iron removal from dyffryn adda%2c parys mountain uk using ......cadmium 153 175 196 arsenic 129 360...

6
1 Removal of Iron from Dyffryn Adda, Parys Mountain, N. Wales, UK using Sono-electrochemistry (Electrolysis with assisted Power Ultrasound) Sarah A Morgan 1 , Zoe N Matthews 1 , Philip G Morgan 1 and Peter Stanley 2 1 KP2M Ltd., C10 Ashmount Business Park, Swansea, SA6 8QR, UK (email: [email protected]) 2 Natural Resources Wales, TŶ Cambria, Newport Rd., Cardiff, CF24 0TP, UK (email: [email protected]) Abstract The Dyffryn Adda from Parys Mountain, N. Wales is one of the most polluting mine waters in the UK releasing c. 10 tonnes of copper per annum and 24 tonnes of zinc per annum into the Irish Sea. The Metal Mines Strategy for Wales has ranked it first. An acid, iron rich mine water visible by its ochreous staining along 3 km of the Afon Goch Amlwch to its coastal discharge at Porth Offeiriad (Priest Port) has a negative impact on both river and coastal water quality and local businesses and communities. Several investigations using Active, Passive and Hybrid treatment processes employing conventional treatment technologies as well as Pump to sea have been considered, however successful treatment has not proven to be cost beneficial to date. This study shows that sono-electrochemical treatment (combined electrolysis and power ultrasound) to produce magnesium hydroxide can raise the pH of the water, precipitate iron as insoluble iron hydroxide [Fe(OH)2] and has the potential to preferentially precipitate other metals in their stable hydroxide forms. Extrapolating the laboratory results and methods to full scale treatment (12 l sec -1 flow rate) indicates that it is a viable Active treatment process compared to other treatment options being considered and can aid failing water bodies achieve compliance with the EU Water Framework Directive. Introduction Parys Mountain, N. Wales is one of the most polluting mine waters in the UK, discharging more metals into the Irish Sea than the River Mersey despite having less than 0.3% of the flow of the River Mersey. Parys has a number of discrete discharges of which Dyffryn Adda is considered the most challenging water chemistry being more acidic and metal rich than most surface water discharges in the UK. The Dyffryn Adda pollutes 3 km of the Afon Goch Amlwch before discharging into the sea at Port Offeiriad causing ochreous staining and depositing copper (c. 10 tonnes annum -1 ), zinc (c. 24 tonnes annum -1 ) and cadmium (~45 kg annum -1 ) into the Irish Sea. The discharge chemistry also includes other contaminants (Table 1). Table 1. Dyffryn Adda – Flow Concentrations (12 lsec -1 [1040 m 3 day -1 ]) Total (ugl -1 ) Minimum Mean Maximum Acidity (as CaCO3) 1,194 1,743 2,210 pH 2 3 3 Iron 453,000 599,000 708,000 Copper 30,600 38,130 52,600 Zinc 55,900 65,311 92,900 Manganese 14,300 20,470 30,400 Aluminium 4 63,571 87,800 Sulphate (as SO4) 1,940,000 2,534,000 3,020,000 Cadmium 153 175 196 Arsenic 129 360 662 Nickel 154 189 240 Lead 19 28 46 A ‘Parys Mountain Treatment Options Report’ was commissioned in 2012 by Natural Resources Wales (formerly Environment Agency Wales) (URS 2012) to review treatment options to ameliorate the environmental impact of Parys Mountain on the economic and well being benefits to local and national communities. In further discussions it was considered that the first stage of amelioration would be to reduce the total iron discharged from Dyffryn Adda to <1.0 mgl -1 and to reduce the ochreous visual impact

Upload: others

Post on 24-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Iron Removal from Dyffryn Adda%2C Parys Mountain UK using ......Cadmium 153 175 196 Arsenic 129 360 662 Nickel 154 189 240 Lead 19 28 46 A ‘Parys Mountain Treatment Options Report’

1

RemovalofIronfromDyffrynAdda,ParysMountain,N.Wales,UKusingSono-electrochemistry(ElectrolysiswithassistedPowerUltrasound)

SarahAMorgan1,ZoeNMatthews1,PhilipGMorgan1andPeterStanley2

1KP2MLtd.,C10AshmountBusinessPark,Swansea,SA68QR,UK(email:[email protected])

2NaturalResourcesWales,TŶCambria,NewportRd.,Cardiff,CF240TP,UK(email:[email protected])

