ironmaking proceedings 1972 - 041

16
BLAST FURNACE PROCESS AUTOMATIC CONTROL I A. N. Pokhvisnev, I. F. Kurunov, Y. S. Yusfin, V. M. Klempert Moscow Steel and Alloys Institute Despite the substantial change in blast furnace ironmaking technology due to the use of oxygen, natural gas and fuel oil as well as elevated top gas pressure and other factors promoting the blast furnace process, the blast furnace foreman continues to play the most important part in solving problems as to how to get the maximum production rate a t the minimum expense. Automatic control in ironmaking aims at limiting the foreman's role in the process and reducing it to certain limits. This problem has been the subject of investigation for a long period of time at the Ore Working Department of Moscow Steel and Alloys Institute. In 1939, to accommodate blast furnace control, Professor A. N. Pokhvisnev [ l ] proposed an index calculated both from top gas analysis and material balance and fixing the instantaneous value of coke rate conforming to the gas composition involved. Schematically it can' be expressed as a simple formula, p = Ob/cg, where Ob is the oxygen passing from burden materials into furnace gases and C is the g gasified carbon. Given the top gas analysis, this relationship may be conveniently expressed in terms of volumetric units; C02 + 0.5 CO - BN2 P = where C02 + CO = O2(bl)IN2(bl) If required, it may also be expressed in units of weight; With hydrogen present in the furnace gas (natural gas or other hydrocarbon injection) and oxygen-enriched blast, the formula naturally becomes mor'e complicated; In formula (3), 0.5H20( ) represents oxygen taken from the burden by hydrogen. This can be computed from tee hydrogen balance using a rather cumbersome formula [2]. The use of a computer is a good practice for making such calculations quickly. In

Upload: saneie99

Post on 12-Nov-2014

29 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Ironmaking Proceedings 1972 - 041

BLAST FURNACE PROCESS AUTOMATIC CONTROL I

A. N. Pokhvisnev, I. F. Kurunov, Y. S. Yusf in , V. M. Klempert

Moscow S t e e l and Al loys I n s t i t u t e

Despi te t h e s u b s t a n t i a l change i n b l a s t fu rnace ironmaking technology due t o the use of oxygen, n a t u r a l gas and f u e l o i l a s w e l l a s e l e v a t e d top gas p ressure and o t h e r f a c t o r s promoting t h e b l a s t furnace p rocess , t h e b l a s t furnace foreman con t inues t o play t h e most important p a r t i n s o l v i n g problems a s t o how t o g e t t h e maximum product ion r a t e a t t h e minimum expense. Automatic c o n t r o l i n ironmaking aims a t l i m i t i n g the foreman's r o l e i n the process and reducing i t t o c e r t a i n l i m i t s .

This problem has been the s u b j e c t of i n v e s t i g a t i o n f o r a long period of time a t t h e Ore Working Department of Moscow S t e e l and Al loys I n s t i t u t e .

I n 1939, t o accommodate b l a s t fu rnace c o n t r o l , P ro fessor A . N. Pokhvisnev [ l ] proposed a n index c a l c u l a t e d both from top gas a n a l y s i s and m a t e r i a l balance and f i x i n g t h e ins tan taneous va lue of coke r a t e conforming t o t h e gas composition involved. Schemat ica l ly i t can' be expressed a s a simple formula, p = O b / c g , where Ob i s t h e oxygen pass ing from burden m a t e r i a l s i n t o furnace gases and C i s t h e

g g a s i f i e d carbon. Given t h e top gas a n a l y s i s , t h i s r e l a t i o n s h i p may be convenient ly expressed i n terms of volumetr ic u n i t s ;

C02 + 0.5 CO - BN2 P = where C02 + CO = O 2 ( b l ) I N 2 ( b l )

I f r e q u i r e d , i t may a l s o be expressed i n u n i t s of weight ;

With hydrogen p resen t i n t h e fu rnace gas ( n a t u r a l gas o r o t h e r hydrocarbon i n j e c t i o n ) and oxygen-enriched b l a s t , t h e formula n a t u r a l l y becomes mor'e compl icated;

I n formula ( 3 ) , 0 .5H20( ) r e p r e s e n t s oxygen taken from t h e burden by hydrogen. This can be computed from t e e hydrogen balance us ing a r a t h e r cumbersome formula [2 ] . The use of a computer i s a good p r a c t i c e f o r making such c a l c u l a t i o n s quickly . I n

Page 2: Ironmaking Proceedings 1972 - 041

most i n s t a n c e s , i t i s a c c u r a t e enough t o s p e c i f y the r a t e of hydrogen u t i l i z a t i o n ( T H ~ ) w i t h i n the l i m i t s of 0.40 - 0.45. Then;

I n the even t of oxygen-enriched b l a s t and n a t u r a l gas i n j e c t i o n the c o e f f i c i e n t B r e p r e s e n t s the combined b l a s t oxygen-nitrogen r e l a t i o n s h i p . I t i s expressed a s fo l lows:

where

w - percentage oxygen i n oxygen enr iched dry b l a s t , X - b l a s t mois ture c o n t e n t , grams/nm3, 6 - percentage n a t u r a l gas i n combined b l a s t .

There i s another no l e s s important index r e p r e s e n t i n g t h e r e l a t i o n s h i p between i n d i r e c t r educ t ion oxygen and s o l u t i o n l o s s carbon;

When the va lue of H20(g) i s ignored, the index i s one h a l f of the one more o f t e n used, C02/(C02 + CO) , which 1s the r a t e of carbon monoxide u t i l i z a t i o n . The q/p r e l a t i o n s h i p immediately o f f e r s a genera l va lue of the oxide i n d i r e c t r e d u c t i o n r a t i o r e l a t e d t o both the r a t e of gas use and t h e s p e c i f i c carbon r a t e .

I n t h i s manner, the b l a s t furnace c o n d i t i o n s dur ing any p a r t i c u l a r period of time can be c h a r a c t e r i z e d by the above i n d i c e s .

The i n d i c e s under d i s c u s s i o n can be supplemented wi th d a t a on the h e a t i n p u t per u n i t of oxygen removed from the burden m a t e r i a l s ( index M ) . When t h i s i s t h e c a s e , c a l c u l a t i o n of t h e i n d i c e s may s e r v e a s t h e b a s i s f o r q u a n t i t a t i v e recommendations i n va ry ing coke r a t e , b l a s t temperature and humidity [ 3 ] .

