   to  

counteract  the  effect  of  these  pollutants.  Further  research  is  required  to  confirm  this  

association.  

Researchers   have   built   a   good   understanding   of   the   mineral   profile   of   various  

species,  meaning  that  it  is  possible  to  plan  consumption  to  manage  the  small  risk  of  

pollutants   such   as   methylmercury.   In   practical   terms,   this   means   limiting  

consumption  of  a  small  number  of  larger  fish  species.  Food  Standards  Australia  New  

Zealand   (FSANZ)   has   clear   guidelines   to   assist   with   these   decisions.  

www.foodstandards.gov.au    

Women  who  are  pregnant,  may  become  pregnant,  or  are  breastfeeding  should  pay  

particular   attention   to   these   recommendations,   and   infants   up   to   six   years   should  

limit   their   consumption   of   some   species   (see   www.foodstandards.gov.au   for  

guidelines).  However,   fish  should  not  be  avoided  altogether,  as   it   is   the  single  best  

source   of   Omega-­‐3s   and   other   key   nutrients   that   play   an   important   role   in   foetal  

neural   development,   the   development   of   small   children   and   delayed   onset   of  

dementia  as  we  age.    

Supplementation:   Fish   oil   supplements   can   provide   benefits   to   those   who   either  

don’t  or  can’t  eat  seafood.  They  are  also  helpful  when  larger  doses  of  Omega-­‐3s  are  

recommended   to   assist   in   the   management   of   some   chronic   conditions   (e.g.  

arthritis).  However,  it  is  essential  that  only  high  quality  supplements  from  reputable  

sources   are   ingested,   that   they   are   stored   according   to   instructions   and   are   not  

ingested   past   their   used   by   date.   Low   quality,   poorly   handled   ingredients   prior   to  

encapsulation  or  fish  oil  past  its’  used  by  date  may  pose  a  risk  to  human  health.    

47

 

Possible  Health  Risks  -­‐  Main  outcomes  of  studies  

• A  balance   of   risk-­‐benefit   in   relation   to   the   consumption   of   fish   and   seafood   is  

recommended   in   the   literature,   taking   into   consideration   meal   size   and  

frequency  of  consumption.  137,  271  

• Guidelines   are   to   assist   people   to  make   informed   choices   about   the   types   and  

amount   of   seafood   they   ingest   based   on   higher   Omega-­‐3   content   and   low  

mercury  concentrations.  272  

• Levels  of  dioxins  and  other  pollutants  in  fish  are  low,  and  potential  carcinogenic  

effects  are  outweighed  by  potential  benefits  of  fish  intake  and  should  have  little  

impact  on  choices  or  consumption  of  seafood.  15  

• Fish   low   in  mercury  and  high   in  Omega-­‐3s  are   recommended.   273,  274  Light   tuna  

has   relatively   low   levels   of   mercury,   and   other   fish,   such   as   wild   and   farmed  

salmon  and  shrimp,  contain  very  low  levels  of  mercury.  275  

• Fish  containing  the  highest  amounts  of  Omega-­‐3s  in  the  United  States  (USA)  are  

farmed   trout,   farmed   Atlantic   salmon,   Coho   salmon,   toothfish,   Copper   River  

salmon  and  sockeye  salmon.276  

• Women  of  childbearing  age  should  consult  regional  advisories  for  locally  caught  

freshwater   fish.   The   benefits   of   modest   fish   intake,   excepting   a   few   selected  

species,  outweigh  any  potential  risk.  15,  137  

• Women  who  are  pregnant,  may  become  pregnant  or  are  breastfeeding,  as  well  

as  very  young  infants  should  avoid  fish  that  may  contain  mercury.  Consumption  

of   fish   and   seafood   should   not,   however,   be   avoided   altogether   as   it   is   the  

predominant  source  of  Omega-­‐3s,  which  are  essential  for  optimum  foetal  neural  

development.  214,  277  

• Advances   have   made   bio-­‐monitoring   a   cost-­‐effective   public   health   tool   for  

helping   federal,   state   and   local   health   agencies   develop   optimal   dietary  

guidance.278  

48

• Selenium   appears   to   have   a   role   in   counteracting   mercury   toxicity.   There   are  

suggestions   that   the   selenium   content   in   fish   should   be   considered   when  

conducting   mercury   risk   assessments.   277   These   findings   require   further  

investigation  to  confirm  this  association.    

• Risk-­‐benefit  frameworks  have  been  proposed  as  methods  of  determining  optimal  

intakes  of  fish/seafood.  274,  275,  279,  280  

• The   level   of   oxidation   in   fish   oil   supplements   is   an   important   factor   in   the  

control   of   circulating   lipoproteins.   Highly   oxidated   products   may   be   a   risk   to  

human   health.   Manufacturers   should   test   the   level   of   oxidation   in   the  

ingredients   of   supplements   prior   to   encapsulation   as   a   quality   assurance  

measure.    281  

 

   

49

4.0     CONCLUSIONS    

This  report  focussed  on  summarising  the  best  evidence  around  the  health  benefits  of  

seafood  for  the  prevention  and  management  of  chronic  conditions.  The  benefits  of  

marine   sourced  Omega-­‐3s   for   general,   heart   and  brain  health   are  well   established  

and  generally  well  known.  The  strongest  evidence  is  around  the  reduction  of  risk  for  

all   cause  mortality,   coronary  heart   disease,   diabetes,  mental   health  disorders,   and  

nutrition   related   cancers.   There   is   also   strong   evidence   supporting   the   benefits   of  

regular   consumption   of   seafood   that   are   high   in   Omega-­‐3s,   for   optimal   brain  

development   and   function,   management   of   inflammatory   conditions   (such   as  

arthritis,   asthma   and   hay   fever)   plus   control   of   inflammation   associated  with   lung  

cancer  and  COPD,  a  common  condition  associated  with  impaired  lung  function.    

Evidence   is   mounting   in   support   of   the   regular   consumption   of   seafood   high   in  

Omega-­‐3s   in   delaying   the   onset   of   Alzheimer’s   Disease   in   susceptible   people   and  

slowing   the   progress   of   the   disease   in   those   already   affected.   There   is   emerging  

evidence   supporting   a   seafood   rich   diet   for   people   with   cystic   fibrosis;   kidney  

disease;   liver   disease   and   osteoporosis.   Furthermore,   eating   seafood   as   the   main  

protein   source   can   provide   significant   benefits   in   the   dietary   management   of  

overweight  and  obesity.  

Less  well  recognised  by  the  general  population  are  the  additional  benefits  that  can  

be  gained  from  eating  seafood  (particularly  oily  fish)  as  a  source  of  Omega-­‐3s  rather  

than   taking   fish   oil   supplements.   Seafood   contains   many   nutrients   (other   than  

Omega  -­‐3s)  that  help  the  body  to  perform  efficiently  and  effectively.  These  include:  

lean  protein   for   cell   repair   and   energy;   vitamin  D   and   calcium   for   bone   and   teeth  

health;   calcium   for   muscle,   heart   and   nerve   function;   selenium   to   prevent   cell  

damage  and  promote  healing  and  immune  function;  iodine  (together  with  selenium)  

to  regulate  thyroid  function  and  metabolism;  iron  to  help  the  blood  carry  oxygen  to  

cells  and  for  energy  production;  and  zinc  to  aid  healing  and  for  normal  growth  and  

development    

 

50

In   summary,   this   systematic   review   of   literature   found   that   there   is   significant  

evidence   supporting   the   effectiveness   of   seafood   (including   fish)   as   an   adjunct  

therapy   for   the  prevention   and  management  of  many   common   chronic   conditions  

affecting  people  today.  Therefore,  healthy  eating  and  dietary  guidelines  that  include  

seafood   as   a   major   nutritional   source,   should   be   integral   to   health   promotion  

initiatives  across  the  lifespan,  not  only  to  improve  better  short  and  long  term  health  

outcomes,   but   also   to   reduce   the   significant   health   care   costs   associated  with   the  

high  prevalence  of  nutrition-­‐related  chronic  conditions   in  Australia  and  around  the  

world.  

 

 

51

 5.0   REFERENCES      1.   Ruxton  C,  Derbyshire  E.  Latest  evidence  on  omega-­‐3  fatty  acids  and  health.  Nutrition  and  Food  

Science.  2009;  39(4):423-­‐438.      2.   Newton   W,   McManus   A.   Consumption   of   fish   and   Alzheimer’s   Disease.   Journal   of   Nutrition,  

Health  and  Ageing.  2011;  8(3):551-­‐552.      3.   McManus   A,   Newton  W.   Seafood,   nutrition   and   human   health:   A   synopsis   of   the   nutritional  

benefits   of   consuming   seafood     Perth:   Centre  of   Excellence   Science,   Seafood  &  Health,   Curtin  Health  Innovation  Research  Institute,  Curtin  University.  2011.      

4.   McManus  A,  Fielder  L,  Newton  W,  White  J.  Health  benefits  of  seafood  for  men.  Journal  of  Men's  Health.  2011;      DOI:doi:10.1016/j.jomh.2011.04.004.  

5.   Hibbeln   J,  Nieminen  L,  Blasbalg  T,  Riggs   J,  Lands  W.  Healthy   intakes  of  n  3  and  n  6   fatty  acids:  estimations   considering   worldwide   diversity.   American   Journal   of   Clinical   Nutrition.   2006;  83S:1483S–93S.      

6.   Wang  C,  Harrris  W,  Chung  M,  Lichtenstein  A,  Balk  E,  Kupelnick  B,  et  al.  n-­‐3  Fatty  acids  from  fish  or   fish-­‐oil   supplements,   but   not   α-­‐linolenic   acid,   benefit   cardiovascular   disease   outcomes   in  primary-­‐   and   secondary-­‐prevention   studies:   a   systematic   review.   American   Journal   of   Clinical  Nutrition.  2006;  84:5-­‐17.      

7.   Tur  JA,  Bibiloni  MM,  Sureda  A,  Pons  A.  Dietary  sources  of  omega  3  fatty  acids:  Public  health  risks  and  benefits.  British  Journal  of  Nutrition  2012;  107(S2):S23-­‐S52.      

8.   Filion   KB,   El   Khoury   F,   Bielinski  M,   Schiller   I,   Dendukuri  N,   Brophy   JM.  Omega-­‐3   fatty   acids   in  high-­‐risk   cardiovascular   patients:   A   meta-­‐analysis   of   randomized   controlled   trials.   BMC  Cardiovascular  Disorders.  2010;  10:24.      

9.   Poole  CD,  Halcox  JP,  Jenkins-­‐Jones  S,  Carr  ESM,  Schifflers  MG,  Ray  KK,  et  al.  Omega-­‐3  fatty  acids  and  mortality  outcome  in  patients  with  and  without  Type  2  diabetes  after  myocardial  infarction:  A  retrospective,  matched-­‐cohort  study.  Clinical  Therapeutics.  2013;  35(1):40-­‐51.      

10.   Saravanan  P,  Davidson  N,   Schmidt  E,  Calder  P.  Cardiovascular  effects  of  marine  omega-­‐3   fatty  acids.  The  Lancet.  2010;  376(9740):540-­‐50.    DOI:10.1136/  bmj.a2931.  

11.   Cannon   D.   From   Fish   oil   to   microalgae   oil:   A   win-­‐win   shift   for   humans   and   our   habitat.   The  Journal  of  Science  and  Healing.  2009;  5(5):299-­‐303.      

12.   Zivkovic   AM,   Telis   N,   German   JB,   Hammock   BD.   Dietary   omega-­‐3   fatty   acids   aid   in   the  modulation  of  inflammation  and  metabolic  health.  California  Agriculture.  2011;  65(03):106.      

13.   Egert   S,   Kannenberg   F,   Somoza   V,   Erbersdobler   H,  Wahrburg  U.   Dietary   [alpha]-­‐linolenic   acid,  EPA,  and  DHA  have  differential  effects  on  LDL  fatty  acid  composition  but  similar  effects  on  serum  lipid  profiles  in  normolipidemic  humans.  The  Journal  of  Nutrition.  2009;  139(5):861-­‐8.      

14.   Elvevoll  E,  Barstad  H,  Breimo  E,  Brox  J,  Eilersten  K,  Lund  T,  et  al.  Enhanced  incorporation  of  n-­‐3  fatty  acids  from  fish  compared  with  fish  oils.  Lipids.  2006;  41(12):1109.    

15.   Mozaffarian  D,  Rimm  E.  Fish   intake,  contaminants,  and  human  health:  Evaluating  the  risks  and  the  benefits.  Journal  American  Medical  Association.  2006;  296(15):1885-­‐99.    