AbstractTheDyffrynAddafromParysMountain,N.WalesisoneofthemostpollutingminewatersintheUKreleasingc.10tonnesofcopperperannumand24tonnesofzincperannumintotheIrishSea.TheMetalMinesStrategyforWaleshasrankeditfirst.Anacid,ironrichminewatervisiblebyitsochreousstainingalong3kmoftheAfonGochAmlwchtoitscoastaldischargeatPorthOffeiriad(PriestPort)hasanegativeimpactonbothriverandcoastalwaterqualityandlocalbusinessesandcommunities.SeveralinvestigationsusingActive,PassiveandHybridtreatmentprocessesemployingconventionaltreatmenttechnologiesaswellasPumptoseahavebeenconsidered,howeversuccessfultreatmenthasnotprovento be cost beneficial to date. This study shows that sono-electrochemical treatment(combinedelectrolysisandpowerultrasound)toproducemagnesiumhydroxidecanraisethepHof thewater, precipitate ironas insoluble ironhydroxide [Fe(OH)2] andhas thepotential to preferentially precipitate other metals in their stable hydroxide forms.Extrapolating the laboratoryresultsandmethodsto fullscale treatment(12 lsec-1 flowrate) indicates that it isaviableActive treatmentprocesscomparedtoother treatmentoptionsbeingconsideredandcanaidfailingwaterbodiesachievecompliancewiththeEUWaterFrameworkDirective.IntroductionParysMountain,N.WalesisoneofthemostpollutingminewatersintheUK,dischargingmoremetalsintotheIrishSeathantheRiverMerseydespitehavinglessthan0.3%oftheflowoftheRiverMersey.ParyshasanumberofdiscretedischargesofwhichDyffrynAddaisconsideredthemostchallengingwaterchemistrybeingmoreacidicandmetalrichthanmostsurfacewaterdischargesintheUK.TheDyffrynAddapollutes3kmoftheAfonGochAmlwchbeforedischargingintotheseaatPortOffeiriadcausingochreousstaininganddepositingcopper(c.10tonnesannum-1),zinc(c.24tonnesannum-1)andcadmium(~45kgannum-1)intotheIrishSea.Thedischargechemistryalsoincludesothercontaminants(Table1).Table1.DyffrynAdda–FlowConcentrations(12lsec-1[1040m3day-1])Total(ugl-1) Minimum Mean MaximumAcidity(asCaCO3) 1,194 1,743 2,210pH 2 3 3Iron 453,000 599,000 708,000Copper 30,600 38,130 52,600Zinc 55,900 65,311 92,900Manganese 14,300 20,470 30,400Aluminium 4 63,571 87,800Sulphate(asSO4) 1,940,000 2,534,000 3,020,000Cadmium 153 175 196Arsenic 129 360 662Nickel 154 189 240Lead 19 28 46A ‘ParysMountain Treatment Options Report’was commissioned in 2012 byNatural ResourcesWales(formerly Environment Agency Wales) (URS 2012) to review treatment options to ameliorate theenvironmental impactofParysMountainon theeconomicandwellbeingbenefits to local andnationalcommunities.Infurtherdiscussionsitwasconsideredthatthefirststageofameliorationwouldbetoreducethe total iron discharged from Dyffryn Adda to <1.0 mgl-1 and to reduce the ochreous visual impact

Page 2: Iron Removal from Dyffryn Adda%2C Parys Mountain UK using ......Cadmium 153 175 196 Arsenic 129 360 662 Nickel 154 189 240 Lead 19 28 46 A ‘Parys Mountain Treatment Options Report’

2

dischargeintheAfonGochAmlwchandintothesea,nowtheNorthAngleseyMarinepossibleSpecialAreaofConservation.Thereleasesofiron,sulphateandhighlevelsofacidityareprimarilyaresultofpyriteoxidationcatalyzedbysulphuroxidizingbacteria(Barbesetal.,1968):

4FeS2+15O2+14H2O=4Fe(OH)3+8H2SO4(Sulphuricacid)TraditionaltreatmentmethodsforMinewatercangenerallybedividedinto2techniques:-

1. Active treatment which require ongoing mechanical / electrical operations and manualmaintenance e.g. aeration, liquid chemical pH neutralization, chemical cationic coagulants andprecipitation; membrane processes; ion exchange and chemical and / or biological sulphateremoval;

2. Passivetreatmenttypicallyreferstoprocessesthatdonotrequirehumanintervention,operation,

or maintenance, use gravity flow for water movement and promote the growth of naturalvegetatione.g.reedbedsystems.

