ionut danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [a10] y p. kazemi, i. danaila,...

17
Laboratoire de mathématiques Raphaël Salem Publications and related work Ionut Danaila Deputy Director of the Laboratory of Mathematics Raphael Salem Head of the LMRS Numerical Methods and Applications Group Head of the ANR Project QUTE-HPC (2019-2022) pdf files available at http://ionut.danaila.perso.math.cnrs.fr/ the pdf version of this document contains direct links indicated by Books Articles Numerical codes Invited plenary talks Other Conferences Invited seminars Scientific illustrations Research visits abroad Laboratoire de mathématiques Raphaël Salem Université de Rouen Normandie Avenue de l’Université, BP.12 76801 Saint-Etienne-du-Rouvray France May, 2020

Upload: others

Post on 30-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

Laboratoire de mathématiques

Raphaël Salem

Publications and related work

Ionut DanailaDeputy Director of the Laboratory of Mathematics Raphael SalemHead of the LMRS Numerical Methods and Applications Group

Head of the ANR Project QUTE-HPC (2019-2022)

pdf files available at http://ionut.danaila.perso.math.cnrs.fr/

the pdf version of this document contains direct links indicated byy

y Booksy Articlesy Numerical codesy Invited plenary talksy Other Conferencesy Invited seminarsy Scientific illustrationsy Research visits abroad

Laboratoire de mathématiques Raphaël SalemUniversité de Rouen NormandieAvenue de l’Université, BP.12

76801 Saint-Etienne-du-RouvrayFrance

May, 2020

Page 2: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

Books

[B1] y I. Danaila, P. Joly, S. M. Kaber, M. PostelAn Introduction to Scientific Computing. Twelve Computational Projects Solvedwith MATLAB., Springer, 2007.

[B2] y I. Danaila, P. Joly, S. M. Kaber, M. PostelIntroduction au calcul scientifique par la pratique. 12 projets résolus avec Mat-lab., Dunod, Collection Science Sup: Masters et Ecoles d’Ingénieurs, Paris, 2005.

[B3] y I. Danaila, F. Hecht, O. PironneauSimulation numérique en C++, Dunod, Collection Science Sup: Masters et Ecolesd’Ingénieurs, Paris, 2003.

(in the pdf file of this document)y indicates a direct link

1

Page 3: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

Articles

[A1] y M. Kobayashi, Ph. Parnaudeau, F. Luddens, C. Lothodé, L. Danaila, M. Bra-chet and I. Danaila, Quantum turbulence simulations using the Gross-Pitaevskiiequation: high-performance computing and new numerical benchmarks,submitted, 2020.

[A2] y G. Sadaka, A. Rakotondrandisa, P.-H. Tournier, F. Luddens, C. Lothodé, I.Danaila, Parallel finite-element codes for the simulation of solid-liquid phase-change systems with natural convection, submitted, 2020.

[A3] y S. Laurent, P. Parnaudeau, F. Chevy and I. Danaila, Nonlinear dynamics ofcoupled superfuids, submitted, 2019.

[A4] y A. Rakotondrandisa, G. Sadaka, I. Danaila, A finite-element tool-box for the simulation of solid-liquid phase-change systems with natu-ral convection, Computer Physics Communications, published on line,https://doi.org/10.1016/j.cpc.2020.107188, 2020.

[A5] y A. Rakotondrandisa, I. Danaila, L. Danaila, Numerical modelling of a melting-solidification cycle of a phase-change material with complete or partial melting,International Journal of Heat and Fluid Flow, 76, p. 57-71, 2019.

[A6] y P. G. Kevrekidis, I. Danaila, J.-G. Caputo, R. Carretero-González, Planar andradial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynam-ics, Physical Review E, 98, p. 052217-(1-13), 2018.

[A7] y I. Danaila, F. Luddens, F. Kaplanski, Formation number of confined vortexrings, Physical Review Fluids, 3, p. 094701-(1-22), 2018.