16.   Mozaffarian   D,   Lemaitre   R,   Kuller   L,   Burke   G,   Tracy   R,   Siscovick   D.   Cardiac   benefits   of   fish  consumption  may  depend  on  the  type  of  fish  meal  consumed:  The  Cardiovascular  Health  Study.  Circulation.  2003;  107:1372-­‐7.      

17.   Larsen   R,   Eilertsen   KE,   Elvevoll   EO.   Health   benefits   of   marine   foods   and   ingredients.  Biotechnology  Advances.  2011;  29(5):508.      

18.   Lordan   S,   Ross   RP,   Stanton   C.   Marine   bioactives   as   functional   food   ingredients:   Potential   to  reduce  the  incidence  of  chronic  diseases.  Marine  Drugs.  2011;  9(6):1056-­‐1100.      

19.   Riccioni   G,   D’orazio   N,   Franceschelli   S,   Speranza   L,   D’Orazio   N.   Marine   Carotenoids   and  cardiovascular  risk  markers.  Marine  Drugs.  2011;  9(7):1166-­‐1175.      

20.   Stonehouse  W,  Pauga  MR,  Kruger  R,  Thomson  CD,  Wong  M,  Kruger  MC.  Consumption  of  salmon  v.  salmon  oil  capsules:  Effects  on  n-­‐3  PUFA  and  selenium  status.  British  Journal  of  Nutrition  2011;  106(8):1231-­‐1239.      

21.   Hostenkamp   G,   Sorensen   J.   Are   fish   eaters   healthier   and   do   they   consumer   less   health-­‐care  resources?  Public  Health  Nutrition.  2009;  13(4):453-­‐460.      

52

22.   Greiger   J,   McLeod   C,   Chan   L,   Miller   M.   Theoretical   dietary   modelling   of   Australian   seafood  species   to   meet   long-­‐chain   omega   3   fatty   acids   dietary   recommendations.   Food   &   Nutrition  Research.  2013;  57(20):737-­‐747.      

23.   Jenson  I,  larsen  R,  Rustad  T,  Eilertsen  K.  Nutritional  content  and  bioactive  properties  of  wild  and  farmed  cod  (Gadus  morhua  L.)  subjected  to  food  preparation.  Journal  of  Food  Composition  and  Analysis.  2013;  31:212-­‐216.      

24.   Papanikolaou  Y,  Brooks  J,  Reider  C,  Fulgoni  V.  U.S.  adults  are  not  meeting  recommended  levels  for   fish   and   omega-­‐3   fatty   acid   intake:   Results   of   an   analysis   using   observational   data   from  NHANES  2003-­‐2008.  Nutrition  Journal.  2014;  13(31):1-­‐6.      

25.   Gu  Y,  Nieves  JW,  Stern  Y,  Luchsinger  JA,  Scarmeas  N.  Food  combination  and  Alzheimer  Disease  risk.  Archives  of  Neurology.  2010;  67(6):E1-­‐E8.      

26.   Arendash  GW,   Jensen  MT,  Salem   Jr  N,  Hussein  N,  Cracchiolo   J,  Dickson  A,  et  al.  A  diet  high   in  omega-­‐3   fatty   acids   does   not   improve   or   protect   cognitive   performance   in   Alzheimer's  transgenic  mice.  Neuroscience.  2007;  149:286-­‐302.      

27.   Söderberg  M,  Edlund  C,  Kristensson  K,  Dallner  G.  Fatty  acid  composition  of  brain  phospholipids  in  aging  and  in  Alzheimer's  Disease.  Lipids.  1991;  26(6):421.    

28.   Conner  WE,  Conner  SL.  The   importance  of   fish  and  docosahexanoic  acid   in  Alzheimer  Disease.  The  American  Journal  of  Clinical  Nurtition.  2007;  85:929-­‐930.      

29.   Lee   L,   Shahar   S,   Rajab   N,   Yusoff   N,   Jamal   R,   Then   S.   The   role   of   long   chain   omega-­‐3  polyunsaturated   fatty   acids   in   reducing   lipid   peroxidation   among   elderly   patients   with   mild  cognitive   impairment:   a   case-­‐control   study.   The   Journal   of   Nutritional   Biochemistry.   2012;   (0)    DOI:http://dx.doi.org/10.1016/j.jnutbio.2012.04.014.  

30.   Plourde  M,  Vohl  M,  Vandal  M,  Couture  P,   Lemieux   S,  Cunnane  S,   et   al.   Plasma  n   -­‐3   fatty   acid  response  to  an  n-­‐3  fatty  acid  supplement  is  modulated  by  apoE  ɛ4  but  not  by  the  common  PPAR-­‐α  L162V  polymorphism  in  men.  British  Journal  of  Nutrition.  2009;  102(8):1121-­‐1124.      

31.   Cederholm   T,   Salem   Jr   N,   Palmblad   J.   ω-­‐3   fatty   acid   in   the   prevention   of   cognitive   decline   in  humans.  Advanced  Nurtition.  2013;  4:672-­‐676.      

32.   Konagai  C,  Yanagimoto  K,  Hayamizu  K,  Han  L,  Tsuji   T,  Koga  Y.  Effects  of   krill  oil   containing  n-­‐3  polyunsaturated   fatty   acids   in   phospholipid   form   on   human   brain   function:   A   randomised  controlled  trial  in  healthy  elderly  volunteers.  Clinical  Interventions  in  Aging.  2013;  8:1247-­‐1257.      

33.   Pottala   J,   Yaffe   K,   Robinson   J,   Espeland   M,   Wallace   R,   Harris   W.   Higher   RBC   EPA   and   DHA  corresponds  with  larger  total  brain  and  hippocampal  volumes.  Neurology.  2014;  82(5):435-­‐442.      

34.   McKellar  G,  Morrison  E,  McEntegart  A,  Hampson  R,  Tierney  A,  Mackle  G,  et  al.  A  pilot  study  of  a  mediterranean-­‐type  diet  intervention  in  female  patients  with  rheumatoid  arthritis  living  in  areas  of  social  deprivation  in  Glasgow.  Annals  of  Rheumatoid  Disease.  2007;  66:1239-­‐1243.      

35.   Im   D.   Omega-­‐3   fatty   acids   in   anti-­‐inflammation   (pro-­‐resolution)   and   GPCRs.   Progress   in   lipid  Research.  2012;  51(3):232-­‐7.    

36.   Calder   P.   n-­‐3   polyunsaturated   fatty   acids,   inflammation   and   inflammatory   diseases.   American  Journal  of  Clinical  Nutrition.  2006;  83(6):S1505-­‐S1519.      

37.   Kiecolt-­‐Glaser   J,   Belury   M,   Andridge   R,   Malarkey   W,   Hwang   B,   Glaser   R.   Omega-­‐3  supplementation   lowers   inflammation   in   healthy  middle-­‐aged   and  older   adults:   A   randomized  controlled  trial.  Brain,  Behavior  and  Immunity.  2012;  26(6):988-­‐995.  

38.   Pedersen  M,  Stripp  C,  Klarlund  M,  Olsen  S,  Tjønneland  A,  Frisch  M.  Diet  and  risk  of  rheumatoid  arthritis  in  a  prospective  cohort.  Journal  of  Rheumatology  2005;  32(7):1249-­‐1252.    

39.   Kremer   JM.   n-­‐3   fatty   acid   supplements   in   rheumatoid   arthritis.   American   Journal   Clinical  Nutrition.  2007;  71(1):349S-­‐351.    

40.   Gheita   T,   Kamel   S,   Helmy   N,   El-­‐laithy   N,   Monir   A.   Omega-­‐3   fatty   acids   in   juvenile   idiopathic  arthritis:  Effect  on  cytokines  (IL-­‐1  and  TNF-­‐[alpha]),  disease  activity  and  response  criteria.  Clinical  Rheumatology.  2012;  31(2):363-­‐6.  

41.   Caughey   GE,   James   MJ,   Proudman   SM,   Cleland   LG.   Fish   oil   supplementation   increases   the  cyclooxygenase   inhibitory   activity   of   paracetamol   in   rheumatoid   arthritis   patients.  Complimentary  Therapies  in  Medicine.  2010;  18(3-­‐4):171-­‐4.  

42.   Miles   EA,   Calder   PC.   Influence   of  marine   n-­‐3   polyunsaturated   fatty   acids   on   immune   function  and   a   systematic   review   of   their   effects   on   clinical   outcomes   in   rheumatoid   arthritis.   British  Journal  of  Nutrition  2012;  107(S2):S171-­‐S184.      

53

43.   Bahadori  B,  Uitz  E,  Thonhofer  R,  Trummer  M,  Pestemer-­‐Lach  I,  McCarty  M,  et  al.  ω-­‐3  fatty  acids  infusions  as  adjuvant  therapy  in  rheumatoid  arthritis.  Journal  of  Parenteral  and  Enteral  Nutrition.  2010;  34(2):151-­‐155.    DOI:10.1177/0148607109342130.  

44.   Gupta  A,  Mosharrof  Hossain  A,  Hilalul  Islam  M.  Role  of  omega-­‐3  fatty  acid  supplementation  with  indomethacin   in   suppression   of   disease   activity   in   rheumatoid   arthritis.   Bangladesh   Medical  Research  Council  Bulletin.  2009;  35:63-­‐68..  

45.   Park  Y,  Lee  A,  Shim  S-­‐C,  Lee  JH,  Choe  J-­‐Y,  Ahn  H,  et  al.  Effect  of  n-­‐3  polyunsaturated  fatty  acid  supplementation   in   patients   with   rheumatoid   arthritis:   A   16-­‐week   randomized   double-­‐blind,  placebo-­‐controlled,   parallel-­‐design   multicenterstudy   in   Korea.   The   Journal   of   Nutritional  Biochemistry.  2013;  12:289-­‐6.    DOI:10.1016/j.jnutbio.2012.11.004.  

46.   Khider  S,  Majeed  I,  Taha  M.  Effects  of  omega-­‐3  adjunct  therapy  to  methotrexate  on  lipid  profile  in  Iraqi  patients  with  rhematoid  arthrtis.  Global  Journal  of  Medical  Research.  2013;  13(5):1-­‐7.      

47.   Lundstrom  S,  Yang  J,  Branna  J,  Haeggstrom  J,  Hammock  BD,  et  al.  Lipid  mediator  serum  profiles  in   asthmatics   significantly   shift   following   dietary   supplementation   with   omega-­‐3   fatty   acids.  Molecular  Nutrional  Food  Research.  2013;  57:1378-­‐1389.      

48.   Salam  M,  Li  Y,  Langholz  B,  Gilliland  F.  Maternal   fish  consumption  during  pregnancy  and  risk  of  early  childhood  asthma.  Journal  of  Asthma.  2005;  42(6):513-­‐518.      

49.   Oddy  W,  de  Klerk  N,  Kendall  G,  Mihrshahi  S,  JK  P.  Ratio  of  omega-­‐6  to  omega-­‐3  fatty  acids  and  childhood  asthma.  Journal  of  Asthma.  2004;  41(3):319-­‐326.      

50.   Larqué  E,  Gil-­‐sánchez  A,  Prieto-­‐sánchez  M,  Koletzko  B,  Gil-­‐Sánchez  A,  Prieto-­‐Sánchez  M.  Omega  3  fatty  acids,  gestation  and  pregnancy  outcomes.  British  Journal  of  Nutrition.  2012;  107(S2):S77-­‐S84.      

51.   Shek  L,  Chong  M,  Lim  J,  Shu  E,  Chong  S.  Role  of  dietary  long-­‐chain  polyunsaturated  fatty  acids  in  infant  allergies  and  respiratory  diseases.  Clinical  &  Developmental  Immunology.  2012:730568.      

52.   Nafstad  P,  Nystad  W,  Magnus  P.  Asthma  and  allergic  rhinitis  at  4  years  of  age  in  relation  to  fish  consumption  in  infancy.  Journal  of  Asthma.  2003;  40(4):343-­‐348.      

53.   Kiefte-­‐de   Jong   J,  de  Vries   J,   Franco  O,   Jaddoe  V,  Hofman  A,  Raat  H,  et  al.   Fish  consumption   in  infancy   and   asthma-­‐like   symptoms   at   preschool   age.   Pediatrics.   2012;   130(6):1060-­‐1068.    DOI:10.1542/peds.2012-­‐0875.  

54.   Hodge  L,  Salome  C,  Peat  J,  Haby  M,  Xuan  W,  Woolcock  A.  Consumption  of  oily  fish  and  childhood  asthma  risk.  Medical  Journal  of  Australia.  1996;  164:137-­‐140.      