Given the high concentrations of metals and low pH passive treatment at Parys Mountain is broadlyaccepted as being impractical and technically unfeasible. Active treatment comprising of High DensitySludge(HDS)withpHadjustmentusinglimeishoweverwidelyusedfortreatingacidminedrainage(AMD)water.Inadditionsomesuccesshasbeenachievedusingsulphidereduction(additionofsodiumsulphide)afterpHadjustment(causticsodadosing)asapotentialtreatmentoption.Insomecircumstanceshybridactive/passivesystemsmaybeemployede.g.semi-passive ironremovalwith targetedremovalofothermetalsbysulphideprecipitationorbiologicalremovalofironasschwertmanniteandremovaloftargetedmetalsbysulphidereductionalongwithpart treatmentandpartpumpedseadispersaloptions.Budgetcostsforthesevariousoptionsarepresented(Table2).Table2.CostEstimatesforIronremoval/reductionfromDyffrynAddaaditElement/Description CostEstimatePumpedseadispersalofpartiallytreatedminewater £0.6to£0.7MHighDensitySludge(HDS)Plant £1.8to£2.0MCapex/£0.5to£0.7MOpexHybridActive/PassiveTreatment(incl.Sulphidetreatment) £1.8to£2.5MCapex/£0.25MOpexThepresenceofmetalspecieseitherintheirionicformorinequilibriumastheirstableoxide,hydroxideforms,inawaterphasesuchasminewater,aredeterminedbytheirrespectivePourbaixsolubilitydiagrams(Pourbaix1964).Forexample,thePourbaixdiagramforIroninWater(Fig.1)indicatesthepredominanceofironasaqueousions(Fe2+,Fe3+)orasstableinsolubleoxideorhydroxideforms[Fe(OH)2,Fe(OH)3]basedonthepHofthewater(horizontalaxis)anditsEH(voltagepotential)i.e.oxidizingorreducingpotential(verticalaxis).ForexampleinDyffrynAdda(pH=3.13andEH=0.287)ironwillbepresentassolubleFe2+aqueousions.If theminewater is aerated (EH > 0.0) and pH corrected to < pH 6.5 ironwill precipitate as insolubleorange/brownferrichydroxide[Fe(OH)3].Underanoxygenreducedstate(EH<0.0)theironwillprecipitateas green ferrous hydroxide [Fe(OH)2]. Similar reactions can be achieved within an electrochemicaltreatmentprocessbyselectingappropriateelectrodematerialsandapplyingavoltageacrosstheanodeandcathode electrodes to control current density (Amps/Electrode area [Am-2]) (Fig. 2). Increasing –decreasingcurrentdensitycanberegardedaswayofspeedinguporslowingdownreactionsanddependingupontheelectrodematerialmakingreactionsmoreoxidizingormorereducing.Byapplyingavoltagetoanoxidizingover-potentialanodeelectrode(e.g.MMO–mixedmetaloxide)thewaterintheelectrochemicalreactorcanbeoxidizedandmadeacidic. 2H2O=H2O2(oxidized)+2H+(acid)+2e-Similarlybyemployingavoltagetoanalkalineearthmetalanodeinwater,thewaterbecomesreducedandalkalineduetotheformationofthehydroxideMg(OH)2. Mg2+(anode)+2OH-(cathode)=Mg(OH)2

Page 3: Iron Removal from Dyffryn Adda%2C Parys Mountain UK using ......Cadmium 153 175 196 Arsenic 129 360 662 Nickel 154 189 240 Lead 19 28 46 A ‘Parys Mountain Treatment Options Report’

3

Fig1.Iron–WaterPourbaixdiagram Fig2.pHandEHvariationswithinanelectrochemicalreactor

Oncemagnesiumhydroxideisgenerateditoperatesbytheprincipalofionexchange,whereamagnesiumion(Mg2+)exchangeswithametalion(M2+)asshownbythefollowingequation: Mg(OH)2(adsorbent)+M2+(aq.)=M(OH)2(adsorbent)+Mg2+Although themetal is shown tobedivalent (2+) in thisequation forsimplicity, itmaybeofanyvalencyprovidedthationexistsasacationinsolution.Themagnesiumions(Mg2+)mayfurtherreactwithsulphateions(SO42-)toproduceinsolublemagnesiumsulphate.