Index M can be found from the fo l lowing c o n s i d e r a t i o n s ; the h e a t q u a n t i t y l i b e r a t e d on t h e format ion of 100 nm3 of gas of a g iven composit ion i s ;

95760 28080 a Kca 1 9, = - 22.4 C02 + - 22.4 100 nm' of gas

the h e a t c o n t e n t of 1 nm3 of b l a s t i s , W = c x t b l '

where

c - h e a t c a p a c i t y tbl - b l a s t temperature

100 N2 the b l a s t volume r a t e , per 100 nm3 of g a s , amounts t o

(100 - w) and the hea t from

the h o t b l a s t i s ;

Page 3: Ironmaking Proceedings 1972 - 041

t h e t o t a l h e a t i s then ;

Kca 1 100 nmj of gas

Oxygen i n t h e furnace gas comprises t h e sum of oxygen i n b l a s t and t h a t removed from t h e burden m a t e r i a l s . B l a s t oxygen can be found i n accordance wi th n i t r o g e n c o n t e n t i n the gas. By t h i s means t h e burden oxygen i s r evea led from t h e fo l lowing express ion ;

nm Ob = C02 + 0.5 CO - BN2

100 nmJ of gas

Dividing t h e previously obta ined va lue of Q by t h e oxygen removed from t h e burden, we produce t h e amount of h e a t per normal cub ic meter of oxygen removed from t h e burden m a t e r i a l s .

The formula t a k e s t h e fo l lowing form;

L 4275C02 + 1254CO + 100-w W

Kca 1 M = Q/ob =

C02 + 0.5CO - BN2 '2(burden)

I f we c a l c u l a t e t h e magnitude of j ( t h e number of oxygen normal cubic meters pass ing i n t o gas per u n i t weight of i r o n on the b a s i s of i t s composi t ion) , then the h e a t consumption per u n i t weight of i r o n i s t h i s ;

Kca 1 M x j

U.W. of i r o n

where j = 0.26 t o 0.30 nm3 0 /kg of i r o n . 2

Through t h e use of these two v a l u e s , one can analyze the b l a s t furnace o p e r a t i o n and automatica l l y c o n t r o l i t s thermal cond i t ions .

The f i r s t checking of t h e o u t l i n e d c o n t r o l method took p lace i n 1941 on the b l a s t fu rnace No. 7 , Dzerzhinsky S t e e l P l a n t and the thermal cond i t ions cont:rol wi th the h e l p of index "M" was performed f o r t h e f i r s t time i n 1942 on a furnace of Magnitogorsky m e t a l l u r g i c a l combine. Gas ana lyses and computations were made manua 1 ly .

The experiments were a success and demonstrated f a i r promptness of the c o n t r o l method under t e s t and i t s s u i t a b i l i t y f o r b l a s t furnaces . But many d i f f i c u l t i e s a r o s e from t h e p r a c t i c e of manually making gas ana lyses and c a l c u l a t i n g t h e c o n t r o l parameter. This kep t t h e proposed and t e s t e d b l a s t fu rnace c o n t r o l method from being promoting a t t h a t time. A t t he end of t h e 19501s , means of automat ic top gas ana lyses came i n t o be ing a long wi th t h e f a s t spread of computers i n t h i s countr:y and overseas . This gave impetus t o r e s e a r c h work on developing the b l a s t fu rnace thermal c o n d i t i o n s automat ic c o n t r o l systems. I n v e s t i g a t i o n s i n t h i s d i r e c t i o n were continued a t t h e Moscow S t e e l and Alloy I n s t i t u t e . The method, mentioned above and t e s t e d i n 1942, of b l a s t fu rnace thermal c o n d i t i o n s c o n t r o l through t h e use of top gas composit ion, formed t h e b a s i s of t h e i n v e s t i g a t i o n s .

A t t h e same time a s t h i s method continued t o be advanced, t h e poss i lb i l i t i . e s f o r u s i n g o t h e r sources of in fo rmat ion about the b l a s t fu rnace process f o r t h e same purposes were a l s o s t u d i e d . The r e s u l t was t h a t i n 1964-1965 a new method of b l a s t fu rnace thermal c o n d i t i o n s c o n t r o l based on t h e composit ion and q u a n t i t y of charged m a t e r i a l s , b l a s t volume wi th a d d i t i o n s was developed [ 4 ] . I n t h i s method, i n p lace

Page 4: Ironmaking Proceedings 1972 - 041

of t h e pe rcen t of t h e top gas c o n s t i t u e n t s , determined from a n a l y s i s , t h e i r q u a n t i t i e s c a l c u l a t e d from t h e composit ion and tonnage of charged m a t e r i a l s , b l a s t volume, and q u a n t i t y of i n j e c t e d a d d i t i o n s a r e made use o f . Q u a n t i t i e s of carbon d iox ide and carbon monoxide can be found from balance equa t ions of oxygen and carbon p resen t i n f ixed volumes of top gas :

co2 = 2 o2 ( i n gas)

- ' ( in gas) - H2°(reduc)

'O = ' ( in gas) + H2°(reduc) - 2 O2 ( i n gas)

Amounts of oxygen 02(in and carbon C(in pass ing i n t o gas can be c a l c u l a t e d from t h e composiffEh of burden m a t e r i a l s '(burden and 02(in burden , b l a s t and i n j e c t e d a d d i t i o n s O ~ ( ~ d d ) and C(add). Quant i ty o& water vapor r e s u l t i n g from r e d u c t i o n (H20(reduc)) can be es t imated assuming t h e . v a l u e of hydrogen u t i l i z a t i o n r a t e t o be cons tan t . I f we make c a l c u l a t i o n s per some u n i t of burden m a t e r i a l s ( f o r example, per one charge) and keep i n mind t h a t whi le i n the fu rnace each volume of charge r e a c t s wi th gases which vary i n composit ion and q u a n t i t y , we can d e r i v e t h e fo l lowing equat ions f o r a 2 and CO volumes (normal cub ic meters per one charge) ;

- - "2 = 2( O2(in bur.) O2(in b l a s t ) ) - ( ' ( in bur . )

t

- - C

(add) ) ' H2°(reduc) ;

- - + 0 C0 = bur.) + ' ( in add) ) - 2 ( 0 2 ( i n b u r . ) 2 ( b l ) ) + '

For a g iven charge , t h e l i n e denotes the process i n t e g r a l c h a r a c t e r i s t i c s f o r a period of time when t h e burden m a t e r i a l s a r e i n the furnace .

