iowa’s high-mast lighting towers: a proactive approach to a problem · 2009. 8. 21. · iowa’s...

21
Iowa Iowa s High s High - - Mast Lighting Towers: Mast Lighting Towers: A Proactive Approach to a Problem A Proactive Approach to a Problem Bruce Brakke Iowa Department of Transportation Terry J. Wipf, Brent M. Phares, Byung-Ik Chang Iowa State University Robert J. Connor Lehigh University

Upload: others

Post on 01-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • IowaIowa’’s Highs High--Mast Lighting Towers: Mast Lighting Towers: A Proactive Approach to a ProblemA Proactive Approach to a Problem

    Bruce BrakkeIowa Department of Transportation

    Terry J. Wipf, Brent M. Phares, Byung-Ik

    Chang

    Iowa State University

    Robert J. ConnorLehigh University

  • The ProblemThe ProblemThe Problem

    Nationwide failures of HMLT.Inadequate design specifications based upon dissimilar structures.

  • Iowa DOT BackgroundIowa DOT BackgroundIowa DOT Background

    233 High-Mast Towers.Statewideinspection in 2000.

    140 ft tower failed near Sioux City in 2003 –

    Fracture in base plate weld (37 mph NW wind).

    Subsequent statewide inspection–

    Other cracks found.

    Presenter�Presentation Notes�Photos would be helpful�

  • Iowa DOT BackgroundIowa DOT BackgroundIowa DOT BackgroundInvestigation by Dexter andothers – speculated wind induced fatigueSeveral different retrofitsdeveloped and are currentlybeing implementedDetermined that further investigation needed to fully understand the problem (e.g., monitoring needed).

    Presenter�Presentation Notes�Lehigh and Wiss, Janney�

  • Questions to be AnsweredQuestions to be AnsweredQuestions to be Answered

    Design for vortex shedding–

    Mode(s) of vibration.

    Loading profile.–

    Wind/pole interaction characteristics

    »

    Roughness length (z).»

    Lift coefficient (CL

    ).

  • Questions to be AnsweredQuestions to be AnsweredQuestions to be Answered

    Design for gusting–

    Mode(s) of vibration.

    Loading profile.–

    Wind/pole interaction characteristics

    »

    Roughness length (z).»

    Coefficient of drag (CD

    ).

  • Overall GoalOverall GoalOverall Goal

    Develop a comprehensive long-term inspection and maintenance program.Add to the body of knowledge related to the design of slender high-mast structures.

  • Monitoring System -

    GeneralMonitoring System Monitoring System --

    GeneralGeneral

    Two poles being monitored.Hardware–

    Two dataloggers.

    Long-range wireless.–

    Satellite communications.

    24x7 data collection »

    With triggering –

    specified wind speeds.»

    Rainflow

    stress cycle counting.»

    1 minute averages calculated on “the fly”.

  • Monitoring System –

    Pole 1Monitoring System Monitoring System ––

    Pole 1Pole 1

    14 strain gages.4 accelerometers.1 video camera.1 anemometer–

    Wind speed.

    Wind direction.

  • Monitoring System –

    Pole 2Monitoring System Monitoring System ––

    Pole 2Pole 2

    6 strain gages.3 anemometers–

    Wind speed.

    Wind direction.

  • Video

    InternetAnemometer

    33 ft

    Satellite

    Transceiver

    UPS

    Data Storage Server

    115.8’

    14 Strain gages

    4 Accelerometers

    45.3’

    148’

    10 ft

    Modem

    Wireless Router

    CR9000C

    WAP (Bridge)

    CR5000WAP

    (Bridge)

    B E C

    5.8’

    148’

    6 Strain gages

  • Data ProcessingData ProcessingData Processing

    Extract RMS and average wind speed, stress range, and acceleration (1 minute).Vibration information.Basic wind rose information (speed/direction)–

    Daily.

    Monthly.–

    Seasonally.

    Yearly.

  • Sample ResultsSample ResultsSample Results

    Cumulative Wind Information Chart Since 2004-October1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16N NNE NE ENE E ESE SE SSE S SSW SW WSE W WNW NW NNW

    219.75 242.25 264.75 287.25 309.75 332.25 354.75 17.25 39.75 62.25 84.75 107.25 129.75 152.25 174.75 197.25231 253.5 276 298.5 321 343.5 6 28.5 51 73.5 96 118.5 141 163.5 186 208.5