Mg2++SO42-=MgSO4Ingeneral,thetendencyisforthesolubilityofthehydroxidesofothertreatedmetalstobelowerthanthatofmagnesiumhydroxideasshowninTable3andtoprecipitateinpreferencetomagnesiumhydroxide.Table3.SolubilityDataforMetalsMetalHydroxide KsP Solubility(molel-1)Copper-Cu(OH)2 2.2x10-20 2.8x10-7Cadmium-Cd(OH)2 1.7x10-15 1.2x10-5Chromium-Cr(OH)3 1.7x10-24 1.2x10-8Nickel-Ni(OH)2 6.5x10-18 1.9x10-6Zinc-Zn(OH)2 1.7x10-16 5.5x10-6Lead-Pb(OH)2 1.1x10-20 2.2x10-7Iron-Fe(OH)2 8.8x10-16 6.0x10-6Magnesium-Mg(OH)2 1.1x10-11 2.2x10-4TraditionalchemicalmethodsoftreatingAMDusingmagnesiumhydroxidearealreadydescribed(Bologoetal.,2009,2012)andreportgoodremovalratesformetalsfromsimilarAMDwatersinWitwatersrandBasininS.Africaandothersurfacefinishingandwastewaterstreams(Walteretal.,2015).Thesacrificialdissolutionofamagnesiumelectrodebyelectrolysistoelectro-generatemagnesiumhydroxidein-situinatreatmentprocesshoweverhasnotbeen reported.Theuseof electrolysis,which encompasses electro-coagulation,-flocculationand–flotation,havepreviouslybeentrialledandreportedfortreatmentofAMDwaters(Florence2013)usingiron,aluminiumsacrificialelectrodesandoxygenover-potentialelectrodessuchasMMOandEbonex(Hayfield2001).One major draw back with electrolysis (electro-coagulation) is passivation of the anode and cathodeelectrodesurfacesduringoperation.Suchfoulingcanleadtodeteriorationoftreatmentperformanceandexcessiveelectricalvoltagesbeingusedtoachieveacceptabletreatmentcurrentdensitiesinthetreatmentprocess.Passivationispartiallyovercomeinsomeelectrochemicalequipmentbyusinghighshearvelocitiesacrosstheelectrodesurfaces,polarityreversalandoff-lineelectrodeacidwashing.Thispaperreportsthenoveluseofsono-electrochemistry,electro-coagulationwithcombinedpowerultrasound(Morgan2014)for treatmentofAMDusingamagnesiumanode toproducemagnesiumhydroxide in-situ.Usingpowerultrasoundsimultaneouslywithelectrolysisremovestheionicboundaryandpassivationlayers(Sternand

Page 4: Iron Removal from Dyffryn Adda%2C Parys Mountain UK using ......Cadmium 153 175 196 Arsenic 129 360 662 Nickel 154 189 240 Lead 19 28 46 A ‘Parys Mountain Treatment Options Report’

4

Helmholtzlayers)thatcandevelopalongtheelectrodesurfaceduringoperation,making‘fresh’electrodematerialavailablefortreatment.Thisreducestheelectricalresistanceofreactorcircuit,reducesthepowerrequirementandincreasestreatmentefficiencyandeffectiveness.MaterialsandMethodsWatersampleswerecollectedfromthesamplingflumeatDyffrynAdda(GISSH4380791223).TwolitrealiquotsamplesweretreatedusingaSoneco®(Power&Water)sono-electrochemicalreactorconsistingofstainlesssteelcathode,foursetsof28kHzultrasonictransducers,magnesiumanode,twolitreB-Kersquareflocculator jar and Watson Marlow peristaltic recirculation pump. Water samples were re-circulatedbetween the B-Ker and Soneco® reactor using the peristaltic pump. Following sonication and electro-coagulation,sampleswereflocculatedonaPhipps&Birdbenchflocculatorforoneminuteat250rpmwithadditionof5gofdriedmicro-sandballast(<150umdiameter,stirredat150rpmwithadditionof0.2mlpolymer for threeminutesandsettled for3minutesat0 rpm.50mlaliquot sampleswere then filteredthroughaWhatmanNo.10filterbeforebeingtestedforirononaHach-LangeDR3900spectrophotometerusingtheHachLangeIronTestkit(LCK320).DuetolimitedtimeconstraintsandtestmethodstheonlyothermetaltestedwascopperusingQuantofixCopper(0–100mgl-1)dip-test.Reactiontime,pH(HannaInstruments),EH(mV)(HannaInstruments)andamperageswerenotedduringthetreatmentprocedureandphotographsofthetreatmentreactionsweretaken.ThesewereusedalongwiththemechanicalandelectricalspecificationsoftheSoneco®reactortocalculateCapexandOpexforafull-scaletreatmentplant.ResultsTable4.pHchangeoverreactionperiod(13mins.)