55.   Laerum  B,  Wentzel-­‐Larsen  T,  Gulsvik  A,  Omenaas  E,  Gislason  T,  Jansonz  C,  et  al.  Relationship  of  fish  and  cod  oil  intake  with  adult  asthma.  Clinical  and  Experimental  Allergy.  2007;  37:1616-­‐23.      

56.   Li  J,  Xun  P,  Zamora  D,  Sood  A,  Liu  K,  Daviglus  M,  et  al.  Intakes  of  long-­‐chain  omega-­‐3  (n-­‐3)  PUFAs  and   fish   in   relation   to   incidence  of   asthma  among  American   young   adults:   The  CARDIA   study.  The  American  Journal  of  Clinical  Nutrition.  2013;  97(1):173-­‐8.  

57.   Tartibian  B,  Maleki  B,  Abbasi  A.  The  effects  of  omega-­‐3  supplementation  on  pulmonary  function  of   young  wrestlers   during   intensive   training.   Journal   of   Science   and  Medicine   in   Sport.   2010;  13(2):281-­‐6.    

58.   Chatzi   L,   Kogevinas   M.   Prenatal   and   childhood   mediterranean   diet   and   the   development   of  asthma  and  allergies  in  children.  Public  Health  Nutrition  2009;  12(9A):1629-­‐1634.      

59.   Colter  AL,  Cutler  C,  Meckling  KA.  Fatty  acid  status  and  behavioural  symptoms  of  attention  deficit  hyperactivity   disorder   in   adolescents:   A   case-­‐control   study.  Nutrition   Journal.   2008;   7(8):1-­‐11.    DOI:10.1186/1475-­‐2891-­‐7-­‐8.  

60.   Richardson   A.   Omega-­‐3   fatty   acids   in   ADHD   and   related   neurodevelopmental   disorders.  International  Review  of  Psychiatry.  2006;  18(2):155-­‐172.      

61.   Burgess   J,   Stevens   L,   Zhang  W,  Peck   L.   Long-­‐chain  polyunsaturated   fatty  acids   in   children  with  attention-­‐deficit   hyperactivity  disorder.  American   Journal   of  Clinical  Nutrition.   2000;   71:327S   -­‐  330S.      

62.   Hirayama   S,   Hamazaki   T,   Terasawa   K.   Effect   of   docosahexaenoic   acid-­‐containing   food  administration   on   symptoms   of   attention-­‐deficit/hyperactivity   disorder   -­‐   a   placebo-­‐controlled  double-­‐blind  study.  European  Journal  of  Clinical  Nutrition.  2004;  58:467  -­‐  473.      

63.   Sinn  N,  Bryan  J.  Effect  of  supplementation  with  polyunsaturated  fatty  acids  and  micronutrients  on   learning   and   behaviour   problems   associated   with   child   ADHD.   Journal   of   Developmental  Behaviour  in  Pediatrics.  2007;  28(2):82-­‐91.      

54

64.   Young  GS,  Conquer   JA,  Thomas  R.  Effect  of   randomized  supplementation  with  high  dose  olive,  fax  or  fish  oil  on  serum  phospholipid  fatty  acid  levels  in  adults  with  attention  deficit  hyperactivity  disorder.  Reproduction,  Nutrition  and  Development.  2005;  45(5):549-­‐558.      

65.   Johnson  M,  Mansson   J,  Ostlund  S,  Fransson  G,  Areskoug  B,  Hjalmarsson  K,  et  al.  Fatty  acids   in  ADHD:   Plasma   profiles   in   a   placebo-­‐controlled   study   of   omega   3/6   fatty   acids   in   children   and  adolescents.  ADHD  Attention  Deficit  and  Hyperactivity  Disorders.  2012;  4(4):199.      

66.   Ramakrishnan   U.   Fatty   acid   status   and   maternal   health.   Maternal   and   Child   Nutrition.   2011;  7(S2):99-­‐111.      

67.   Ng   K,   Meyer   B,   Reece   L,   Sinn   N.   Dietary   PUFA   intakes   in   children   with   attention-­‐deficit/hyperactivity  disorder  symptoms.  British  Journal  of  Nutrition.  2009;  102(11):1635-­‐1641.      

68.   Montgomery  P,  Burtin  J,  Sewell  R,  Spreckelsen  T,  Richardson  A.  Low  blood  long  chain  omega-­‐3  fatty  acids  in  UK  children  are  associated  with  poor  cognitive  performance  and  behaviour:  A  cross  sectional  analysis  from  the  DOLAB  study.  PLoS  ONE.  2013;  8(6):1-­‐11.      

69.   Effat   S,  Mohomed  N,   Hussein   H,   Azzam  H,   Gouda   A,   Hassan   H.   ADHD   symptoms:   Relation   to  omega-­‐3  serum  levels  before  and  after  supplementation.  European  Journal  of  Psychiatry.  2013;  28:1.      

70.   Rahmawaty  S,  Charlton  K,  Lyons-­‐Wall  P,  Meyer  B.  Dietary  intake  and  food  sources  of  EPA,  DPA  and  DHA  in  Australian  children.  Lipids.  2013;  48:869-­‐877.      

71.   Ramakrishnan  U,   Imhoff-­‐Kunsch   B,   DiGirolamo  AM.   Role   of   docosahexaenoic   acid   in  maternal  and  child  mental  health.  American  Journal  of  Clinical  Nutrition.  2009;  89:958-­‐62S.      

72.   Shannon   S.   Integrative   approaches   to   pediatric   mood   disorders.   Alternative   Therapies.   2009;  15(5):48-­‐53.      

73.   Jacques   C,   Levy   E,   Muckle   G,   Jacobson   S,   Bastien   C,   Dewailly   É,   et   al.   Long-­‐term   effects   of  prenatal  omega-­‐3  fatty  acid  intake  on  visual  function  in  school-­‐age  children.  Journal  of  Pediatrics.  2011;  158(1):73-­‐80.e1.      

74.   Boucher  O,  Burden  M,  Muckle  G,  Saint-­‐Amour  D,  Ayotte  P,  Dewailly  E,  et  al.  Neurophysiologic  and   neurobehavioral   evidence   of   beneficial   effects   of   prenatal   omega-­‐3   fatty   acid   intake   on  memory  function  at  school  age.  American  Journal  of  Clinical  Nutrition.  2011;  93(5):1025.      

75.   de  Groot  R,  Ouwehand  C,  Jolles  J.  Eating  the  right  amount  of  fish:  Inverted  U-­‐shape  association  between   fish   consumption   and   cognitive   performance   and   academic   achievement   in   Dutch  adolescents.  Prostaglandins,  Leukotrienes  and  Essential  Fatty  Acids  (PLEFA).  2012;  86(3):113-­‐117.      

76.   Bauer   I,   Hughes   M,   Rowsell   R,   Cockerell   R,   Pipingas   A,   Crewther   S,   et   al.   Omega-­‐3  supplementation   improves   cognition   and   modifies   brain   activation   in   young   adults.   Human  Psychopharmacology.  2014;  29:133-­‐144.      

77.   Portillo-­‐Reyes   V,   Perez-­‐Garcia   M,   Loya-­‐Mendez   Y.   Clinical   significance   of   neuropsychological  improvements   after   supplementation   with   omega-­‐3   in   8-­‐12   year   old   malnourished   Mexican  children:   A   randomised   double-­‐blind   placebo   and   treatment   clinical   trial.   Research   in  Developmental  Disabilities.  2014;  35:861-­‐870.      

78.   Gow  R,  Hibbeln  J.  Omega-­‐3  and  treatment  implications  in  attention  deficit  hyperactivity  disorder  (ADHD)  and  associated  behavioural  symptoms.  Lipid  Technology.  2014;  26(1):1-­‐5.      

79.   Australian  Bureau  of  Statistics.  National  survey  of  mental  health:  Summary  of  results,  2007,  2008.  ABS  Publication  4326.0;  Canberra  Australia.  

80.   Bodnar   LM,   Wisner   KL.   Nutrition   and   depression:   Implications   for   improving   mental   health  among  childbearing-­‐aged  women.  Biological  Psychiatry.  2005;  58:679-­‐685.      

81.   Clayton  EH,  Hanstock  TL,  Garg  ML,  Hazell  PL.  Long  chain  omega-­‐3  polyunsaturated  fatty  acids  in  the  treatment  of  psychiatric  illnesses  in  children  and  adolescents.  Acta  Neuropsychiatrica.  2007;  19:92-­‐103.      

82.   Ramsden  C,  Faurot  K,  Zamora  D,  Suchindran  C,  MacIntosh  B,  Gaylord  S,  et  al.  Targeted  alteration  of  dietary  n-­‐3  and  n-­‐6   fatty  acids   for   the   treatment  of   chronic  headaches:  A   randomized   trial.  Pain.  2013;  154:2441-­‐2451.      

83.   Sheppard   K,   Cheatham   C.   Omega-­‐6   to   omega-­‐3   fatty   acid   ratio   and   higher-­‐order   cognitive  function   in  7   to  9   y-­‐olds:  A   cross-­‐sectional   study.  American   Journal  of  Clinical  Nutrition.  2013;  98:659-­‐667.      

84.   Salam   Jr   N.   Docosahexaenoic   acid   (DHA)   function   and   metabolism   in   the   nervous   system.  iNFORM.  2013;  24(1):6-­‐11.      

85.   Mulder  K,  King  D,  Innis  S.  Omega-­‐3  fatty  acid  deficiency  in  infants  before  birth  identified  using  a  randomised  trial  of  maternal  DHA  supplementation  in  pregnancy.  PLoS  ONE.  2014;  9(1):1-­‐10.      

55

86.   Chan   AT,   Giovannucci   EL.   Primary   prevention   of   colorectal   cancer.   Gastroenterology.   2010;  138(6):2029-­‐2043.      

87.   Kolahdooz   F,   van   der   Pols   J,   Bain   C,  Marks   G,   Hughes  M,  Whiteman   D,   et   al.  Meat,   fish   and  ovarian   cancer   risk:   Results   from   2   Australian   case-­‐control   studies,   a   systematic   review   and  meta-­‐analysis.  American  Journal  of  Clinical  Nutrition.  2010;  91(6):1752-­‐63.      

88.   Lund  E,  Belshaw  N,  Elliott  G,   Johnson   I.  Recent  advances   in  understanding  the  role  of  diet  and  obesity   in   the   development   of   colorectal   cancer.   Proceedings   of   the   Nutrition   Society   2011;  70(2):194-­‐204.      

89.   Wu  M,  Tsai  Y,  Hua  K,  Chang  K,  Kuo  M,  Lin  M.  Eicosapentaenoic  acid  and  docosahexaenoic  acid  inhibit  macrophage-­‐induced  gastric  cancer  cell  migration  by  attenuating  the  expression  of  matrix  metalloproteinase   10.   The   Journal   of   Nutritional   Biochemistry.   2012;   23(11):1434-­‐1439.    DOI:http://dx.doi.org/10.1016/j.jnutbio.2011.09.004.  

90.   Gerber   M.   Omega-­‐3   fatty   acids   and   cancers:   a   systematic   update   review   of   epidemiological  studies.  The  British  Journal  of  Nutrition.  2012;  107(S2):S228-­‐39.  

91.   Bell  G,  Kantor  E,  Lampe  J,  Kristal  A,  Heckbert  S,  White  E.  Intake  of  long-­‐chain  ω-­‐3  fatty  acids  from  diet   and   supplements   in   relation   to   mortality.   American   Journal   of   Epidemiology.   2014;  179(6):710-­‐720.      

92.   Augustsson  K,  Michaud  D,   Rimm  E,   Leitzmann  M,   Stampfer  M,  Willett  W,   et   al.   A   prospective  study   of   intake   of   fish   and   marine   fatty   acids   and   prostate   cancer.   Cancer   Epidemiology,  Biomarkers  &  Prevention.  2003;  12:64-­‐67.      

93.   Berquin  I,  Min  Y,  Wu    R,  Wu  J,  Perry  D,  Cline  J,  et  al.  Modulation  of  prostate  cancer  genetic  risk  by  omega-­‐3  and  omega-­‐6  fatty  acids.  Journal  of  Clinical  Investigation.  2007;  117(7):1866-­‐75.      

94.   Terry  P,  Thomas  E,  Wolk  A.  Intakes  of  fish  and  marine  fatty  acids  and  the  risks  of  cancers  of  the  breast   and   prostate   and   of   other   hormone-­‐related   cancers:   A   review   of   the   epidemiological  evidence.  American  Journal  of  Clinical  Nutrition.  2003;  77:532-­‐543.      