- - I n o t h e r words, va lues of 5 2 ( i n b l a s t ) , C(add) and H20(reduc

1 c o n s t i t u t e t h e

average wi th time q u a n t i t i e s of oxygen i n t h e b l a s t , carbon I n he i n j e c t e d a d d i t i v e s and r e d u c t i o n water vapor per g iven charge of burden m a t e r i a l s .

To c a l c u l a t e the above v a l u e s , a s w e l l a s q u a n t i t i e s of h e a t added by t h e h o t b l a s t and consumed by decomposit ion of t h e i n j e c t e d a d d i t i v e s i n t h e h e a r t h per g iven charge of burden m a t e r i a l s , t h e mean o p e r a t i n g time of t h i s charge i n t h e fu rnace has t o be e s t i m a t e d , i . e . ,

a = - minutes per charge n (17)

where

a - r e s i d a n c e time of burden m a t e r i a l s i n t h e fu rnace (conven t iona l ly taken c o n s t a n t and equal t o 240 - 420 minutes depending upon t h e volume and working c o n d i t i o n s of the b l a s t f u r n a c e ) ,

n - number of charges f i l l e d i n t h e time period "a".

Using t h e obta ined va lues of CO, C02, H20(reduc i t i s p o s s i b l e t o c a l c u l a t e the same b l a s t fu rnace process i n d i c e s which a r e es t imated from t h e top gas composition.

Page 5: Ironmaking Proceedings 1972 - 041

The method, formulated h e r e , has been app l i ed t o c a l c u l a t e the index M b r e p r e s e n t i n g t h e h e a t i n p u t per u n i t of oxygen i n t h e burden m a t e r i a l s jo in ing the furnace gas. There i s a formula t o i c a l c u l a t e Mg from the gas composition:

where:

C02, CO, N2, H20(reduc) - t h e i r con ten t i n the d ry top g a s , percent by volume ;

(r - combined b l a s t volume - t o i t s n i t rogen con ten t r a t i o

a = 100/(100-u)

- S u b s t i t u t i n g z2, 00 and H20 reduc) i n t h e above formula r e s u l t s i n the same index

of h e a t inpu t (Kcal) per u n i t ok burden l o s s oxygen (one nm3 0 2 bVrden), but i t i s c a l c u l a t e d from the composit ion of burden, b l a s t and i n j e c t e d a 6 d l t i v e s

- - - 3 Values of 02 , 0 2 b l , Cb, Caddy H20reduc should be expressed he re i n nm /charge; va lues of wb?, Qadd - i n callc charge. The checking of index Mb f o r conf idence, i . e . , whether i t i s i n conformity wi th t h e furnace thermal c o n d i t i o n s , has been c a r r i e d ou t by c a l c u l a t i n g t h e same from t h e d a t a of b l a s t furnaces working under d i f f e r e n t cond i t ions .

The assessment of convergence was done through p l o t t i n g the diagrams and computing the normalized i n t e r c o r r e l a t i o n func t ions .

b Table 1 d i s p l a y s t h e i n t e r c o r r e l a t i o n c o e f f i c i e n t s between index M and s i l i c o n

con ten t i n the i r o n f o r d i f f e r e n t va lues of time o f f s e t s . Opera t ing cond i t ions and o t h e r c h a r a c t e r i s t i c s of t h e b l a s t furnaces a r e a l s o given i n Table 1. The time i n t e r v a l between c a s t s i s used he re a s a t ime-uni t .

I n a l l i n s t a n c e s index had a p o s i t i v e and r e l i a b l e r e l a t i o n s h i p wi th s i l i c o n con ten t both i n absence of a time o f f s e t and when f o r e c a s t i n g f o r one o r two c a s t s , i . e . , f o r 2.5 t o 5 h r s .

Figure 1, g i v i n g t h e curves of Mb and s i l i c o n changes, i l l u s t r a t e s a cons ide rab le c h i l l followed by a h e a t i n g up of t h e furnace . The po in t s of both curves a-re s h i f t e d from one ano the r f o r one c a s t , i . e . , f o r 2.5 h r s .

b Thus, index M , c a l c u l a t e d from the b l a s t furnace working d a t a under d i f f e r e n t

c o n d i t i o n s , adequate ly accounts f o r changes i n the furnace thermal cond i t ions . C o r r e l a t i o n c o e f f i c i e n t s f o r M~ and s i l i c o n a t t e s t t o the r e l i a b l e r e l a t i o n s h i p of Mb and s i l i c o n c o n t e n t i n the i r o n i n a l l cases .

Page 6: Ironmaking Proceedings 1972 - 041

Table 1. S t a t i s t i c a l R e l a t i o n s h i p Between M~ and S i l i c o n Content i n t h e I r o n

Time of b

M and S i l i c o n Content S t e e l P l a n t B l a s t Furnace Working F o r e c a s t i n g I n t e r c o r r e l a t i o n Coeff i -

S1 No. B l a s t Furnace Condi t ions Cas t s C a s t s c i e n t

1 "Azovs t a l " , 17 19 cum 99% s i n t e r , l imes tone , 160 December, 1964 n a t u r a l g a s , oxygen

(30-31 pe rcen t )

"Azovstal", 1719 cum 96% s i n t e r , l imes tone , June , 1965 n a t u r a l g a s , oxygen

(27-28 pe rcen t )

"Azovs t a l l 1 , 17 19 cum 80% s i n t e r , limes tone , October , 1965 a tmospher ic a i r b l a s t

Tcherepovets s t e e l 100% f luxed s i n t e r , p l a n t , 2000 cum n a t u r a l g a s , oxygen J a n u a r y , 1966 (22-23 pe rcen t )

Novo-Lipetsk s t e e 1 100% f luxed s i n t e r , p l a n t , 2000 cum. n a t u r a l g a s , oxygen J a n u a r y , 1966 (25-26 pe rcen t )