Table5.EH(mV)changeovertreatmentperiod(13mins.)

Table6.Changesinsamplethroughtreatmentprocess

T0min

T3min T10min T12min T12min T13min

Untreatedsample

PrecipitationatpHc.3.5-3.7

PrecipitationatpHc.7.5

Additionofmicro-sandand

polymer

Rapidsettlement

Clarifiedsample

Table7.IronreductionTest Amperage Time [Fe]Start(mgl-1) [Fe]End(mgl-1)Run1 2 13 800 0.069Run2 1.5 17 800 0.007

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1 3 5 7 9 11 13 15 17

pHUnits

No.Observations -400 -300 -200 -100

0

100

200

300

400

1 3 5 7 9 11 13 15 17

EH(mV)

No.Observations

Page 5: Iron Removal from Dyffryn Adda%2C Parys Mountain UK using ......Cadmium 153 175 196 Arsenic 129 360 662 Nickel 154 189 240 Lead 19 28 46 A ‘Parys Mountain Treatment Options Report’

5

Table8.CopperreductionTest [Cu]Beforemgl-1 [Cu]aftermgl-1Run1 40 <1.0Run2 40 <1.0Based on the above tests its is estimated that the magnesium (Mg2+) dissolution required to both pHneutralizeandprecipitate ironto<1mgl-1 is325mgl-1.Basedonthisratiothepredictivescale-upcosts(capitalandoperating)basedonaflowof12lsec-1will:-

1. Capex-£840,000GBP-Soneco®Reactor&PowerSupplyexcl.solid-liquidseparationtank2. Opex-£220,000GBPperannum-Sono-electrochemicalplantexcl.replacementanodes

DiscussionTheresultsconfirmthatelectricaldissolutionofamagnesiumelectrodeproducesmagnesiumhydroxidewhich exhibits the same characteristics asMg(OH)2 powders and granules currently employed inAMDtreatmentbutovercomesthepotentialHealthSafetyandEnvironmentalimpactsofhavingliquidchemicalsandpHcorrectingchemicalsonsite.ThereactionraisesthepHofacidwaters,precipitatesironasferroushydroxide and other metal hydroxides. In common with Bologo et. al., 2012 ferric hydroxide is firstprecipitatedasaresultofraisingthepHfromc.3.0pHunitsto3.5-3.7pHunitstotheinsolubilityproductofFe(OH)3.AsthepHfurtherrisesandthewaterbecomesreducedironisfinallyprecipitatedasFe(OH)2.Theremovalofcopperduringthereactionsupportsthefindingsthatmagnesiumhydroxidewillprecipitateothermetalsbeforeitself.TheBologoet.al.,2009paperpurportsthatthesemetalhydroxidesprecipitateat1pHunitbelowtheirnormal insolubilityproduct.Accordingly it is likely that this treatmentmethodshould provide a ‘sweep’ removal of most alkaline mine water metals dissolved in Dyffryn Adda aditincludingcadmium.Extrapolatingthebenchscaleoperatingparametersandresults toa full-scale treatmentplant(12 lsec-1flowrate)indicatesthattheCapexandOpexwillbe£840,000GBPand£220,000GBPrespectively.Thesecostsareslightlylowerthanthebudgetcostsalreadypresented(Table2,above).

Fig.3P&IDSono-electrochemicaltreatmentplantforAMD

Fig.4Soneco®Sono-electrochemicalwatertreatmentforremovalofPhosphorusfromwastewater

Forfutureconsideration,theCapexandOpexcostscouldbeoff-setbytherecoveryofmetalfromthesludgeaftertreatment,andasreportedbyBologoetal.,2009,eventhesolublemagnesiuminthetreatedwatercouldberecoveredbyprecipitatingwithcarbondioxidegasandrecycledasmagnesiumhydroxidebacktotheheadofworkswithinthetreatmentprocess.Further,thepotentialuseofrenewableenergysourcesatsitecouldbeusedasanelectricalpowersourceforasono-electrochemicaltreatmentprocess.Forillustrationpurposes,aP&IDSono-electrochemicaltreatmenttotreatDyffrynAddaaditwaterisshownin (Fig. 3), together with a typical Soneco® (sono-electrochemical treatment plant) for removal ofPhosphorusfrommunicipalwastewater(Fig.4).Conclusion