95.   Takezaki  T,   Inoue  M,  Kataoka  H,   Ikeda  S,  Yoshida  M,  Ohashi  Y,  et  al.  Diet  and   lung  cancer   risk  from   a   14-­‐year   population-­‐based   prospective   study   in   Japan:   With   special   reference   to   fish  consumption.  Nutrition  and  Cancer.  2003;  45(2):160-­‐7.    DOI:10.1207/S15327914NC4502_04.  

96.   Zhang   J,   Temme   EHM,   Kesteloot   H.   Fish   consumption   is   inversely   associated   with   male   lung  cancer  mortality   in   countries  with  high   levels  of   cigarette   smoking  or  animal   fat   consumption.  International  Journal  of  Epidemiology.  2000;  29(615)      

97.   Zhang   Y,   Gao   H,   Hou   A,   Zhou   Y.   Effect   of   omega-­‐3   fatty   acid   supplementation   on   cancer  incidence,   non-­‐vascular   death,   and   total   mortality:   A   meta-­‐analysis   of   randomized   controlled  trials.  BMC  Public  Health.  2014;  14(204):1-­‐12.      

98.   Fung  T,  Hu  FB,  Fuchs  C,  Giovannucci  E,  Hunter  DJ,  Stampfer  MJ.  Major  dietary  patterns  and  the  risk  of  colorectal  cancer  in  women.  Archives  of  Internal  Medicine.  2003;  163(3):309-­‐314.      

99.   MacLean  CH,  Newberry  SJ,  Mojica  WA,  Khanna  P,  Issa  AM,  Suttorp  MJ.  Effects  of  omega-­‐3  fatty  acids   on   cancer   risk:  A   systematic   review.   Journal   of   the  American  Medical  Association.   2006;  295(4):403-­‐415.      

100.   Terry   P,   Lichtenstein   P,   Feychting   M,   Ahlbom   A,   Wolk   A.   Fatty   fish   consumption   and   risk   of  prostate  cancer.  The  Lancet.  2001;  357(9270):1764.      

101.   Zhang   J,   Sasaki   S,   Amano   K,   Kesteloot   H.   Fish   consumption   and   mortality   from   all   causes,  ischemic  heart  disease,  and  stroke:  An  ecological  study.  Preventive  Medicine  1999;  28(5):520-­‐9.    DOI:S0091-­‐7435(98)90472-­‐8  [pii]10.1006/pmed.1998.0472.  

102.   Cockbain   A,   Toogood   G,   Hull   M.   Omega-­‐3   polyunsaturated   fatty   acids   for   the   treatment   and  prevention  of  colorectal  cancer.  Gut.  2012;  61(1):135.    

103.   Bougnoux  P,  Hajjaji  N,  Maheo  K,  Couet  C,  Chevalier  S.  Fatty  acids  and  breast  cancer:  Sensitization  to   treatments   and   prevention   of   metastatic   re-­‐growth.   Progress   in   Lipid   Research.   2010;  49(1):76-­‐86.      

104.   Chevalier   S,   Goupille   C,   Maheo   K,   Domingo   I,   Dussiau   C,   Renoux   B,   et   al.   Dietary  docosahexaenoic   acid   proposed   to   sensitize   breast   tumors   to   locally   delivered   drug.   Clinical  Lipidology.  2010;  5(2):233.      

105.   Ravacci  G,  Brentani  M,  Tortelli  Jr  T,  Torrinhas  R,  Saldanha  T,  Torres  E,  et  al.  Lipid  raft  disruption  by  docosahexaenoic  acid  induces  apoptosis   in  transformed  human  mammary  luminal  epithelial  cells  harboring  HER-­‐2  overexpression.  The  Journal  of  Nutritional  Biochemistry.  2013;  24(3):505-­‐515.    DOI:http://dx.doi.org/10.1016/j.jnutbio.2012.02.001.  

56

106.   Yang  Y,  Lu  N,  Chen  D,  Meng  L,  Zheng  Y,  Hui  R.  Effects  of  n-­‐3  PUFA  supplementation  on  plasma  soluble  adhesion  molecules:  A  meta-­‐analysis  of   randomized  controlled   trials.  American   Journal  of  Clinical  Nutrition.  2012;  95(4):972.  

107.  Wei  Z,  Wang  W,  Chen  J,  Yang  D,  TYan  R,  Cai  Q.  A  prospective  randomised  controlled  study  of  ω-­‐3  fish  oil  fat  emulsion-­‐based  parenteral  nutrition  for  patients  following  surgical  resection  of  gastric  tumors.  Nutrition  Journal.  2014;  13(25):1-­‐6.      

108.  He   K,   Xun   P,   Brasky   T,   Gammon   M,   Stevens   J,   White   E.   Types   of   fish   consumed   and   fish  preparation   methods   in   relation   to   pancreatic   cancer   incidence.   American   Journal   of  Epidemiology.  2013;  177(2):152.  

109.   D'Eliseo  D,  Manzi   L,  Merendino  N,  Velotti   F.  Docosahexaenoic   acid   inhibits   invasion  of   human  RT112  urinary  bladder  and  PT45  pancreatic  carcinoma  cells  via  down-­‐modulation  of  granzyme  B  expression.   Journal   of   Nutritional   Biochemistry.   2012;   23(5):452-­‐457.     DOI:   http://dx.doi.org/  10.1016/j.jnutbio.2011.01.010.  

110.  Murff   H,   Shrubsole  M,   Cai   Q,   Smalley  W,   Dai   Q,  Milne   G,   et   al.   Dietary   intake   of   PUFAs   and  colorectal  polyp  risk.  American  Journal  of  Clinical  Nutrition.  2012;  95(3):703-­‐12.  

111.   van  der  Meij  B,  Langius  J,  Spreeuwenberg  M,  Slootmaker  S,  Paul  M,  Smit  E,  et  al.  Oral  nutritional  supplements   containing   n-­‐3   polyunsaturated   fatty   acids   affect   quality   of   life   and   functional  status   in   lung   cancer   patients   during   multimodality   treatment:   An   RCT.   European   Journal   of  Clinical  Nutrition.  2012;  66(3):399-­‐404.  

112.  Murphy  R,  Mourtzakis  M,  Chu  Q,  Baracos  V,  Reiman  T,  Mazurak  V.  Nutritional  intervention  with  fish  oil  provides  a  benefit  over  standard  of  care  for  weight  and  skeletal  muscle  mass  in  patients  with  non-­‐small  cell  lung  cancer  receiving  chemotherapy.  Cancer.  2011;  117(8):1775-­‐1782.  

113.  Murphy  R,  Mourtzakis  M,  Chu  Q,  Reiman  T,  Mazurak  V.  Skeletal  muscle  depletion  is  associated  with  reduced  plasma  (n-­‐3)  fatty  acids  in  non-­‐small  cell  lung  cancer  patients.  Journal  of  Nutrition.  2010;  140(9):1602-­‐6.    

114.  Hutchins-­‐Wiese   H,   Picho   K,   Watkins   B,   Li   Y,   Tannenbaum   S,   Claffey   K,   et   al.   High-­‐dose  eicosapentaenoic   acid   and  docosahexaenoic   acid   supplementation   reduces   bone   resorption   in  postmenopausal   breast   cancer   survivors   on   aromatase   inhibitors:   A   pilot   study.   Nutrition   and  Cancer.  2014:1-­‐9.      

115.  Mozaffarian  D.  JELIS,  fish  oil  and  cardiac  events.  The  Lancet.  2007;  369(9567):1062-­‐1063.      116.  Mozaffarian  D,  Ascherio  A,  Hu   F,   Stampfer  M,  Willett  W,   Siscovick  D,   et   al.   Interplay  between  

different  polyunsaturated  fatty  acids  and  risk  of  coronary  heart  disease  in  men.  Circulation.  2005;  111(2):157-­‐64.      

117.   Siscovick  D,  Raghunathan  T,  King  I,  Weinmann  S,  Bovbjerg  V,  Kushi  L,  et  al.  Dietary  intake  of  long-­‐chain  n-­‐3  polyunsaturated  fatty  acids  and  the  risk  of  primary  cardiac  arrest.  American  Journal  of  Clinical  Nutrition.  2000;  71(1  Suppl):208S-­‐12S.  

118.   Zhang.   J,   Sasaki.   S,   Amano.   K,   Kesteloot.   H.   Fish   consumption   and   mortality   from   all   causes,  ischemic  health  disease  and  stroke:  An  ecological  study.  Preventive  Medicine.  1999;  28:520-­‐529.      

119.   Calder  P,  Dangour  A,  Diekman  C,  Eilander  A,  Koletzko  B,  Meijer  G,  et  al.  Essential  fats  for  future  health.   Proceedings   of   the   9th   Unilever   Nutrition   Symposium,   26-­‐27   May   2010.   European  Journal  of  Clinical  Nutrition.  2010;  64(12):S1.      

120.  Hoffmire   C,   Block   R,   Thevenet-­‐Morrison   K,   van  Wijngaarden   E.   Association   between   omega-­‐3  fatty  acid  supplementation  and  risk  of  major  cardiovascular  disease  events:  A  systematic  review  and  meta-­‐analysis.  Journal  American  Medical  Association.  2012;  308(10):1024.    

121.   Jenkins  D,  Sievenpiper  J,  Pauly  D,  Kendall  C,  Mowat  F.  Are  dietary  recommendations  for  the  use  of  fish  oils  sustainable?  Canadian  Medical  Association  Journal.  2009;  180(6):633.      

122.  Grenon  S,  Hughes-­‐Fulford  M,  Rapp  J,  Conte  M.  Polyunsaturated  fatty  acids  and  peripheral  artery  disease.  Vascular  Medicine.  2012;  17(1):51-­‐63.  

123.  Holub   B.   Docosahexaenoic   acid   (DHA)   and   cardiovascular   disease   risk   factors.   Prostaglandins,  Leukotrienes  and  Essential  Fatty  Acids  (PLEFA).  2009;  81(2):199-­‐204.      

124.  Holub   BJ.   Clinical   nutrition:   Omega-­‐3   fatty   acids   in   cardiovascular   care.   Journal   of   Applied  Mathematics  and  Computing.  2002;  166(5):608-­‐615.      

125.   Kromhout   D,   Yasuda   S,   Geleijnse   J,   Shimokawa   H.   Fish   oil   and   omega-­‐3   fatty   acids   in  cardiovascular  disease:  Do  they  really  work?  European  Heart  Journal.  2012;  33(4):436-­‐443.      

126.  Maki   K,   Dicklin   M,   Lawless   A,   Reeves   M.   Omega-­‐3   fatty   acids   for   the   treatment   of   elevated  triglycerides.  Clinical  lipidology.  2009;  4(4):425-­‐437.  

57

127.  Mozaffarian   D,  Wu   J.   Omega-­‐3   fatty   acids   and   cardiovascular   disease:   Effects   on   risk   factors,  molecular   pathways,   and   clinical   events.   Journal   of   the  American  College  of   Cardiology.   2011;  58(20):2047-­‐2067.      

128.   Vrablík  M,   Prusíková  M,   Snejdrlová  M,   Zlatohlávek   L.   Omega-­‐3   fatty   acids   and   cardiovascular  disease   risk:   Do   we   understand   the   relationship?   Physiological   Research.   2009;   58:S19-­‐26.    DOI:10.1136/  bmj.a2931.  

129.   Koh  A,  Pan  A,  Wang  R,  Odegaard  A,  Pereira  M,  Yuan   J,   et   al.   The  association  between  dietary  omega-­‐3   fatty   acids   and   cardiovascular   death:   The   Singapore   Chinese  Health   Study.   European  Journal  of  Preventive  Cardiology.  2013;  0(0):1-­‐9        

130.   Zheng   J,  Huang   T,   Yu   Y,  Hu  X,   Yang  B,   Li  D.   Fish   consumption   and  CHD  mortality:  An  updated  meta-­‐analysis  of  seventeen  cohort  studies.  Public  Health  Nutrition.  2011;  15(4):725-­‐737.      

131.   Campbell   F,   Dockinson   H,   Critchley   J,   Ford   G,   Bradburn   M.   A   systematic   review   of   fish   oil  supplements  for  the  prevention  and  treatment  of  hypertension.  European  Journal  of  Preventive  Cardiology.  2012;  20(1):107-­‐120.      

132.   Albert  C,  Hennekens  C,  O'Donnell  C,  Ajani  U,  Carey  V,  Willett  W,  et  al.  Fish  consumption  and  risk  of  sudden  cardiac  death.  Journal  of  the  American  Medical  Association.  1998;  279(1):23-­‐8.  