(hours) 0 0.29 1 0.29 2 0 .23 3 0.17

Page 7: Ironmaking Proceedings 1972 - 041

Tes t on a B l a s t Furnace w i t h t h e use of a Com~ute r

I n January - February , 1968 and 1969, a n a lgor i thm t o check and c o n t r o l t h e b l a s t furnace thermal c o n d i t i o n s , developed a t t h e Moscow S t e e l and Al loys I n s t i t u t e , was t e s t e d on one of t h e fu rnaces of t h e "Azovstal" S t e e l P l a n t equipped wi th a computer and s u i t a b l e ins t rumenta t ion [5 ] . The b a s i s f o r t h e a lgor i thm i s t h e checking of t h e fu rnace thermal c o n d i t i o n s through t h e c a l c u l a t e d i n d i c e s of thermal c o n d i t i o n s ( ~ g and M ~ ) and e v a l u a t i n g t h e q u a n t i t a t i v e recommendations t o change t h e fu rnace o p e r a t i n g c o n d i t i o n s accord ing t o v a r i a t i o n s of t h e i n d i c e s . On t r i a l s i n January - February , 1968, t h e index M~ was made use of t o check t h e fu rnace thermal c o n d i t i o n s and determine t h e c o n t r o l l i n g e f f e c t s , thermal c o n d i t i o n s c o n t r o l being c a r r i e d o u t a t the same time by the index Mg.

A coke charge s i z e ( i . e . , t h e o r e load) served t h e r e a s a- c o n t r o l l i n g e f f e c t , m e t a l l i c burden of a charge being v a r i e d i n t h e even t o f ! b u r d e n changing only (F igure 2). I

Determining t h e c o n t r o l l i n g e f f e c t ( i . e . , e v a l u a t i n g t h e requ i red s i z e oE a coke charge t o main ta in the s p e c i f i e d s i l i c o n c o n t e n t i n the i r o n ) was performed a t hour ly i n t e r v a l s by d e v i a t i o n of magnitude and s i g n of ~ b - i n d e x from i t s mean v a l u e s f o r two e a r l i e r hours . This was done wi th t h e use of a s p e c i a l l y made l o g i c a l c h a r t , where numerical v a l u e s of Mb-index and recommended changAs of coke r a t e per charge were s e l e c t e d from t h e e a r l i e r exper ience and c a l c u l a t i o n s .

According t o the c h a r t , magnitude and s i g n of c o n t r o l l i n g e f f e c t s a r e determined b b a s per magnitude and s i g n of M1 and M2 parameters , which r e p r e s e n t d i f f e r e n c e s

between mean va lues of Mb i n d i c e s per hour f o r a d j a c e n t hour ly per iods of time.

The f i r s t d i f f e r e n c e g i v e s only an i n d i c a t i o n of the fu rnace thermal c o n d i t i o n s d e v i a t i o n h i t h e r and t h i t h e r a t a p a r t i c u l a r length of time a s compared wi th the previous one. The second d i f f e r e n c e a l r e a d y makes i t p o s s i b l e t o judge about the tendency of t h e fu rnace thermal c o n d i t i o n s t o change and fo l lowing t h e i r va lue t o s t r e n g t h e n t h e c o n t r o l l i n g a c t i o n on r e t e n t i o n tendency of t h e fu rnace t o c h i l l o r t o warm-up and weaken o r e l i m i n a t e them i n t h e oppos i t e case .

b I f t h e value of M1 exceeds t h e range of i n s e n s i t i v e n e s s (LOO ~ c a l / n ~ : n ~ of Ozb) , b u t l e s s than 200 Kcal, then i t i s recommended by the t a b l e t o change coke r a t e by 25 kg per cha r e ( a l l accompanying f i g u r e s a r e taken f o r a coke charge equa l t o 6-7 tons ) . When Mf runs i n t o 200-500 Kcal, then coke r a t e s h a l l be changed by 50 kg per cha rge , and i f i t i s more than 500 Kcal, t h e coke r a t e s h a l l b e changed by 150 kg per charge.

b b

The zone of i n s e n s i t i v e n e s s f o r M2 runs a s high a s 200 Kcal. I f the va lues of M2 a r e w i t h i n t h e l i m i t s of 200-500 Kcal , coke r a t e s h a l l be changed by 50 kg per charge. I f they exceed 500 Kcal than the chan e s h a l l be 150 kg. The s i g n of coke r a t e changing i s assumed o p p o s i t e t o t h a t of Mf and M!.

The development of t h e mentioned Table of C o n t r o l l i n g Act ions was p r i m a r i l y based on t h e a v a i l a b l e p o s s i b i l i t i e s t o c o n t r o l t h e b l a s t fu rnace thermal c o ~ t d i t i o n s through t h e use of a computer o p e r a t i n g a s a "foreman's adviser" . I n t h i s c a s e , i t was p r i m a r i l y intended t o c a r r y ou t t h e q u a l i t a t i v e c o n t r o l , when t o i n f l u e n c e heat ing-up of t h e furnace . I t s o p e r a t i n g personnel most commonly changed the coke r a t e only by 100 kg, r e g a r d l e s s t h e magnitude of the heat ing-up d e v i a t i o n , and i n t h e even t of a severe c h i l l , by the a d d i t i o n of one o r s e v e r a l sk ip loads of coke.

I n 1968 t e s t s were c a r r i e d o u t f o r the period of time from January 22nd up t o February 5 t h , when low-phosphorus manganese s t e e l q u a l i t y i r o n of increased s i l i c o n c o n t e n t was smelted i n t h e b l a s t furnace .

Page 8: Ironmaking Proceedings 1972 - 041

! U n t i l t h e t e s t s were s t a r t e d , the fu rnace worked r a t h e r smoothly, though i t s c e n t r e was over loaded w i t h m e t a l l i c burden and the o p e r a t i o n was s o l e l y pe r iphera 1 ( t h a t could be observed from t h e c h a r t of C02 d i s t r i b u t i o n round a r a d i u s ) .

The over loading of t h e furnace c e n t r e was a s s i s t e d by a g r e a t q u a n t i t y of supp l i ed s i n t e r of h igh b a s i c i t y , con ta in ing 30-35 percent of below 5 mm f i n e s r e s u l t i n g from numerous rechargings .