[A8] y A. Papoutsakis, S. S. Sazhin, S. Begg, I. Danaila, F. Luddens, An effi-cient Adaptive Mesh Refinement (AMR) algorithm for the Discontinuous Galerkinmethod: applications for the computation of compressible two-phase flows,Journal of Computational Physics, 363, p. 399-427, 2018.

[A9] y I. Danaila, B. Protas, Computation of Ground States of the Gross-PitaevskiiFunctional via Riemannian Optimization,SIAM Journal on Scientific Computing, 39, p. B1102-B1129, 2017.

[A10] y I. Danaila, F. Kaplanski and S. Sazhin, A model for confined vortex rings withelliptical core vorticity distribution,Journal of Fluid Mechanics, 811, p. 67-94, 2017.

[A11] y G. Vergez, I. Danaila, S. Auliac and F. Hecht, A finite-element toolbox for thestationary Gross-Pitaevskii equation with rotation,Computer Physics Communications, 209, p. 144–162, 2016.

2

Page 4: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

[A12] y I. Danaila, M. A. Khamehchi, V. Gokhroo, P. Engels and P. G. Kevrekidis, Vec-tor dark-antidark solitary waves in multicomponent Bose-Einstein condensates,Physical Review A, 94, p. 053617 (1-8), 2016.

[A13] y I. Danaila and B. Protas, Optimal reconstruction of inviscid vortices, Proceed-ings of the Royal Society A: Mathematical, Physical & Engineering Sciences,471, p. 20150323, 2015.

[A14] y I. Danaila, F. Kaplanski and S. Sazhin, Modelling of confined vortex rings,Journal of Fluid Mechanics, 774, p. 267-297, 2015.

[A15] y I. Danaila, R. Moglan, F. Hecht, S. Le Masson, A Newton method with adap-tive finite elements for solving phase-change problems with natural convection,Journal of Computational Physics, 274, p. 826–840, 2014.

[A16] y Y. Zhang, I. Danaila, Existence and numerical modelling of vortex rings withelliptic boundaries, Applied Mathematical Modelling, 37, p. 4809–4824, 2013.

[A17] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Jour-nal on Imaging Sciences, 5(2), p. 601–624, 2012.

[A18] y Y. Zhang, I. Danaila, A finite element BFGS algorithm for the reconstructionof the flow field generated by vortex rings, Journal of Numerical Mathematics,3–4, p. 325–340, 2012.

[A19] y R. Moglan, I. Danaila, S. Le Masson, Méthodes d’ordre élevé pour la simula-tion numérique des phénomènes thermo-aéraulique dans les armoires de télécom-munications, dans Thermique en conditions extrêmes, Editeurs JC. Batsale, M.Azaiez, Editions Société Française de Thermique, p. 237–245, 2012.

[A20] y I. Danaila, Modeling and simulating the flow generated by new automotiveinjectors, dans European Success Stories in Industrial Mathematics, édité par Eu-ropean Mathematical Society et European Science Foundation, Springer, 2011.

[A21] y I. Danaila, P. Kazemi, A new Sobolev gradient method for direct minimiza-tion of the Gross–Pitaevskii energy with rotation, SIAM Journal on ScientificComputing, 32, p. 2447–2467, 2010.

[A22] y I. Danaila, F. Hecht, Finite element methods with mesh adaptivity for comput-ing vortex states in fast-rotating Bose-Einstein condensates, Journal of Compu-tational Physics, 229, p. 6946–6960, 2010.

[A23] y I. Danaila, C. Vadean, S. Danaila, Specified discharge velocity model for nu-merical simulations of vortex rings, Theoretical and Computational Fluid Dy-namics, 23, p. 317-332, 2009.

[A24] y I. Danaila, J. Hélie, Numerical simulation of the postformation evolution of alaminar vortex ring, Physics of Fluids, 20, p. 073602(1–14), 2008.

[A25] y S. Benteboula, I. Danaila, Variable density vortex rings, in Advances in Tur-bulence XI, Ed. J. M. Palma and A. Silva Lopes, Springer, p. 771, 2007.