133.   Ascherio  A,  Rimm  E,   Stampfer  M,  Giovannucci  E,  Willett  W.  Dietary   intake  of  marine  n-­‐3   fatty  acids,  fish  intake  and  the  risk  of  coronary  disease  among  men.  New  England  Journal  of  Medicine.  1995;  332(15):977-­‐82.    

134.   Chrysohoou  C,   Panagiotakos  D,   Pitsavos  C,   Skoumas   J,   Krinos  X,   Chloptsios   Y,   et   al.   Long-­‐term  fish   consumption   is   associated   with   protection   against   arrhythmia   in   healthy   persons   in   a  Mediterranean   region   -­‐   the   ATTICA   study.   American   Journal   of   Clinical   Nutrition.   2007;  85(5):1385-­‐1391.      

135.  Masson   S,   Marchioli   R,   Mozaffarian   D,   Bernasconi   R,   Milani   V,   Dragani   L,   et   al.   Plasma   n-­‐3  polyunsaturated  fatty  acids  in  chronic  heart  failure  in  the  GISSI-­‐Heart  Failure  Trial  –  Relation  with  fish   intake,  circulating  biomarkers  and  mortality.  American  Heart   Journal.  2013;  165(2):208-­‐15.    DOI:10.1016/j.ahj.2012.10.021.  

136.  Moertl   D,   Hammer   A,   Steiner   S,   Hutuleac   R,   Vonbank   K,   Berger   R.   Dose-­‐dependent   effects   of  omega-­‐3-­‐polyunsaturated   fatty   acids   on   systolic   left   ventricular   function,   endothelial   function,  and   markers   of   inflammation   in   chronic   heart   failure   of   nonischemic   origin:   A   double-­‐blind,  placebo-­‐controlled,   3-­‐arm   study.   American   Heart   Journal.   2011;   161(5):915.e1-­‐915.e9.    DOI:http://dx.doi.org/10.1016/j.ahj.2011.02.011.  

137.  Mozaffarian   D.   Fish,   mercury,   selenium   and   cardiovascular   risk:   C     urrent   evidence   and  unanswered  questions.  International  Journal  of  Environmental  Research  and  Public  Health.  2008;  6(6):1894.      

138.   Erkkilä  A,  Schwab  U,  de  Mello  V,   Lappalainen  T,  Mussalo  H,   Lehto  S,  et  al.  Effects  of   fatty  and  lean   fish   intake   on   blood   pressure   in   subjects   with   coronary   heart   disease   using   multiple  medications.  European  Journal  of  Nutrition.  2008;  47(6):319-­‐28.    

139.   Erkkila  A,  Lichtenstein  A,  Mozaffarian  D,  Herrington  D.  Fish   intake   is  associated  with  a  reduced  progression  of   coronary  artery  atherosclerosis   in  postmenapausal  women  with   coronary  heart  disease.  American  Journal  for  Clinical  Nutrition.  2004;  80(3):626-­‐632.      

140.  GISSI-­‐HF   investigators.   Effect   of   n-­‐3   polyunsaturated   fatty   acids   in   patients  with   chronic   heart  failure   (the   GISSI-­‐HF   trial):   A   randomised,   double-­‐blind,   placebo-­‐controlled   trial.   The   Lancet.  2008;  372:1223-­‐30.      

141.  He   K,   Song   Y,   Daviglus   M,   Liu   K,   Van   Horn   L,   Dyer   A,   et   al.   Accumulated   evidence   on   fish  consumption  and  coronary  heart  disease  mortality:  A  meta  analysis  of  cohort  studies.  Circulation.  2004;  109:2705-­‐2711.      

142.  Hu  F,  Bronner  L,  Willett  W,  Stampfer  M,  Rexrode  K,  Albert  C,  et  al.  Fish  and  omega-­‐3  fatty  acid  intake  and  risk  of  coronary  heart  disease  in  women.  Journal  of  the  American  Medical  Association.  2002;  287(14):1815-­‐1821.      

143.  McKenney  J,  Sica  D.  Prescription  omega-­‐3  fatty  acids  for  the  treatment  of  hypertriglyceridemia.  American  Journal  of  Health-­‐System  Pharmacy.  2007;  64(6):595.  

144.   LJ.  D,  Perez-­‐Martinez  P,  Lopez-­‐Miranda  J,  Perez-­‐Jimenez  F.  Long  chain  omega-­‐3  fatty  acids  and  cardiovascular   disease:   A   systematic   review.   British   Journal   of   Nutrition.   2012;   107(S2):S201-­‐S213.  

58

145.  Musa-­‐veloso  K,  Binns  MA,  Kocenas  A,  Chung  C,  Rice  H,  Oppedal-­‐olsen  H,  et  al.  Impact  of  low  v.  moderate  intakes  of  long-­‐chain  n-­‐3  fatty  acids  on  risk  of  coronary  heart  disease.  British  Journal  of  Nutrition  2011;  106(8):1129-­‐1141.      

146.   Caslake  M,  Miles   E,   Kofler   B,   Lietz   G,   Curtis   P,   Armah   C,   et   al.   Effect   of   sex   and   genotype   on  cardiovascular  biomarker   response   to   fish  oils:  The  FINGEN  Study.  American   Journal  of  Clinical  Nutrition.  2008;  88(3):618-­‐29.    DOI:88/3/618  [pii].  

147.  Micallef   M,   Garg  M.   Beyond   blood   lipids:   phytosterols,   statins   and   omega-­‐3   polyunsaturated  fatty  acid  therapy  for  hyperlipidemia.  Journal  of  Nutritional  Biochemistry.  2009;  20(12):927-­‐939.      

148.  Meyer  B,   Swierk  M,  Russell   K.  Assessing   long-­‐chain  n-­‐3  polyunsaturated   fatty   acids:  A   tailored  food-­‐frequency  questionnaire  is  better.  Nutrition.  2012;  29(3):491-­‐496      

149.   Yokoyama   M,   Origasa   H,   Matsuzaki   M,   Matsuzawa   Y,   Saito   Y,   Ishikawa   Y,   et   al.   Effects   of  eicosapentaenoic   acid   on   major   coronary   events   in   hypercholesterolaemic   patients   (JELIS):   A  randomised  open-­‐label,  blinded  endpoint  analysis.  The  Lancet.  2007;  369(1090-­‐1098)      

150.  Nilsson  A,  Radeborg  K,  Salo  I,  Björck  I.  Effects  of  supplementation  with  n-­‐3  polyunsaturated  fatty  acids  on  cognitive  performance  and  cardiometabolic  risk  markers   in  healthy  51  to  72  years  old  subjects:  A  randomized  controlled  cross-­‐over  study.  Nutrition  Journal.  2012;  11(1):99.    

151.   Rudkowska   I,   Paradis   A,   Thifault   E,   Julien   P,   Tchernof   A,   Couture   P,   et   al.   Transcriptomic   and  metabolomic   signatures   of   an   n-­‐3   polyunsaturated   fatty   acids   supplementation   in   a  normolipidemic/normocholesterolemic   Caucasian   population.   Journal   of   Nutritional  Biochemistry.  2013;  24(1):54-­‐61.    DOI:http://dx.doi.org/10.1016/j.jnutbio.2012.01.016.  

152.   Bao   D,   Mori   T,   Burke   V,   Puddey   I,   Beilin   L.   Effects   of   dietary   fish   and   weight   reduction   on  ambulatory  blood  pressure  in  overweight  hypertensives.  Hypertension.  1998;  32:710-­‐717.      

153.   Cabo  J,  Alonso  R,  Mata  P.  Omega-­‐3  fatty  acids  and  blood  pressure.  British  Journal  of  Nutrition.  2012;  107(S2):S195-­‐200.    

154.   Pase  M,  Grima  N,  Sarris  J.  Do  long-­‐chain  n-­‐3  fatty  acids  reduce  arterial  stiffness?  A  meta-­‐analysis  of  randomised  controlled  trials.  British  Journal  of  Nutrition.  2011;  106(7):974-­‐80.    

155.   Skulas  Ray  A,  Kris-­‐Etherton  P,  Harris  W,  West  S.  Effects  of  marine-­‐derived  omega-­‐3  fatty  acids  on  systemic  hemodynamics  at  rest  and  during  stress:  a  dose–response  study.  Annals  of  Behavioral  Medicine.  2012;  44(3):301-­‐308.  

156.   Xun  P,  Qin  B,  Nakamura   Y,   Kurth   T,   Yaemsiri   S,  Djousse   L,   et   al.   Fish   consumption   and   risk   of  stroke   and   its   subtypes:   Accumulative   evidence   from   a   meta-­‐analysis   of   prospective   cohort  studies.  European  Journal  of  Clinical  Nutrition.  2012;  66(11):1199-­‐207.    

157.   Phang  M,  Lincz  L,  Seldon  M,  Garg  M.  Acute  supplementation  with  eicosapentaenoic  acid  reduces  platelet   microparticle   activity   in   healthy   subjects.   Journal   of   Nutritional   Biochemistry.   2012;  23(9):1128-­‐1133.    DOI:http://dx.doi.org/10.1016/j.jnutbio.2011.06.006.  

158.  Hassen   L,  Ueshima  H,   Curb   J,   Choo   J,   Lee   S,  Masaki   K,   et   al.   Significant   inverse   association   of  marine  n-­‐3   fatty  acids  with  plasma   fibrinogen   levels   in   Japanese   in   Japan  but  not   in  whites  or  Japanese  Americans.  European  Journal  of  Clinical  Nutrition.  2012;  66(3):329-­‐35.  

159.   Djousse  L,  Akinkuolie  A,  Wu  J,  Ding  E,  Gaziano  M.  Fish  consumption,  omega-­‐3  fatty  acids  and  risk  of  heart  failure:  A  meta-­‐analysis.  Clinical  Nutrition.  2012;  31(6):846.    

160.  He   Z,   Yang   L,   Tian   J,   Yang   K,  Wu   J,   Yao   Y.   Efficacy   and   safety   of   omega-­‐3   fatty   acids   for   the  prevention   of   atrial   fibrillation:   A   meta-­‐analysis.   Canadian   Journal   of   Cardiology.   2013;  29(2):196-­‐203.    DOI:http://dx.doi.org/10.1016/j.cjca.2012.03.019.  

161.   Zampelas   A,   Panagiotakos   D,   Pitsavos   C,   Das   U,   Chrysohoou   C,   Skoumas   Y,   et   al.   Fish  consumption  among  healthy  adults  is  associated  with  decreased  levels  of  inflammatory  markers  related  to  cardiovasular  disease.  Journal  of  the  American  College  of  Cardiology.  2005;  46:120-­‐24.      

162.   Rangel   Huerta   O.   Omega-­‐3   long-­‐chain   polyunsaturated   fatty   acids   supplementation   on  inflammatory   biomakers:   A   systematic   review   of   randomised   clinical   trials.   British   Journal   of  Nutrition.  2012;  107(S2):S159-­‐S170..  

163.  Metroka  C,  Truong  P,  Gotto  Jr  A.  Treatment  of  HIV-­‐associated  dyslipidemia:  A  role  for  omega-­‐3  fatty  acids.  The  AIDS  Reader.  2007;  17(7):362-­‐4,  367-­‐73.      

164.  Mozaffarian   D,   Micha   R,   Wallace   S.   Effects   on   coronary   heart   disease   of   increasing  polyunsaturated   fat   in   place   of   saturated   fat:   A   systematic   review   and   meta-­‐analysis   of  randomized  controlled  trials.  PLoS  Medicine.  2010;  7(3)      

165.   Sala  -­‐  Vila  A,  Ros  E,  Sala-­‐Vila  A.  Mounting  evidence  that  increased  consumption  of  [alpha]I[+  or  -­‐]-­‐linolenic   acid,   the   vegetable   n-­‐3   fatty   acid,   may   benefit   cardiovascular   health.   Clinical  Lipidology.  2011;  6(4):365.      

59

166.  Gardener  H,  Wright   C,  Gu   Y,  Demmer  R,   Boden-­‐Albala  B,   Elkind  M,   et   al.  Mediterranean-­‐style  diet   and   risk   of   ischemic   stroke,   myocardial   infarction   and   vascular   death:   The   Northern  Manhattan  Study.  American  Journal  of  Clinical  Nutrition.  2011;  94(6):1458.  

167.  National  Heart  Foundation  of  Australia.  Position  statement.  Fish,   fish  oils,  n-­‐3  polyunsaturated  fatty   acids   and   cardiovascular   health.   National   Heart   Foundation   of   Australia;   2008.  http://testing.heartfoundation.org.au/SiteCollectionDocuments/Fish-­‐position-­‐statement.pdf.  

168.  Montonen   J,   Järvinen   R,   Reunanen   A,   Knekt   P.   Fish   consumption   and   the   incidence   of  cerebrovascular  disease.  British  Journal  of  Nutrition.  2009;  102(5):750-­‐756.      