A 1 1 d a t a t o be processed by a computer can be c l a s s i f i e d i n t o two groups:

1. The informat ion which a r r i v e s a t t h e computer from t h e cont inuously a l i v e sensors ( t e n i n number) o f : top gas composition (C02, CO, H2), h o t b l a s t volume, temperature and humidi ty , cold b l a s t p ressure and temperature , oxygen con ten t i n b l a s t , n a t u r a l gas r a t e . The sensors were quest ioned every 3-4 seconds. The a r r i v i n g informat ion was averaged over hour ly i n t e r v a l s of time. The computer au tomat ica l ly took account of number of charges (bo th o rd ina ry and blank) d e l i v e r e d i n t o t h e furnace per each hour.

2. The second group of d a t a comprises the informat ion on the amount and composit ion of the charged m a t e r i a l s . This kind of an informat ion was in t roduced i n t o the computer manually. The time of s i n t e r (wi th changed chemical composit ion) a r r i v a l a t t h e fu rnace top was t e n t a t i v e l y determined from the m a t e r i a l of previous composit ion remaining i n b i n s and from i t s hour ly consumption a t the furnace .

There were th ree s toppages of t h e furnace dur ing t h e t e s t s (January 23rd, 25th and 26th) t o r e p l a c e burned coo l ing members and t o do some maintenance work. Besides , on January 23rd, a hanging of the burden m a t e r i a l s occurred. To improve gas d i s t r i b u t i o n i n the fu rnace , a p o r t i o n of "washing-out" burden m a t e r i a l s was charged ( f i v e b lank charges , t h r e e o rd ina ry charges , 25 tons of furnace c l i n k e r , two o rd ina ry charges , 25 tons of furnace c l i n k e r ) . For the period of time from the l a s t s toppage (on January 26th) and up t o t h e end of the t e s t , t he b l a s t furnace worked smoothly w i t h o u t ' s t o p p a g e s , hangings , d i s t u r b a n c e s of the s l a g tapping and h o t metal c a s t i n g schedules . Yet burden changes were being made dur ing t h a t period of t ime, by varying the r e l a t i o n between domestic and f o r e i g n s i n t e r a s w e l l a s manganese o r e per charge .

A s noted above, on t h e s e t e s t s the computer opera ted a s a "foreman's adviser" . A t the beginning of each hour the d a t a , accumulated and averaged f o r the previous one, was computed according t o the programmed formula, the r e s u l t a n t d i f f e r e n c e s of

b b M1 and M2 were analyzed i n accordance wi th the l o g i c a l t a b l e and the f i n a l r e s u l t s ( i n c l u d i n g va lues of ~ g , M~ and the recommended v a r i a t i o n s of the coke feed s i z e ) were brought o u t and p r in ted by a p r i n t i n g device of t h e computer.

The adopted zones of i n s e n s i t i v e n e s s and c o n t r o l ranges were checked dur ing the f i r s t two days of t h e t e s t s (January 23rd and 24 th ) . The recommendations, produced by the computer i n the course of t h i s p e r i o d , were not considered. The r e a l t e s t was s t a r t e d on January 25th and completed on February 5 t h a t 3:00 p.m.

F i f t y a c t i v e and 20 pass ive recommendations were produced by the computer f o r the period of t e s t s up t o the 5 t h of February. The a c t i v e one was aimed a t changing t h e b l a s t furnace work ing ,cond i t ions by means of varying the coke r a t e , whi le the pass ive recommendation was d i r e c t e d t o main ta in the e x i s t i n g c o n d i t i o n s of t h e furnace Tho success ive hour ly recommendations of t h e same s i g n produced by a computer were taken a s one recommendation.

Simultaneous examination of the changing of fu rnace thermal c o n d i t i o n s and t h e computer's recommendations (Figure 2) makes i t poss ib le t o draw a conc lus ion t o t h e e f f e c t t h a t e s s e n t i a l l y a l l recommendations took t h e c o r r e c t account of the furnace -'

heating-up and i t s tendency toward changing. Only two a c t i v e recommendations proved t o be wrong (one of these r e s u l t e d from the e a r l i e r stoppage of t h e f u r n a c e , the

Page 9: Ironmaking Proceedings 1972 - 041

o t h e r one was connected t o the burden changing).

The two week period of t e s t i n g has been subdivided i n t o n ine i n t e r v a l s of four days each, beginning from January 25 th , 26th and s o f o r t h . The number of executed recommendations i n these per iods (1-9) increased by the end of the t e s t s :

Period No. 1 2 3 4 5 6 7 8 9 Executed re-

commendations 4 4 3 3 3 4 7 7 7

The p ropor t ion of h o t meta l c a s t s w i t h s i l i c o n c o n t e n t s equal t o 0.7-1.0 percent ( s p e c i f i e d 0.8-0.9) had a l s o increased by the end of the t e s t s (Figure 3 ) . S i l i c o n con ten t v a r i a n c e dur ing the ind ica ted per iods ranged r e s p e c t i v e l y a s fo l lows:

Period No. 1 2 3 4 5 6 7 8 9

Average s i l i c o n c o n t e n t , 0.93 0.89 0.91 0.86 0.92 0.87 0.88 0.93 0.92 pe rcen t

Roo t-mean- square de- v i a t i o n , 0.23 0.19 0.18 0.20 0.22 0.15 0.19 0.16 0.14 percent

This provides the reason t o b e l i e v e t h a t a more c l o s e fo l lowing of the recommendations favoured t h e s t a b i l i t y of furnace hea t ing .

Over t h e whole t e s t i n g p e r i o d , the i n d i c e s Mb and Mg took account of the furnace h e a t i n g adequate ly enough. The i n t e r c o r r e l a t i o n normalized f u n c t i o n s between these i n d i c e s and s i l i c o n c o n t e n t , computed f o r t h e t e s t i n g pe r iod , d isplayed t h e a v a i l a b i l i t y of p o s i t i v e and r e l i a b l e r e l a t i o n s h i p .

Tabulated i n Table 1 , the i n t e r c o r r e l a t i o n c o e f f i c i e n t s be tween Mb and s i l i c o n c o n t e n t i n most of the c a s e s had maximum va lues i n the absence of a s h i f t bet.ween t h e moments of computation of both parameters. The a v a i l a b i l i t y of the maximum c o r r e l a t i o n between Mb and s i l i c o n c o n t e n t i n the f o r e c a s t i n g range, obta ined dur ing the t e s t s i n 1968, i s l i k e l y t o be connected wi th changing of the dynamic c h a r a c t e r i s t i c s of t h e b l a s t furnace process and c a l l s f o r f u r t h e r study.