3

Page 5: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

[A26] y I. Danaila, Three-dimensional simulations of quantized vortices in rotat-ing Bose-Einstein condensates, Bulletin of the "Politehnica" University ofTimisoara, Transactions on Mechanics, 51, p. 155-162, 2006.

[A27] y S. Benteboula, I. Danaila, Simulation numérique de l’injection gaz-gaz àmasse volumique variable, in Défis thermiques dans l’industrie nucléaire, Edi-tions Société Française de Thermique, p. 521-525, 2006.

[A28] y O. El Ganaoui, C. Habchi, G. Bruneaux and I. Danaila, Numerical simulationof an experimental gas-gas jet generated by single-hole diesel-like injection, Int.Journal of Numerical Methods in Fluids, 47, p. 1011-1018, 2005.

[A29] y I. Danaila, Three-dimensional vortex structure of a fast rotating Bose-Einsteincondensate with harmonic-plus-quartic confinement, Physical Review A, 72, p.013605(1-6), 2005.

[A30] y I. Danaila, Vortex dipoles impinging on finite aspect ratio rectangular obsta-cles, Flow, Turbulence and Combustion, 72, p. 391-406, 2004.

[A31] y A. Aftalion, I. Danaila, Giant vortices in combined harmonic and quartictraps, Physical Review A, 69, p. 033608(1-6), 2004.

[A32] y L.-C. Crasovan, V. M. Pérez-García, I. Danaila, D. Mihalache, L. TornerThree-dimensional parallel vortex rings in Bose-Einstein condensates,Physical Review A, 70, p. 033605(1-5), 2004.

[A33] y I. Danaila, Numerical simulation of a rotating Bose Einstein condensate,in Actes du CANUM, 2003.

[A34] y A. Aftalion, I. Danaila, Three-dimensional vortex configurations in a rotatingBose Einstein condensate, Physical Review A 68, p. 023603(1-6), 2003.

[A35] y I. Danaila, B. J. Boersma, Direct numerical simulation of bifurcating jets,Physics of Fluids, 12 (5), p. 1255–1258, 2000.

[A36] I. Danaila, T. Baritaud, Direct numerical simulation of IC engine flows using aboundary body-force method, in Actes du CANUM, 2000.

[A37] y I. Danaila, J. Dusek, F. Anselmet, Nonlinear dynamics at a Hopf bifurcationwith axisymmetry breaking in a jet,Physical Review E, 57 (4), p. 3695–3698, 1998.

[A38] y I. Danaila, B. J. Boersma, Mode interaction in a forced homogeneous jet atlow Reynolds numbers, in Proceedings of the Summer Program 1998, Center forTurbulence Research, Stanford University and NASA Ames, p. 141–158, 1998.

[A39] I. Danaila, J. Dusek, F. Anselmet, Nonlinear dynamics of Low Reynolds NumberRound Jets: Periodic Attractors and Transition to Chaos, in Advances in Tur-bulence VII, Editor U. Frisch, Kluwer Academic Publishers, p. 105–108, 1998.

4

Page 6: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

[A40] y I. Danaila, J. Dusek, F. Anselmet, Coherent structures in a round, spatiallyevolving, unforced,homogeneous jet at low Reynolds numbers, Physics of Fluids,9 (11), p. 3323–3342, 1997.

[A41] I. Danaila, J. Dusek, F. Anselmet, Direct numerical simulations of the free, un-steady, round, unforced jet at low Reynolds numbers, in Direct and Large-EddySimulation II, Editors J.-P. Chollet, P. R. Voke and L. Kleiser, Kluwer AcademicPublishers, p. 1–10, 1997.

[A42] I. Danaila, J. Dusek, F. Anselmet, Space Structure of the Free, Unsteady, Round,Homogeneous Jet at Low Reynolds Numbers, in Advances in Turbulence VI, Edi-tors S. Gavrilakis, L. Machiels and P. A. Monkewitz, Kluwer Academic Publishers,p. 11–14, 1996.

[A43] J. Dusek, Ph. Fraunié, C. Dauchy, I. Danaila, Secondary instabilities and tran-sition to turbulence in wakes and jets, in Computation of Three-DimensionalComplex Flows, Editors M. Deville, S. Gavrilakis and I. L. Ryhming, Vieweg,Braunschweig/Wiesbaden, p. 78–87, 1996.