169.  He   K,   Liu   K,   Daviglus   ML,   Mayer-­‐Davis   E,   Jenny   NS,   Jiang   R,   et   al.   Intakes   of   long-­‐chain   n-­‐3  polyunsaturated  fatty  acids  and  fish   in  relation  to  measurements  of  subclinical  atherosclerosis.  American  Journal  of  Clinical  Nutrition.  2008;  88:1111  -­‐  8.      

170.   Thies   F,   Garry   J,   Yaqoob   P,   Rerkasem   K,   Williams   J,   Shearman   C,   et   al.   Association   of   n-­‐3  polyunsaturated   fatty   acids  with   stability   of   atherosclerotic   plaques:   A   randomised   controlled  trial.  The  Lancet.  2003;  361  477-­‐85.      

171.  Holub  D,  Holub  B.  Omega-­‐3  fatty  acids  from  fish  oils  and  cardiovascular  disease.  Molecular  Cell  Biochemistry.  2004;  263:217-­‐225.      

172.  Oh  R,  Beresford  S,  Lafferty  W.  The  fish  in  secondary  prevention  of  heart  disease  (FISH)  survey  -­‐  Primary   care   physicians   and  ω-­‐3   fatty   acid   prescribing   behaviours.   Journal   American   Board   of  Family  Medicine.  2006;  19:459-­‐67.      

173.  Grenon   S,   Conte   M,   Nosova   E,   Alley   H,   Chong   K,   Harris   W,   et   al.   Association   between   n-­‐3  polyunsaturated  fatty  acids  content  of  red  blood  cells  and  inflammatory  biomarkers  in  patients  with  peripheral  artery  disease.  Journal  of  Vascular  Surgery.  2013;  58(5):1283-­‐1290.      

174.   Silva   P,   da   Silva   G,   de   Souza   A,   Cardoso   C,   Fonseca   C,   Brito   P,   et   al.   Effects   of   omega-­‐3  polyunsaturated   fatty  acid   supplementation   in  patients  with  chronic  chagasic  cardiomyopathy:  Study  protocol  for  a  randomised  control  trial.  Trials.  2013;  14:379.      

175.   Aleksova  A,  Masson  S,  Maggioni  A,  Lucci  D,  fabbri  G,  Beretta  L,  et  al.  n-­‐3  polyunsaturated  fatty  acids   and   atrial   fibriliation   in   patients  with   chronic   heart   failure:   The  GISSI-­‐HR   trial.   European  Journal  of  Heart  Failure.  2013;  15:1289-­‐1295.      

176.  Miyoshi  T,  Ito  H,  Nihon  R.  Treatment  of  hypertriglyceridemia  with  omega-­‐3  fatty  acids.  Japanese  Journal  of  Clinical  Medicine.  2013;  71(9):1650-­‐1654.      

177.   Pirillo   A,   Catapano   A.   Omega-­‐3   polyunsaturated   fatty   acids   in   the   treatment   of   atherogenic  dyslipidemia.  Atherosclerosis  Supplements.  2013;  14:237-­‐242.      

178.   Braeckman  R,  Manku  M,  Bays  H,  Stirtan  W,  Soni  P.   Icosapent  ethyl,  a  pure  EPA  omega-­‐3   fatty  acid:  Effects  on  plasma  and  red  blood  cell  fatty  acid  in  patients  with  very  high  triglyceride  levels.  Prostaglandins,  Leukotrienes  and  Fatty  Acids.  2013;  89(4):195-­‐201.      

179.  Macchia   A,   Romero  M,   D'Ettorre   A,   Tognoni   G,  Mariani   J.   Exploratory   analysis   on   the   use   of  statins  with  or  without  n-­‐3  PUFA  and  major  events  in  patients  discharged  for  acute  myocardial  infarction:  An  observational  retrospective  study.  PLoS  ONE.  2013;  8(5):1-­‐8.      

180.   Casula  M,   Sorana  D,   Catapano  A,   Corrao  G.   Long-­‐term  effect   of   high   dose   omega-­‐3   fatty   acid  supplementation   for   secondary   prevention   of   cardiovascular   outcomes:   A   meta-­‐analysis   of  randomized,  double  blind,  placebo  controlled  trials.  Atherosclerosis  Supplements.  2013;  14:243-­‐251.      

181.  Nosaka  K,  Doi  M,  Mashima  K,   Iwamoto  M,  Kajiya  M,  Okawa  K,  et  al.  Early   loading  of  omega-­‐3  fatty   acids   decreases   inflammation   and   in-­‐hospital   events   in   patients   with   acute   myocardial  infarction  undergoing  percutaneous   coronary   intervention.   Journal   of   the  American  College  of  Cardiology.  2014;  63(12):A38.      

182.   Amiano  P,  Machon  M,  Dorronsoro  M,  Chairaque  M,  Barricarte  A,  Sanchez  M,  et  al.  Intake  of  total  omega-­‐3  fatty  acids  eicosapentaenoic  acid  and  docosahexaenoic  acid  and  risk  of  coronary  heart  disease  in  the  Spanish  EPIC  study  cohort.  Nutrition  Metabolism  &  Cardiovascular  Diseases.  2014;  24:321-­‐327.      

183.  Grieger   J,  Miller  M,   Cobiac   L.   Investigation   of   the   effects   of   a   high   fish   diet   on   inflammatory  cytokines  blood  pressure  and  lipids  in  older  Australians.  Food  &  Nutrition  Research.  2014;  58:1-­‐13.      

184.  Grieger   J,   McLeod   C,   Chan   L,   Miller   M.   Theoretical   dietary   modelling   of   Australian   seafood  species   to   meet   long-­‐chain   omega   3   fatty   acid   dietary   recommendations.   Food   &   Nutrition  Research.  2013;  57:1-­‐10.      

185.   von  Schacky  C.  Omega-­‐3  index  and  cardiovascular  health.  Nutrients.  2014;  6:799-­‐814.      

60

186.   Beckles-­‐Willson  N,  Elliott  T,  Everard  M.  Omega-­‐3  fatty  acids  (from  fish  oils)  for  cystic  fibrosis:  The  Cochrane  Database  of  Systematic  Reviews;  2002  

187.  Oliver  C,  Jahnke  N.  Omega-­‐3  fatty  acids  for  cystic  fibrosis.  The  Cochrane  Library.  2011;  (8)      188.  Hu  F,  Cho  E,  Rexrode  K,  Albert  C,  Manson  J.  Fish  and  long-­‐chain  n-­‐3  fatty  acid  intake  and  risk  of  

coronary  heart  disease  and  total  mortality  in  diabetic  women.  Circulation.  2003;  107:1852-­‐1857.      189.  Gillen   L,   Tapsell   L.   Development   of   food   groupings   to   guide   dietary   advice   for   people   with  

diabetes.  Nutrition  &  Dietetics.  2006;  63:36-­‐47.      190.   Zhou  Y,  Changwei  T,   Jia  C.  Association  of   fish  and  n  -­‐3   fatty  acid   intake  with  the  risk  of  Type  2  

diabetes:  A  meta-­‐analysis  of  prospective  studies.  British  Journal  of  Nutrition.  2012;  108(03):408-­‐417.  

191.   Biesalski   H.   Diabetes   preventive   components   in   the   mediterranean   diet.   European   Journal   of  Nutrition.  2004;  43:I26-­‐I30.      

192.  Martinez-­‐Gonzalez  M,  de   la   Fuente-­‐Arrillaga  C,  Nunez-­‐Cordoba   J,   Basterra-­‐Gortari   F,  Beunza   J,  Vazquez  Z,  et  al.  Adherence  to  mediterranean  diet  and  risk  of  developing  diabetes:  Prospective  cohort  study.  British  Medical  Journal.  2008;  336:1348-­‐1354.      

193.   Romaguera   D.   Mediterranean   diet   and   Type   2   diabetes   risk   in   the   European   prospective  investigation   into  cancer  and  nutrition   (EPIC)  study:  The   InterAct  project.  Diabetes  Care.  2011;  34(9):1913.      

194.   Lee  C,  Adler  A,  Forouhi  N,  Luben  R,  Welch  A,  Khaw  K,  et  al.  Cross-­‐sectional  association  between  fish   consumption   and   albuminuria:   The   European   Prospective   Investigation   of   Cancer-­‐Norfolk  Study.   American   Journal   of   Kidney   Disease.   2008;   52(5):876-­‐86.     DOI:S0272-­‐6386(08)00579-­‐9  [pii]10.1053/j.ajkd.2008.02.307.  

195.   Belalcazar  L,  Reboussin  D,  Haffner  S,  Reeves  R,  Schwenke  D,  Hoogeveen  R,  et  al.  Marine  omega-­‐3  fatty  acid  intake:  Associations  with  cardiometabolic  risk  and  response  to  weight  loss  intervention  in  the  Look  AHEAD  (Action  for  Health  in  Diabetes)  study.  Diabetes  Care.  2010;  33(1):197.      

196.  Hartweg   J,   Perera   R,  Montori   V,   Dinneen.   SF,   Ahawn   N,   Farmer   A.   Omega-­‐3   polyunsaturated  fatty  acids  (PUFA)  for  Type  2  diabetes  mellitus.  The  Cochrane  Library.  2009;  1      

197.   Friedberg  C,  Janssen  M,  Heine  R,  Grobbee  D.  Fish  oil  and  glycemic  control  in  diabetes.  Diabetes  Care.  1998;  21(4):494-­‐500.      

198.  Giacco   R,   Cuomo   V,   Vessby   B,   Uusitupa   M,   Hermansen   K,   Meyer   B,   et   al.   Fish   oil,   insulin  sensitivity,   insulin  secretion  and  glucose  tolerance   in  healthy  people:   Is  there  any  effect  of  fish  oil  supplementation  in  relation  to  the  type  of  background  diet  and  habitual  dietary  intake  of  n-­‐6  and  n-­‐3  fatty  acids?  Nutrition,  Metabolism  and  Cardiovascular  Disease.  2007;  17:572-­‐580.      

199.   Patel  P,  Sharp  S,  Luben  R,  Khaw  K,  Bingham  S,  Wareham  N,  et  al.  Association  between  type  of  dietary   fish   and   seafood   intake   and   the   risk   of   incident   Type   2   diabetes:   The   European  Prospective   Investigation   of   Cancer   (EPIC)-­‐Norfolk   cohort   study.   Diabetes   Care.   2009;  32(10):1857-­‐1863.      

200.   Brinton  E,  Ballantyne  C,  Bays  H,  Kastelein  J,  Braeckman  R,  Soni  P.  Effects  of   icosapent  ethyl  on  lipid   and   inflammatory   parameters   in   patients   with   diabetes   mellitus-­‐2,   residual   elevated  triglycerides   (200-­‐500   mg/dl),   and   on   statin   therapy   at   LDL-­‐C   goal:   The   ANCHOR   study.  Cardiovascular  Diabetology.  2013;  12:100-­‐110.      

201.   Zhang   M,   Picard-­‐Deland   E,   Marette   A.   Fish   and   marine   omega-­‐3   polyunsaturated   fatty   acid  composititon   and   incidence   of   Type   2   diabetes:   A   systematic   review   and   meta-­‐analysis.  International  Journal  of  Endocrinology.  2013;  2013:1-­‐11.      

202.   Cormier  H,  Radkowska  I,  THifault  E,  Lemieux  S,  Couture  P,  Vohl  M.  Polymorphisms  in  fatty  acid  desaturase   (FADS)   gene   cluster:   Effects   on   glycemic   controls   following   an   omega-­‐3  polyunsaturated  fatty  acid  (PUFA)  supplementation.  Genes.  2013;  4:485-­‐498.      

203.  Gopinath   B,   Buyken   A,   Flood   V,   Empson   M,   Rochtchina   E,   Mitchell   P.   Consumption   of  polyunsaturated  fatty  acids,  fish,  and  nuts  and  risk  of  inflammatory  disease  mortality.  American  Journal  of  Clinical  Nutrition.  2011;  93(5):1073-­‐9.    

204.   Christensen  J,  Schmidt  E,  Svensson  M.  n-­‐3  polyunsaturated  fatty  acids,  lipids  and  lipoproteins  in  end-­‐stage  renal  disease.  Clinical  Lipidology.  2011;  6(5):563.      

205.   An  W,   Lee   S,   Son  Y,   Kim  S,   Kim  K,  Han   J,   et   al.  Omega-­‐3   fatty   acid   supplementation   increases  1,25-­‐dihydroxyvitamin   D   and   fetuin-­‐A   levels   in   dialysis   patients.   Nutrition   Research.   2012;  32(7):495-­‐502.  