The Mg-index has been b e s t a s s o c i a t e d wi th s i l i c o n con ten t i n i r o n i n the absence of a s h i f t between both parameters wi th t ime, i . e . , i t descr ibed furnace h e a t i n g a t t h e moment of time under review and could have been used t o c o n t r o l the furnace thermal c o n d i t i o n s by mois ture c o n t e n t and temperature of the a i r b l a s t .

b The M - index fo recas ted t h e change of s i l i c o n con ten t f o r two hours ahead and

t e s t s proved t h a t t h i s favoured the t imely producing of recommendations d i r e c t e d t o changing coke r a t e .

When t e s t i n g t h e a lgor i thm i n 1969 (from January 28th up t o February 6 t h ) , the planned resea rch program ( t h e computer recommendations being ind i spensab le t o i t s f u l f i l l m e n t ) f a i l e d due t o u n s t a b l e o p e r a t i o n of the computer. To compute the Mb-index, i t i s necessary t o accumulate the d a t a f o r four hours . This i s the reason why, i n case of the fu rnace s toppage, the recommendations were produced by the computer only four hours a f t e r t h e furnace s t a r t i n g .

A s a r e s u l t of the t e s t s i n 1969, t h e b l a s t furnace working d a t a had been accumulated f o r t h a t period of time. A f t e r t h e t e s t s were over , the i n d i c e s ~ g , Mb and t h e i r i n t e r c o r r e l a t i o n f u n c t i o n s wi th s i l i c o n con ten t were computed from t h i s

Page 10: Ironmaking Proceedings 1972 - 041

d a t a (F igure 4b).

During t h e t e s t s i n 1968, the Mg-index had n o t been demonstrated t o have a r e l i a b l e r e l a t i o n s h i p wi th s i l i c o n c o n t e n t , (F igure 4 a ) . The fol lowing f a c t o r s probably a r e t h e r e a s o n s ; bad work of gas a n a l y z e r s ; v a r i a b l e o x i d a t i o n of t h e m e t a l l i c burden r e s u l t e d from t h e varying p ropor t ion of p e l l e t s i n t h e fu rnace charge (from 1.0 t o 2.5 tons per cha rge) ; and a l s o f l u c t u a t i o n s i n t h e combined b l a s t composition.

b There has been found a p o s i t i v e and c l o s e t o s u b s t a n t i o n a l r e l a t i o n s h i p between

M and s i l i c o n c o n t e n t ( r a t i o r/ar = 2.4) f o r a f o r e c a s t i n g time equal t o four hours.

During t h e t e s t s i n 1969, t h e b l a s t furnace working was smooth and i t s thermal c o n d i t i o n s f l u c t u a t e d cons ide rab ly l e s s .

For t h e t e s t s conducted i n 1968 and 1969, t h e ranges of s i l i c o n con ten t v a r i a t i o n amounted t o 0.5- 1.65 and 0.25-0.85 p e r c e n t , r e s p e c t i v e l y , and those of Mb were w i t h i n t h e l i m i t s of 7400-9600 and 8400-9800 ~ c a l / n m ~ of 02(in burden), r e s p e c t i v e l y .

The narrowing o f t h e f l u c t u a t i o n s i n the furnace thermal c o n d i t i o n s has been by f a r a n important r eason why t h e c loseness of t h e r e l a t i o n s h i p between Mb and Mg i n d i c e s , on t h e one hand, and. s i l i c o n con ten t i n i r o n , on t h e o t h e r , d e c r e a s e d . . '

Conc l u s i o n

We came t o t h e conc lus ion t h a t , depending upon s p e c i f i c c o n d i t i o n o f t h e b l a s t fu rnace working and accuracy of sens ing u n i t s ( o r t r a n s m i t t e r s ) , t h e fo l lowing v e r s i o n s of t h e b l a s t fu rnace process thermal c o n d i t i o n s c o n t r o l and r e g u l a t i o n a r e p r a c t i c a b l e :

1. by top gas composit ion on ly , i . e . , by o u t l e t parameters ( t h e most world-wide known way) ;

2. by tonnage and composit ion of charge burden m a t e r i a l s on ly ;

3. a combined c o n t r o l method, when top gas a n a l y s i s a s w e l l a s burden m a t e r i a l s d a t a a r e put t o use.

T h e o r e t i c a l l y speak ing , any of t h e l i s t e d v e r s i o n s must produce t h e same r e s u l t s , because t h e phys ica l sense of the c a l c u l a t e d index of the fu rnace thermal c o n d i t i o n s remains i n v a r i a b l e ; bu t i n r e a l c o n d i t i o n s of t h e fu rnace working, these v e r s i o n s of c a l c u l a t i o n b r i n g about d i f f e r e n t r e s u l t s o n account of d i s s i m i l a r e r r o r of i n i t i a l d a t a . The discrepancy may become a s b i g a s 8-10 pe rcen t . Here i s a n example. While conduct ing t e s t s a t one of the s t e e l p l a n t s (USSR) where a combined scheme of c a l c u l a t i o n had been adop ted , the magnitude of Mb-index, es t imated from d a t a on q u a n t i t y and composit ion of burden m a t e r i a l s , was found t o be s y s t e m a t i c a l l y i n excess of t h e same f o r Mg-index by 800-900 Kcal , i . e . , 9 pe rcen t of t h e a b s o l u t e value of the Mb-index. I n a d d i t i o n , a phase s h i f t of 2-3 hours between f l u c t u a t i o n s of the Mg and Mb-index was observed a t t h e same time. The l a t t e r f a c t suggested t h a t t h e Mb-index (which provides longer f o r e c a s t i n g t ime) should be used t o c o n t r o l o r e load, whi le the Mg-index should be used t o c o n t r o l h e a t c o n t e n t of a i r b l a s t . Such d i s t r i b u t i o n of f u n c t i o n s i s a s s o c i a t e d wi th a subs t a n t i o n a l t r a n s p o r t a t i o n l a g a s f a r a s o r e load i s concerned and complete absence of t h a t f o r h e a t con ten t of b l a s t .