    Min Max 242.25 264.75 287.25 309.75 332.25 354.75 17.25 39.75 62.25 84.75 107.25 129.75 152.25 174.75 197.25 219.75 Sum %0 5 625 423 508 664 742 451 938 693 590 541 374 586 741 927 736 737 10276 12.35 10 1495 1286 1286 975 1285 961 3765 2921 1958 1226 907 1777 2225 3212 2815 1680 29774 35.510 15 1043 845 578 734 996 488 3727 3148 1531 945 1072 938 890 1803 3683 1615 24036 28.715 20 737 537 256 457 1124 292 2214 1550 555 504 400 367 280 678 2413 1176 13540 16.120 25 218 188 120 71 271 101 976 600 172 89 198 106 11 104 1190 363 4778 5.725 30 40 2 8 14 35 10 121 316 10 17 42 4 2 25 470 25 1141 1.430 35 1 2 2 1 3 1 3 78 0 0 20 0 0 1 160 1 273 0.335 40 0 0 0 0 0 0 0 20 0 0 1 0 0 0 30 0 51 0.140 45 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 9 0.045 50 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 7 0.050 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0

    4159 3283 2758 2916 4456 2304 11744 9342 4816 3322 3014 3778 4149 6750 11497 5597 83885 100% 5.0 3.9 3.3 3.5 5.3 2.7 14.0 11.1 5.7 4.0 3.6 4.5 4.9 8.0 13.7 6.7 100 64%

    Sum

    Dir. No.

    Speed

    0

    5

    10

    15

    20N

    NNE

    NE

    ENE

    E

    ESE

    SE

    SSE

    S

    SSW

    SW

    WSE

    W

    WNW

    NW

    NNW

    % of Frequency

  • 0

    3000

    6000

    9000

    12000

    15000

    N NNE NE ENE E ESE SE SSE S SSW SW WSE W WNW NW NNWWind direction

    Win

    d di

    rect

    ion

    freq

    uenc

    y

    50 ~ 100 mph

    45 ~ 50 mph

    40 ~ 45 mph

    35 ~40 mph

    30 ~ 35 mph

    25 ~30 mph

    20 ~ 25 mph

    15 ~20 mph

    10 ~15 mph

    5 ~ 10 mph

    0 ~ 5 mph

    Sample ResultsSample ResultsSample Results

  • S+60 Wind

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    0 10 20 30 40 501 min. mean wind speed (mph)

    Peak

    stre

    ss (k

    si)

    S10

    S12

    S13

    S14

    Sample ResultsSample ResultsSample Results

    S10

    S12

    S13

    S14

  • Sample ResultsSample ResultsSample Results

    Mode 2: Frequency = 1.3 HzVortex Shedding

    0

    30

    60

    90

    Time

    Win

    d di

    rect

    ion Wind direction

    17.3 degree / 4.42 degree

    0

    10

    20

    30

    Time

    Win

    d Sp

    eed

    Wind Speed

    5.25mph / 0.47 mph

    S1-S12

    S2-S14

    S4-S13S3-S10

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    1/17/0519:01

    1/17/0519:01

    1/17/0519:01

    1/17/0519:01

    1/17/0519:01

    1/17/0519:01

    1/17/0519:01

    1/17/0519:02

    1/17/0519:02

    Time

    Stre

    ss (k

    si)

    S43.25 ksi

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    1/17/0519:01

    1/17/0519:01

    1/17/0519:01

    1/17/0519:01

    1/17/0519:01

    1/17/0519:01

    1/17/0519:01

    1/17/0519:02

    1/17/0519:02

    Time

    Stre

    ss (k

    si)

    S10

    Mode 2: Frequency = =1.3 Hz 3.22 ksi

  • Findings –

    GustingFindings Findings ––

    GustingGusting

    Response primarily in first mode (f 1= 0.3Hz).Overall, largest stress ranges are caused by natural wind gusts.Max stress range is approximately 14 ksi.Relatively few cycles–

    “Slow”

    vibration.

    High wind speeds are not very frequent.

  • Findings –

    Vortex SheddingFindings Findings ––

    Vortex SheddingVortex Shedding

    Significant vortex shedding observed in the second mode (f2 = 1.3 Hz)Occurs during steady wind speeds of 4 - 11 mph (but, somewhat dependent upon wind direction).Stress range = 1.5 ~ 3.3 ksiMaximum stress range caused by vortex shedding is approximately 3.3 ksi.Relatively high number of cycles–

    “Fast”

    vibration.–

    Low wind speeds more common.

  • Future WorkFuture WorkFuture Work

    Wind tunnel testing–

    Scale models to validate field CD

    , CL

    .–

    Wind profile pressure information.

    Analytical modeling–

    Validated with field/wind tunnel data.

    Extrapolate to nationwide pole geometries.Develop proposed specification modifications.

  • AcknowledgementAcknowledgementAcknowledgement

    Iowa Highway Research Board.Midwest Transportation Center.

  • Thank YouThank You

    Questions?

    Iowa’s High-Mast Lighting Towers: A Proactive Approach to a ProblemThe ProblemIowa DOT BackgroundIowa DOT BackgroundQuestions to be AnsweredQuestions to be AnsweredOverall GoalMonitoring System - GeneralMonitoring System – Pole 1Monitoring System – Pole 2 Data ProcessingSample ResultsSample ResultsSample ResultsSample ResultsFindings – GustingFindings – Vortex SheddingFuture WorkAcknowledgementThank You