61

206.  MZ.   R,   Perunicic   G,   Pljesa   S,   Gluvic   Z,   Sobajic   S,   Djuric   I,   et   al.   Effects   of   N-­‐3   PUFAs  supplementation   on   insulin   resistance   and   inflammatory   biomarkers   in   hemodialysis   patients.  Renal  Failure.  2007;  29(3):321-­‐9.  

207.   Khosroshahi   H,   Toomatari   S,   Salamat   S,   Moin   G,   Khosroshani   S.   Effectiveness   of   omega-­‐3  supplement  on  lipid  profile  and  lipid  peroxidation  in  kidney  allograft  recipients.  Nephrology  and  Urology  Monographs.  2013;  5(5):822-­‐826.      

208.   Sabbatini  M,  Apicella  L,  Cataldi  M,  Maresca  I,  Nastasi  A,  Vitale  S,  et  al.  Effects  of  a  diet  rich  in  N-­‐3  polyunsaturated   fatty  acids  on  systemic   inflammation   in   renal   transplant   recipients.   Journal  of  the  American  College  of  Nutrition.  2013;  32(6):375-­‐383.      

209.   Shapiro  H,   Tehilla  M,  Attal-­‐Singer   J,   Bruck  R,   Luzzatti   R,   Singer   P.   The   therapeutic   potential   of  long-­‐chain   omega-­‐3   fatty   acids   in   nonalcoholic   fatty   liver   disease.   Clinical   Nutrition.   2011;  30(1):6-­‐19.    DOI:http://dx.doi.org/10.1016/j.clnu.2010.06.001.  

210.   Parker  H,   Johnson  N,  Burdon  C,  Cohn   J,  O'Connor  H,  George   J.  Omega-­‐3   supplementation  and  non-­‐alcoholic  fatty  liver  disease:  A  systematic  review  and  meta-­‐analysis.  Journal  of  Hepatology.  2012;  56(4):944-­‐951.      

211.  Oya   J,   Nakagami   T,   Sasaki   S,   Jimba   S,   Murakami   K,   Kasahara   T,   et   al.   Intake   of   n-­‐3  polyunsaturated   fatty   acids   and   non-­‐alcoholic   fatty   liver   disease:   A   cross-­‐sectional   study   in  Japanese  men  and  women.  European  Journal  of  Clinical  Nutrition.  2010;  64(10):1179.    

212.  Hunt   W,   McManus   A.   Women's   health   care:   The   potenial   of   long-­‐chain   omega-­‐3  polyunsaturated  fatty  acids.  Journal  of  Women's  Health  Care.  2014;  3(1):1-­‐3.      

213.  Myers  G,  Davidson  P.  Maternal   fish  consumption  benefits  children's  development.  The  Lancet.  2007;  369(9561):537-­‐538.      

214.  Hibbeln  J,  Davis  J,  Steer  C,  Emmett  P,  Rogers  I,  Williams  C,  et  al.  Maternal  seafood  consumption  in  pregnancy  and  neurodevelopmental  outcomes  in  childhood  (ALSPAC  study):  An  observational  cohort  study.  The  Lancet.  2007;  369(9561):578-­‐85.      

215.  Mendez  M,   Torrent  M,   Julvez   J,   Ribas-­‐fitó   N,   Kogevinas  M,   Sunyer   J,   et   al.  Maternal   fish   and  other   seafood   intakes   during   pregnancy   and   child   neurodevelopment   at   age   4   years.   Public  Health  Nutrition.  2008;  12(10):1702-­‐1710.      

216.  Makrides  M,  Collins  CT,  Gibson  RA.  Impact  of  fatty  acid  status  on  growth  and  neurobehavioural  development  in  humans.  Maternal  and  Child  Nutrition.  2011;  7(S2):80-­‐88.      

217.  Mozurkewich  E,  Berman  D,  Chilimigras   J.  Role  of  omega-­‐3   fatty  acids   in  maternal,   fetal,   infant  and  child  wellbeing.  Expert  Review  of  Obstetrics  &  Gynecology.  2010;  5(1):125.      

218.   Klemens   C,   Salari   K,   Mozurkewich   E.   Assessing   omega-­‐3   fatty   acid   supplementation   during  pregnancy   and   lactation   to   optimize   maternal   mental   health   and   childhood   cognitive  development.  Clinical  Lipidology.  2012;  7(1):93.  

219.   Xue  F,  Holzman  C,  Rahbar  M,  Trosko  K,  Fischer  L.  Maternal  fish  consumption,  mercury  levels  and  risk  of  preterm  delivery.  Environmental  Health  Perspectives.  2007;  115(1):42-­‐47.      

220.  Guldner  L,  Monfort  C,  Rouget  F,  Garlantezec  R,  Cordier  S.  Maternal  fish  and  shellfish  intake  and  pregnancy   outcomes:   A   prospective   cohort   study   in   Brittany,   France.   Environmental   Health.  2007;  6(33)    DOI:3310.1186/1476-­‐069x-­‐6-­‐33.  

221.  Halldorsson   T,  Meltzer   H,   Thorsdottir   I,   Knudsen   V,   Olsen   S.   Is   high   consumption   of   fatty   fish  during  pregnancy  a  risk  factor  for  fetal  growth  retardation?  A  study  of  44,824  Danish  pregnant  women.  American  Journal  of  Epidemiology.  2007;  166(6):687-­‐696.    DOI:10.1093/aje/kwm133.  

222.  Oken  E,  Radesky  J,  Wright  R,  Bellinger  D,  Amarasiriwardena  C,  Kleinman  K,  et  al.  Maternal   fish  intake  during  pregnancy,  blood  mercury  levels,  and  child  cognition  at  age  3  years  in  a  US  cohort.  American  Journal  of  Epidemiology.  2008;  167(10):1171-­‐1181.    DOI:10.1093/aje/kwn034.  

223.  Oken   E,   Østerdal   M,   Gillman   M,   Knudsen   V,   Halldorsson   T,   Marin   S,   et   al.   Associations   of  maternal   fish   intake   during   pregnancy   and   breastfeeding   duration   with   attainment   of  developmental  milestones   in   early   childhood:   A   study   from   the  Danish  National   Birth   Cohort.  American  Journal  of  Clinical  Nutrition.  2008;  88:789  –96.      

224.   Tinoco   S,   Sichieri   R,   Setta   C,   Moura   A,   Carmo   M.   n-­‐3   polyunsaturated   fatty   acids   in   milk   is  associated  to  weight  gain  and  growth  in  premature  infants.  Lipids  in  Health  and  Disease.  2009;  8(23):23.      

225.   Courville  A,  Harel  O,   Lammi-­‐keefe  C.  Consumption  of   a  DHA-­‐containing   functional   food  during  pregnancy  is  associated  with  lower  infant  ponderal  index  and  cord  plasma  insulin  concentration.  British  Journal  of  Nutrition.  2011;  106(2):208-­‐212.      

62

226.   Bakker   E,  Hornstra  G,  Blanco  C,  Vles   J.   Relationship  between   long-­‐chain  polyunsaturated   fatty  acids  at  birth  and  motor  function  at  7  years  of  age.  European  Journal  of  Clinical  Nutrition.  2009;  63(4):499.      

227.   van  de  Elsen  L,  Noakes  P,  van  der  Maarel  M,  Kremmyda  L,  Vlachava  M,  Diaper  N,  et  al.  Salmon  consumption   by   pregnant   women   reduces   ex   vivo   umbilical   cord   endothelial   cell   activation.  American  Journal  of  Clinical  Nutrition.  2011;  94(6):1418.  

228.   Jans   A.   PUFAs   acutely   affect   triacylglycerol-­‐derived   skeletal   muscle   fatty   acid   uptake   and  increase  postprandial  insulin  sensitivity.  American  Journal  of  Clinical  Nutrition.  2012;  95(4):825.  

229.   Rees   A-­‐M,   Austin   M-­‐P,   Owen   C,   Parker   G.   Omega-­‐3   deficiency   associated   with   perinatal  depression:  Case  control  study.  Psychiatry  Research.  2009;  166(2):254-­‐259.      

230.   Rahmawaty   S,   Lyons-­‐Wall   P,   Batterham  M,   Charlton   K,  Meyer   B.   Food   patterns   of   Australian  children   ages   9   to   13   y   in   relation   to  ω-­‐3   long   chain   polyunsaturated   intake.   Nutrition.   2014;  30:169-­‐176.      

231.   dos  Santos  Vaz  J,  Kac  G,  Emmett  P,  Davis  J,  Golding  J,  Hibbeln  J.  Dietary  patterns,  n-­‐3  fatty  acids  from   seafood   and   high   levels   of   anxiety   symptoms   during   pregnancy:   Findings   from   the  Avon  Longitudinal  Study  of  parents  and  children.  PLoS  ONE.  2013;  8(7):1-­‐9.      

232.  Helland   IB,  Smith  L,  Saarem  K,  Saugstad  OD,  Drevon  CA.  Maternal   supplementation  with  very-­‐long-­‐chain  n-­‐3   fatty  acids  during  pregnancy  and   lactation  augments   children's   IQ  at  4  years  of  age.  Pediatrics.  2003;  111:e39-­‐e44.      

233.   Ström   S,   Helmfrid   I,   Glynn   A,   Berglund   M.   Nutritional   and   toxicological   aspects   of   seafood  consumption:   An   integrated   exposure   and   risk   assessment   of   methylmercury   and  polyunsaturated  fatty  acids.  Environmental  Research.  2011;  111(2):274-­‐280.      

234.   Sinikovic  D,  Yeatman  H,  Cameron  D,  Meyer  B.  Women’s  awareness  of   the   importance  of   long-­‐chain  omega-­‐3  polyunsaturated   fatty   acid   consumption  during  pregnancy:   Knowledge  of   risks,  benefits  and  information  accessibility.  Public  Health  Nutrution.  2008;  12(4):562-­‐569.      

235.  McNamara   R,   Nandagopal   J,   Strakowski   S,   Delbello  M.   Preventative   strategies   for   early-­‐onset  bipolar  disorder:  Towards  a  clinical  staging  model.  CNS  Drugs.  2010;  24(12):983.      

236.   Cohen   J,   Bellinger   D,   Connor  W,   Shaywitz   B.   A   quantitative   analysis   of   prenatal   intake   of   n-­‐3  polyunsaturated   fatty   acids   and   cognitive   development.   American   Journal   of   Preventive  Medicine.  2005;  29(4):366-­‐374.      

237.  Hughner   R,  Maher   J,   Childs  N.   Review  of   food   policy   and   consumer   issues   of  mercury   in   fish.  Journal  of  the  American  College  of  Nutrition.  2008;  27(2):185-­‐194.    

238.   Sanchez-­‐Villegas   A,   Delago-­‐Rodriguez   M,   Alonso   A,   Schlatter   J,   Lahortiga   F,   Majem   L,   et   al.  Association  of  the  mediterranean  dietary  pattern  with  the  incidence  of  depression.  Archives  of  General  Psychiatry.  2009;  66(10):1090-­‐98.      

239.   Logan  A.  Omega-­‐3  fatty  acids  and  major  depression:  A  primer  for  the  mental  health  professional.  BioMed  Central  Online.  2004;  3(25):1-­‐8.      

240.   Crowe   F,   Skeaff   C,   Green   T,   Gray   A.   Serum  phospholipid   n-­‐3   long-­‐chain   polyunsaturated   fatty  acids  and  physical  and  mental  health  in  a  population-­‐based  survey  of  New  Zealand  adolescents  and  adults.  American  Journal  of  Clinical  Nutrition.  2007;  86(5):1278-­‐85.    DOI:86/5/1278  [pii].  

241.  Nurk  E,  Drevon  C,  Refsum  H,  Solvoll  K,  Vollset  SE,  Nygard  O,  et  al.  Cognitive  performance  among  the   elderly   and   dietary   fish   intake:   The   Hordaland   Health   Study.   American   Journal   of   Clinical  Nutrition.  2007;  86(5):1470-­‐8.    DOI:86/5/1470  [pii].  

242.   Kalmijn  S,  Launer  L,  Ott  A,  Witteman  J,  Hofman  A,  Breteler  M.  Dietary  fat  intake  and  the  risk  of  incident  dementia  in  the  Rotterdam  study.  Annals  of  Neurology.  1997;  42(5):776-­‐782.    

243.   Kamphius   M,   Geerlings   M,   Tijhuis   M,   Kalmijn   S,   Grobbee   D,   Kromhout   D.   Depression   and  cardiovascular  mortality:  A  role  for  n-­‐3  fatty  acids?  American  Journal  of  Clinical  Nutrition.  2006;  84(6):1513-­‐1517.      