I n a d d i t i o n , t h e e x i s t i n g p o s s i b i l i t y of s e l e c t i n g ~ one ou t of t h e t h r e e c a l c u l a t i o n v e r s i o n s widens the scope of a p p l i c a t i o n of t h e descr ibed a l g o r i t h m f o r those b l a s t fu rnaces which have n o t been equipped wi th ins t rumenta t ion f o r cont inuous top gas a n a l y s i s . I n such a c a s e , r o u t i n e top gas a n a l y s i s w i l l be of use t o check the r e s u l t s obta ined s o l e l y on t h e b a s i s of d a t a on composit ion and q u a n i t i t y

Page 11: Ironmaking Proceedings 1972 - 041

of charged burden m a t e r i a l s .

The f i n d i n g s presented i n t h i s paper o f f e r t h e b a s i s f o r cons ide r ing t h e suggested method and a lgor i thm f o r thermal c o n t r o l w i l l f i n d a p p l i c a t i o n i n the p r a c t i c e of b l a s t fu rnace process c o n t r o l .

L i t e r a t u r e References

1. A. N. Pokhvisnev, Control of BF Process by Means of Measuring the Composition of Top Gas; Theory and P r a c t i c e of Meta l lu rgy , 1939, /I8

2. A. N. Pokhvisnev, L. Y. Rozhewski and N. K. Z h i l k i n , On t h e Problem of Automation of t h e BF Process S t a l , 1963, No. 10, pp. 875-878

3. A. N. Pokhvisnev, Rapid Heat Balance of the BF Process Symposium on "Problems of Ferrous Metal lurgy" , Vol. X X I I I , M e t a l l u r g i z d a t , 1946, pp. 23-33

4. A. N. Pokhvisnev, I. F. Kurunov, Y. S. Yusf in , L. Y. Rozhewski, Y. Mirny, "On the Problem of C a l c u l a t i o n of the Thermal Condi t ion of a B Furnace", I z v e s t i g a Vysshykh Uchebnykh Zavedeniy, Chernaya M e t a l l u r g i y a , 1966, //7, pp. 25-29, I

/ I l l , pp. 20121

5. A . N. Pokhvisnev, I. F. Kurunov, V. M. Klempert, S. T. P l i skanovsk i , G. T. Kaminski, I n v e s t i g a t i o n of the Algori thm f o r C o n t r o l l i n g the Thermal Condi t ion of a B l a s t Furnace, S t a l , 1971, / / I , pp. 9-12

0.4 6\" I .- - 0.2 $ :::F,OJ>Gj .6 0.0

6 7 8 9 1 0 1 2 3 4 5 6 7 8 9 1 0 1 2

1-3-66 1-4-66

CONSECUTIVE CASTS

4 1121201 4 ( 1 2 1 2 0 1 4 1 1 2 1 2 0 1 4 112120( 8 16 24 8 16 29 8

1-27-68 I 1-28-68 1 1-29-68 1-30-68

Fig. 1. Varying of in index and s i l i c o n

l6 T " l6 2T Fig. 2 . Comparison of t h e recommended

con ten t i n i r o n dur ing c a s t s a t b l a s t and a c t u a l coke r a t e ( t o n s oer charge) and 3 fu rnaces w i t h 2000 m e f f e c t i v e volume. h o t b l a s t mois tu re wi th s i l i c o n con ten t

Tcherepovets S t e e l P l a n t , January 3-5, i n i r o n dur ing t e s t s i n January 1968. 1966.

Page 12: Ironmaking Proceedings 1972 - 041

Si-% OPERATING PERIODS

Fig . 3. Char t of s i l i c o n c o n t e n t i n i r o n d u r i n g c a s t s f o r 1-9 p e r i o d s i n January- Tebruary 1968.

F ig . 4 A . I n t e r c o r r e l a t i o n f u n c t i o n s between M~ and Mg i n d i c e s and s i l i c o n con ten t i n i r o n i n t h e p rocess of t e s t s between January-February 1968.

-0.3 -16 -12 -8 - 4 0 + 4 +8 +I2 +I6

HOURS

Fig . 4B. I n t e r c o r r e l a t i o n f u n c t i o n s between M~ and ~g i n d i c e s and s i l i c o n con ten t i n i r o n i n t h e p r o c e s s of t e s t s i n January-February 1969.

Page 13: Ironmaking Proceedings 1972 - 041

DISCUSSION

A. K. Garbee

Senior Research Engineer, Raw Materials & Smelting Section, Research & Technology

Armco S t e e l Corporation, Middletown, Ohio

The cont r ibu t ion of Pk. Pokhvisnev and h i s colleagues t o t he 1972 Ironurnking Conference i s appreciated. Vx. Pokhvisnev, i n pa r t i cu l a r , has long been involved with the thermochemistry of b l a s t furnace processes. The work done over t he years a t t h e Moscow I n s t i t u t e of S t e e l and Alloys in applying thermochemical concepts t o t h e b l a s t furnace operat ion cons t i t u t e s a s ign i f i can t e f f o r t . The Ore Working Department i s t o be commended f o r t h a t e f f o r t .

The evolut ion of b l a s t furnace cont ro l schemes, in general , has been a gradual one. The implementation of these cont ro l techniques has been a f a r slower process. This slow r a t e may be changing.

As the authors noted, t h e b l a s t furnace operator has t h e r e spons ib i l i t y f o r g e t t i q mximum hot metal production a t ninimum cost . The rap id ly escalat ing cost of raw mater ia l s , e spec i a l ly coke, make maxhium ef f ic iency a t t he b l a s t furnace e s s e n t i a l t o a successful s t e e l p lan t . Implementation of a cont ro l algorithm designed t o f u l f i l l t h e cont ro l o r operator guide and da ta logging funct ions should be a s t r a t e g i c par t of any plan t o improve t h e e f f ic iency of a b l a s t furnace operation.

I n t h e preceding pa.per, t h e authors have l i s t e d t h r e e conceptual approaches t o t he cont ro l and regula t ion of t he t h e m 1 conditions in t h e b l a s t furnace. The cont ro l algorithm can be based on

1 ) t op gas ana lys is ,

2) quant i ty and character of charge mater ials , o r

3) t o p gas ana lys i s and cha,rge mater ia l s da ta combined.

Any one of t h e th ree might be appropriate f o r a given furnace operation. Experience with the c i t e d h s s i a n furnace indicated t h a t t he burden based index ( K ~ ) should be used t o cont ro l the ore load, with the to^ gas based index (#) reserved f o r cont ro l l ing t h e hot b l a s t .