Numerical codes

[Cde1] Toolbox in FreeFem++ for Liquid-solid phase-change systems (> 2014).Equations : Navier-Stokes-Boussinesq + enthalpy models (2D/3D).Single-domain method with an enthalpy-porosity approach; Newton solver, secondorder in time and space.2D Toolbox published in CPC [Article A4] and developed during the PhD of AinaRakotondrandisa. 3D version developed during the postdoc of Georges Sadaka[Article A2] .Free distribution of codes under Apache 2.0 license (see [A2, A4, A5, A15]).

[Cde2] Module for FreeFem++ for Bose-Einstein simulations (> 2009),Equations: stationary Gross-Pitaevskii,Methods: direct minimization of the Gross-Pitaevskii energy using different meth-ods: Newton, Sobolev gradients, imaginary time propagation.Applications: 2D simulations of Bose-Einstein condensates (high rotations andstrong interactions) (see article [A11]).

[Cde3] Code NSB-XYZ: 3D code written from scratch with my PhD student R. Moglan.Equations : Navier-Stokes-Boussinesq 3D in Cartesian coordinates.Method: sixth order compact finite-difference schemes; immersed boundarymethod for complex geometries.Applications: simulation of 2D/3D flows in cavities with obstacles and thermaleffects; optimisation of the configuration of outdoor telecommunications cabinets.

5

Page 7: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

[Cde4] Code BETI Origin: 3D code written from scratch,Equations: non-linear Schrödinger (Gross-Pitaevskii) equations,Method: finite-difference method, compact schemes,Scheme: Runge-Kutta + Crank-Nicolson ,Applications: 3D simulation of rotating Bose-Einstein condensates, 3D structureof quantized vortices.

[Cde5] Code JETLES Origin: 3D code written from scratch,Equations: incompressible Navier-Stokes, cylindrical coordinates,Method: second order finite difference schemes, staggered grids,Scheme: Runge-Kutta + Crank-Nicolson,Turbulence model: direct (DNS) and large numerical simulations (SGS=dynamicmodel). Applications: axisymmetric and 3D round jets, vortex rings.

[Cde6] Module for FreeFem++ for Bose-Einstein simulations (> 2009),Equations: stationary Gross-Pitaevskii,Methods: direct minimization of the Gross-Pitaevskii energy using different meth-ods: Newton, Sobolev gradients, imaginary time propagation.Applications: 2D simulations of Bose-Einstein condensates (high rotations andstrong interactions).

[Cde7] Code NTMIX-BF Origin: the NTMIX code of IFP,Equations: compressible Navier-Stokes, Cartesian coordinates,Method: finite differences, compact schemes,Scheme: Runge-KuttaTurbulence model: direct (DNS) and large numerical simulation (LES).Applications: 2D et 3D engine flows, vortex dipoles.

Invited plenary talks

[C1] y (November 2019) Workshop on Modeling and Simulation for Quantum Con-densation, Fluids and Information, November 18-22, Singapore.

[C2] y (July 2019) International Colloquium on Fluid turbulence Applications inBoth Industrial and Environmental topics, July 9-11, Marseille, France..

[C3] y (July 2019) International Colloquium on Bluff bodies flows, July 4-5, Stras-bourg, France.

[C4] y (January 2018) Conference on Mathematical Models and Computation of Non-linear Problems, Tsinghua Sanya International Mathematics Forum, China.

6

Page 8: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

[C5] y (June 2017) 27th Biennial Conference on Numerical Analysis, SymposiumNumerical Modelling with Freefem++, organised by V. Dolean, P.-H. Tournier,University of Strathclyde, Glasgow, UK.

[C6] y (June 2017) Conference and school Focus Activity on Mathematical and Com-putational methods for Quantum and Kinetic Problems, Beijing ComputationalScience Research Center, organised par W. Bao, Y. Cai, Q. Du.