Page 6: Iron Removal from Dyffryn Adda%2C Parys Mountain UK using ......Cadmium 153 175 196 Arsenic 129 360 662 Nickel 154 189 240 Lead 19 28 46 A ‘Parys Mountain Treatment Options Report’

6

1. Electro-generation of magnesium hydroxide by electrolysis of a magnesium electrode has beensuccessfully demonstrated and that its properties for water treatment are similar to proprietarypowdersandgranularmedia.Thesepropertiesinclude:-

a. RaisingthepHofanacidwateranduseonAMDschemes;b. Electro-generatedmagnesiumhydroxidesuccessfullyprecipitatesFe2+aqueousas insoluble

ferroushydroxide;theresidualironconcentrationsofthetreatedwaterbeing<1.0mgl-1;c. Magnesium hydroxide will simultaneously precipitate other metals as their insoluble

hydroxideforms.2. ThepredictedCapexandOpexofasono-electrochemicaltreatmentplantisbroadlyattractivetoother

treatment/disposaloptionsbeingconsideredforDyffrynAddaaditwater.Thesecostscouldbeoff-setbytherevenueearned formmetalsrecovered fromthetreatedsludge.Electricalenergy forasono-electrochemicalplantcouldbesourcedfromarenewableenergysupplies.

3. Thispresentstudywasundertakenunderatimeconstraintandas‘proofofconcept’toquicklyassess

the viability of sono-electrochemistry (electro-generation of magnesium hydroxide) for watertreatmentforAMD.Havingachievedfavourableresultsandconclusions,furtherbenchtrials,extensivesamplingtestingandsitepilotstudywouldberecommended.

4. Thistechniqueistransferableandcanbeaccordinglyscalesformetalminewatertreatmentprojectsat

othermineschallengedbysteepterrainandexhibitingacidorochreousminedischarges,likethoseatCwmRheidolandCwmystwythminesalsobeingconsideredbyNaturalResourcesWales.

ReferencesURS (2012). ParysMountain – Treatment Options Report. Draft 30March 2012., Environment AgencyWales.ProjectReference46399817/MARP002.Barbes,H.J.andRomberger,S.B.(1968).ChemicalAspectsofAcidMineDrainage.J.WaterPoll.Contr.Fed.40(3)371–384.Pourbaix,M. (1964). Atlas of Electrochemical Equilibrium in Aqueous Solutions. Published by NationalAssociationofCorrosion(1974).ISBN10:0915567989.Bologo,V.,Maree, J.P.andZvinowanda,C.M.(2009).TreatmentofAcidMineDrainageUsingMagnesiumHydroxide.AbstractsoftheInternationalMineWaterConference,ProceedingsISBNNo.878-0-9802623-5-3,19th-23rdOctober2009,Pretoria,SouthAfrica.Bologo,V.,Maree,J.P.,andCarlsson,F.(2012).ApplicationofMagnesiumHydroxideandBariumHydroxidefortheremovalofMetalsandSulphatefromMineWater.WaterSAvol.38n.1Pretoria.Walter,M.D.,Witkowski,J.T.,andGibson,A.(2015).RemovalofMetalsfromMetalFinishingWasteWaterUsingaGranular,Magnesium-BasedAdsorbent.MartinMariettaMagnesiaSpecialties,LLC.8140CorporateDrive,Suite220,Baltimore,Maryland21236USA.Florence,K.M,andMorgan,P.G.(2013).Anovelelectrochemicalprocessforaqueousoxidationofacidminedrainageusingadvancedpowerelectronicsandrealtimecontrol.IMWAConference“ReliableMineWaterTechnology”IMWA31stMay2013,GoldenCO;USA.Hayfield, P.C.S. (2001). Development of a New Monolithic Ti4O7 Ebonex Ceramic. Published by RoyalSocietyofChemistry.ISBN10:0854049844.Morgan,P.G.(2014).BritishPatentNo.GB1503638.7–Methodandapparatusfordecontaminationoffluids(Soneco). International Patent PCT/GB2016/050692 – Method and apparatus for decontamination offluids.