There i s l i t t l e t o disagree with i n t h e development of t h e various cont ro l ind ices . The same subject i s discussed by Pokhvisnev e t a l . i n t he January 1971 i s sue of "Stee l i n t h e USSR. I'

Page 14: Ironmaking Proceedings 1972 - 041

I The burden based index i s of p a r t i c u l a r i n t e r e s t , because the working condition o f a b l a s t furnace i s l a rge ly dependent on charge make-up. However, t h i s algorithm is dealing with a complex system. Several questions a r i s e regarding t h e hardware required t o put t h e algorithm i n t o pract ice.

With what accuracy a r e charge weights known?

How a r e representa t ive samples of burden mater ia l s obtained?

What i s t h e t a r g e t coke moisture, and what i s t h e quenching p rac t i ce recommended f o r achieving t h a t no i s tu re in a uniform manner?

Can a s p e c i f i c coke savings be ascribed t o the use of t h e cont ro l technique?

It would be he lp fu l t o have answers t o these quest ions i n the near f u t u r e i n order t o properly i d e n t i f y t h e p r a c t i c a l v e r s a t i l i t y of t h e b l a s t furnace cont ro l algorithms and t o show how read i ly these concepts can be reduced t o prac t ice .

Page 15: Ironmaking Proceedings 1972 - 041

D i s c u s s i o n of œ: last Fu rnace P roces s Automatic

c o n t r o l " by A . N . Pokhvisnev e t a1

D . H . Wakelin

Jones & Laughl in S t e e l Corpora.t ion

P i t t s b u r g h , Pa. 15230

D i s c u s s i o n

T h i s p a p e r b r i n g s u s u p t o - d a t e w i t h p r o g r e s s on a u t o m a t i c c o n t r o l of t h e b l a s t f u r n a c e p r o c e s s i n t h e S o v i e t Union. P r o f e s s o r P o k h v i s n e v was one of t h e f i r s t p r o p o n e n t s o f t h e u s e o f t o p g a s a n a l y s i s t o q u a n t i f y t h e t r a n s i e n t t h e r m a l s t a t e of t h e b l a s t f u r n a c e and i s a t r u e e x p e r t i n t h i s f i e l d .

To r e a d t h e p a p e r i s somewhat l i k e l o o k i n g i n a m i r r o r f o r t h o s e of u s i n t h e U. S. who have a t t e m p t e d c o n t r o l b a s e d on t o p g a s a n a l y s i s . F i r s t t h e r e i s t h e p rob lem of t h e t o p g a s s y s t e m a v a i l a b i l i t y and a c c u r a c y , t h e n t h e s h o r t d a t a p e r i o d s w i t h n o t a l w a y s c o n c l u s i v e c o r r e l a t i o n s be tween c a l c u l a t e d t h e r m a l l e v e l s and h o t m e t a l c h e m s t r y and f i n a l l y t h e r e a l s t u m b l i n g b l o c k - smooth, c o n t i n u o u s f u r n a c e o p e r a t i o n .

F o r t h o s e who d o n o t have s u f f i c i e n t l y c o n t i n u o u s g a s a n a l y s i s , P r o f e s s o r P o k h v i s n e v h a s d e r i v e d e q u a t i o n s b a s e d on t h e c o m p o s i t i o n and q u a n t i t i e s of t h e m a t e r i a l s c h a r g e d , t h e b l a s t and i n j e c t e d a d d i t i v e s t h a t a r e u s e d . T h i s s u b s t i t u t e s f o r t h e s a m p l i n g and a n a l y s i s p r o b l e m s of t o p g a s s y s t e m s t h o s e a s s o c i a t e d w i t h raw m a t e r i a l s , w h i c h may be m n o r i f a c o n s i s t e n t b u r d e n i s a v a i l a b l e .

I t i s u n f o r t u n a t e t h a t t h e a u t h o r s d o n o t have more e x p e r i m e n t a l d a t a . The manner i n which t h e r e s u l t s f rom t h e o n - l i n e t e s t i n 1 9 6 8 a r e p r e s e n t e d i s r a t h e r c o n f u s i n g . Twelve d a y s of t r i a l have been c o n v e r t e d i n t o n i n e o v e r l a p p i n g p e r i o d s of f o u r d a y s e a c h , and f o u r t e e n a c t u a l e x e c u t e d recommenda t ions have been made t o a p p e a r a s i f f o r t y - t w o o f t h e f i f t y compute r

s u g g e s t i o n s were f o l l o w e d .

The s h o r t p e r i o d s u s e d f o r d e v e l o p j n g t h e c o r r e l a t i o n f u n c t i o n s between Mg, M~ and p i g - i r o n s i l i c o n c o n t e n t have u n d o u b t e d l y c o n t r i b u t e d t o t h e s i 7 e o f t h e f o r e c a s t t i m e s be tween them. C o n t r a r y t o t h e r e s u l t s shown i t would seem more l o g i c a l f o r t h e h e a t i n d e x Mg c a l c u l a t e d f rom t o p g a s a n a l y s i s t o have a t l e a s t a s g r e a t a f o r e c a s t t i m e v e r s u s s i l i c o n c o n t e n t a s t h e h e a t i n p u t j.ndex M~ d o e s . The c a l c u l a t i o n of M~ u s e s mean i n p u t v a r i a b l e s a v e r a g e d f rom t h e t i m e of c h a r g i n g t o a r r i v a l o f m a t e r i a l a t t h e bottorn of t h e f u r n a c e , w h e r e a s ~9 t a k e s i n t o a c c o u n t t r a n s i e n t c h a n g e s o c c u r r i n g i n . m a t e r i a l y e t t o a r r i v e a t t h e h e a r t h .

Page 16: Ironmaking Proceedings 1972 - 041

I F i n a l l y t h e r e i s t h e q u e s t i o n of t h e smooth f u r n a c e o p e r a t i o n . I n t h i s d i s c u s s o r ' s mind i t i s ve ry p robab l e t h a t i n p r o j e c t s of t h i s n a t u r e t h e e f f o r t s expended i n upg rad ing raw m a t e r i a l s , i n s t r u m e n t a t i o n and f u r n a c e a v a i l a b i l i t y i n o r d e r t o o b t a i n a s u f f i c i e n t l y s t a b l e o p e r a t i on, produce b e n e f i t s beyond which t h e c l o s e d l o o p computer c o n t r o l can show only marg ina l improvement.