244.   Parker   G,   Gibson   N,   Heruc   G,   Rees   A,   Hadzi-­‐Pavlovic   D.   Omega-­‐3   acids   and   mood   disorders.  American  Journal  of  Psychiatry.  2006;  163(6):969-­‐978,  1120.      

245.   Balanza   -­‐   Martinez   V,   Fries   G,   Colpo   G,   Silveira   P,   Portella   A,   Tabares   -­‐   Seisdedos   R,   et   al.  Therapeutic  use  of  omega-­‐3  fatty  acids  in  bipolar  disorder.  Expert  Review  of  Neurotherapeutics.  2011;  11(7):1029.      

246.  Gören  J,  Tewksbury  A,  Dufresne  R,  Weber  S,  Biglow  M.  The  use  of  omega-­‐3  fatty  acids  in  mental  illness.  Journal  of  Pharmacy  Practice.  2011;  24(5):452-­‐471.      

63

247.   Appleton   K,  Woodside   J,   Yarnell   J,   Arveiler  D,  Haas   B,   Amouyel   P,   et   al.   Depressed  mood   and  dietary   fish   intake:  Direct   relationship  or   indirect   relationship   as   a   result   of   diet   and   lifestyle?  Journal  of  Affective  Disorders.  2007;  104:217  -­‐  223.      

248.   Astorg  P,  Couthouis  A,  Bertrais  S,  Arnault  N,  Meneton  P,  Guesnet  P,  et  al.  Association  of  fish  and  long-­‐chain  n-­‐3  polyunsaturated  fatty  acid  intakes  with  the  occurrence  of  depressive  episodes  in  middle-­‐aged   French  men   and  women.   Prostaglandins,   Leukotrienes   and   Essential   Fatty   Acids.  2008;  78(3):171-­‐182.    

249.  Nemets   B,   Stahl   Z,   Belmaker   R.   Addition   of   omega-­‐3   fatty   acid   to   maintenance   medication  treatment   for   recurrent   unipolar   depressive   disorder.   American   Journal   of   Psychiatry.   2002;  159:477  -­‐  479.    

250.   Bogetto  F,  Bozzatello  P,  Bellino  S.  Efficacy  of  omega-­‐3  fatty  acids  in  the  treatment  of  borderline  personality   disorder:   A   study   of   association  with   valporic   acid.   European  Neuropharmacology.  2013;  23:399.    

251.   Amminger  G,  Chanen  A,  Ohmann  S,  Klier  C,  Mossaheb  N,  Bechdolf  A,  et  al.  Omega-­‐3  fatty  acid  supplementation  in  adolescents  with  borderline  personality  disorder  and  ultra-­‐high  risk  criteria  for   psychosis:   A   post   hoc   subgroup   analysis   of   a   double-­‐blind,   randomised   controlled   trial.  Canadian  Journal  of  Psychiatry.  2013;  58(7):402-­‐408.    

252.  Giles  G,  Mahoney  C,  Kanarek  R.  Omega-­‐3  fatty  acids   influence  mood   in  healthy  and  depressed  individuals.  Nutrition  Reviews.  2013;  71(11):727-­‐741.    

253.   KHajehnasiri   F,  Bagher  S,  Allameh  M,  Ajkhondzadeh  S.  Effect  of  omega-­‐3  and  ascorbic  acid  on  inflammation  markers   in  depressed  shift  workers   in  Shaid  Tondoyan  oil  refinery:  A  randomized  double-­‐blind   placebo-­‐controlled   study.   Journal   of   Clinical   Biochemistry   and   Nutrition.   2013;  53(1):36-­‐40.    

254.   Lim   W,   Gammack   J,   Van   Niekerk   J,   Dangour   A.   Omega-­‐3   fatty   acid   for   the   prevention   of  dementia  2006.  Report  No.:  Art.  No.:CD005379.pub2.  DOI:  10.1002/14651858.  CD005379.pub2.    

255.   Samieri   C,   Féart   C,   Letenneur   L,   Dartigues   J,   Pérès   K,   Auriacombe   S,   et   al.   Low   plasma  eicosapentaenoic  acid  and  depressive  symptomatology  are  independent  predictors  of  dementia  risk.  American  Journal  of  Clinical  Nutrition.  2008;  88:714-­‐21.    

256.   Connor  W,  Connor  S.  The   importance  of  fish  and  docosahexaenoic  acid   in  Alzheimer's  Disease.  American  Journal  of  Clinical  Nutrition.  2007;  85:929-­‐930.    

257.  Morris  M,  Evans  D,  Bienias  J,  Tangney  C,  Bennett  D,  Wilson  R,  et  al.  Consumption  of  fish  and  n-­‐3  fatty  acids  and  risk  of  incident  Alzheimer's  Disease.  Archives  of  Neurology.  2003;  60:940-­‐946.    

258.  Morris  M,  Evans  D,  Tangney  C,  Bienias  J,  Wilson  R.  Fish  consumption  and  cognitive  decline  with  age  in  a  large  community  study.  Archives  of  Neurology.  2005;  62:1849-­‐1853.    

259.  Grosso  G,  Galvano  F,  Marventano  S,  Malaguarnera  M,  Bucolo  C,  Drago  F,  et  al.  Omega-­‐3   fatty  acids   and   depression:   Scientific   evidence   and   biological   mechanisms.   Oxidative  Medicine   and  Cellular  Longevity.  2014;  March  1-­‐16.    

260.   Abete  I,  Goyenechea  E,  Zulet  M,  Martínez  J.  Obesity  and  metabolic  syndrome:  Potential  benefit  from  specific  nutritional  components.  Nutrition,  Metabolism  and  Cardiovascular  Diseases.  2011;  21:B1-­‐B15.    

261.   Lopez-­‐huertas   E.   The   effect   of   EPA   and   DHA   on   metabolic   syndrome   patients:   A   systematic  review  of  randomised  controlled  trials.  British  Journal  of  Nutrition.  2012;  107(S2):S185-­‐S194.    

262.   Kastorini   C,  Milionis   H,   Esposito   K,   Giugliano   D,   Goudevenos   J,   Panagiotakos   D.   The   effect   of  mediterranean  diet  on  metabolic  syndrome  and   its  components:  A  meta-­‐analysis  of  50  studies  and  534,906  individuals.  Journal  of  the  American  College  of  Cardiology.  2011;  57(11):1299-­‐1313.    

263.   Tousoulis  D,  Plastiras  A,  Siasos  G,  Oikonomou  N,  Miliou  A,  Thodoris.  Omega-­‐3  PUFAs  improved  endothelial  function  and  arterial  stiffness  with  a  parallel  anti-­‐inflammatory  effect  in  adults  with  metabolic  syndrome.  Atherosclerosis.  2014;  232:10-­‐16.    

264.   Tabbaa  M,  Golubic  M,  Roizen  M,  Bernstein  A.  Docosahexaenoic  acid,  inflammation  and  bacterial  dysbiosis   in   relation   to   peridontal   disease,   inflammatory   bowel   disease   and   the   metabolic  syndrome.  Nutrients.  2013;  5:3299-­‐3310.    

265.  He  K,  Liu  K,  Daviglus  M,  Jenny  N,  Mayer-­‐Davis  E,  Jiang  R,  et  al.  Associations  of  dietary  long-­‐chain  n-­‐3   polyunsaturated   fatty   acids   and   fish   with   biomarkers   of   inflammation   and   endothelial  activation.  American  Journal  of  Cardiology.  2009;  1(103  (9)):1238.1243.    

266.  Mangano   K,   Sahni   S,   Kerstetter   J,   Kenny   A,   Hannan  M.   Polyunsaturated   fatty   acids   and   their  relationship  with  bone  and  muscle  health  in  adults.  Current  Osteoporosis  Reports.  2013;  11:203-­‐212.    

64

267.  Hutchins-­‐Wiese  H,  Kleppinger  A,  Annis  K,  Liva  E,  Lammi-­‐Keefe  C,  Durham  H,  et  al.  The  impact  of  supplemental   N-­‐3   long   chain   polyunsaturated   fatty   acids   and   dietary   antioxidants   on   physical  performance   in   postmenopausal   women.   The   Journal   of   Nutrition,   Health   &   Aging.   2013;  17(1):76.    

268.   Australian  Institute  of  Health  and  Welfare.  Overweight  and  obesity  2013    269.   Tapsell  L,  Betterham  M,  Charlton  K,  Neale  E,  Probst  Y,  O'Sea  J,  et  al.  Foods  nutritents  or  whole  

diets:   Effects   of   targeting   fish   and   LCn3PUFA   consumption   in   a   12mo   weight   loss   trial.   BMC  Public  Health.  2013;  13(1231):1-­‐11.    

270.   Itariu  B,  Zeyda  M,  Hochbrugger  E,  Neuhofer  A,  Prager  G,  Schindler  K,  et  al.  Long-­‐chain  n-­‐3  PUFAs  reduce   adipose   tissue   and   systemic   inflammation   in   severely   obese   nondiabetic   patients:   A  randomized  controlled  trial.  American  Journal  of  Clinical  Nutrition.  2012;  96(5):1137.    

271.   Domingo   J,   Bocio   A,   Falcó   G,   Llobet   J.   Benefits   and   risks   of   fish   consumption:   Part   I.   A  quantitative  analysis  of  the  intake  of  omega-­‐3  fatty  acids  and  chemical  contaminants.  Toxicology.  2007;  230(2-­‐3):219-­‐226.    

272.  Mahaffey   K,   Clickner   R,   Jeffries   R.  Methylmercury   and   omega-­‐3   fatty   acids:   Co-­‐occurrence   of  dietary  sources  with  emphasis  on  fish  and  shellfish.  Environmental  Research.  2008;  107:20-­‐29.      

273.  Gochfeld   M,   Burger   J.   Good   fish/bad   fish:   A   composite   benefit-­‐risk   by   dose   curve.  NeuroToxicology.  2005;  26:511-­‐520.    

274.  Wennberg  M,   Stromberg   U,   Bergdahl   I,   Jansson   J,   Kauhanen   J,   Norberg  M,   et   al.   Myocardial  infarction   in   relation   to   mercury   and   fatty   acids   from   fish:   A   risk-­‐benefit   analysis   based   on  pooled  Finnish  and  Swedish  data  in  men.  American  Journal  of  Clinical  Nutrition.  2012;  96(4):706.    

275.  Ginsberg  G,  Toal  B.  Quantitative  approach   for   incorporating  methylmercury   risks  and  omega-­‐3  fatty  acid  benefits  in  developing  species-­‐specific  fish  consumption  advice.  Environmental  Health  Perspectives.  2009;  117(2):267-­‐275.    

276.  Weaver   K,   Ivester   P,   Chilton   J,  Wilson  M,   Pandey   P,   Chilton   F.   The   content   of   favorable   and  unfavorable  polyunsaturated  fatty  acids  found  in  commonly  eaten  fish.  Journal  of  the  American  Dietetic  Association.  2008;  108:1178-­‐1185.    

277.   Raymond   L,   Ralston   N.   Selenium's   importance   in   regulatory   issues   regarding   mercury.   Fuel  Processing  Technology.  2009;  90(11):1333-­‐1338.    

278.   Arnold  S,  Lynn  T,  Verbrugge  L,  Middaugh  J.  Human  biomonitoring  to  optimize  fish  consumption  advice:   Reducing   uncertainty   when   evaluating   benefits   and   risks.   American   Journal   of   Public  Health.  2005;  95(3):393-­‐397.    

279.   Roman  H,  Walsh  T,  Coull  B,  Dewailly  É,  Guallar  E,  Hattis  D,  et  al.  Evaluation  of  the  cardiovascular  effects   of   methylmercury   exposures:   Current   evidence   supports   development   of   a   dose–response   function   for   regulatory   benefits   analysis.   Environmental   Health   Perspectives.   2011;  119(5):607-­‐614.    

280.   Sirot  V,  Leblanc  J,  Margaritis   I.  A  risk-­‐benefit  analysis  approach  to  seafood  intake  to  determine  optimal  consumption.  British  Journal  of  Nutrition.  2012;  107(12):1812.    

281.  Garcia-­‐Hernandez   V,   Gallar  M,   Sanchez-­‐Soriano   J,  Micol   V,   Roche   E,   Garcia-­‐Garcia   E.   Effect   of  omega-­‐3  dietary   supplements  with  different  oxidation   levels   in   the   lipidic  profile  of  women:  A  randomised   controlled   trial.   International   Journal   of   Food   Science   and   Nutrition.   2013;  64(8):993-­‐1000.