[C7] y (October 2016) Conference on Novel Developments in Evolutionary PartialDifferential Equations, King Abdullah University of Science and Technology, or-ganised by D. Gomes, R. Tempone, T. Tzavaras.

[C8] y (July 2016) International Workshop on Nonlinear Partial Differential Equa-tions and Scientific Computing (July 2016), Beijing Computational Science Re-search Center, organised by W. Bao, H. Li, S. Wang.

[C9] y (April 2015) Workshop on Numerical Approximation of PDEs. Honoringthe 60th birthday of Frédéric Hecht, Malaga, organised by M. J. Castro Díaz, T.Chacón Rebollo, C. Parés Madroñal, O. Pironneau.

[C10] y (February 2015) Workshop on High Performance and Parallel ComputingMethods and Algorithms for Materials Defects, National University of Singapore,organized by W. Bao, W. Ren, U. Rüde.

[C11] y (September 2014) Symposium on Vortices and Wall Turbulence: Paolo Or-landi, a vortical and turbulent life, Rome, organized by R. Verzicco, S. Leonardiand S. Pirozzoli.

[C12] y (July 2014) 10th AIMS (American Institute of Mathematical Sciences) Con-ference, Madrid, Spain. Session: Advances in the numerical solution of nonlinearevolution equations, organized by M. Thalhammer.

[C13] y (November 2013) Symposium on Frontiers of Fluid Dynamics-A Legacy: 70thBirthday of Professor Fazle Hussain, Puerto-Rico, organized by R. Adrian, W.K.George, J. Kim, C. Meneveau et al.

[C14] y (July 2013) Workshop on Quantized vortices in superfluidity and supercon-ductivity and related problems, Wolfgang Pauli Institute (WPI), Vienna, organizedby C. Bardos, W. Bao, Q. Du, N. J. Mauser.

[C15] y (February 2013) SIAM Conference on Computational Science and Engineer-ing, Boston. Session: Numerical Methods and Analysis for Nonlinear DispersiveEquations and Applications, organized by X. Antoine, C. Besse, W. Bao.

[C16] y (January 2013) Conference Non-linear optical and atomic systems: determin-istic and stochastic aspects, European Center for Mathematics, Physics and theirInteractions, Lille, organized by C. Besse.

[C17] y (November 2012) European Workshop on Superfluid turbulence from the per-spective of numerics: modeling, methods and challenges, ENS Lyon, organized byE. Lévêque, P.E. Roche, L. Chevillard, B. Castaing.

7

Page 9: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

[C18] y (July 2012) 9th AIMS (American Institute of Mathematical Sciences) Con-ference, Orlando, Florida, USA. Session: Advances in the numerical solution ofnonlinear evolution equations, organized by M. Thalhammer.

[C19] y (June 2012) Conference on Variational and Topological Methods: Theory, Ap-plications, Numerical Simulations, Open Problems, Northern Arizona University,organized by J.W. Neuberger.

[C20] y (March 2012) School New challenges in turbulence research, Session: Super-fluid turbulence, Les Houches, organized by A. Naso, M. Bourgoin, A. Pumir, B.Rousset.

[C21] y (July 2011) Symposium Theory, Numerical Analysis, and Applications ofSobolev Gradients, organized by J. W. Neuberger, ICIAM (International Con-ference for Industrial Applied Mathematics), Vancouver.

[C22] y (July 2011) Symposium Modeling, analysis and simulation for degeneratequantum gases, organized by W. Bao, ICIAM (International Conference for In-dustrial Applied Mathematics), Vancouver.

[C23] y (July 2011) Summer school Morphology and dynamics of anisotropic flows,Cargèse, organized by L. Danaila, J. B. Flor, F. Godeferd. Session: Superfluidturbulence.

[C24] y (December 2010) JSPS-EDIGE Conference on Dynamics of model equationsin Bose-Einstein Condensation, Kyoto, organized by Y. Tsutsumi, A. de Bouard,R. Fukuizumi.

[C25] y (March 2010) Seminar of Applied Mathematics, Collège de France, Chairof P.-L. Lions: Méthodes de gradients de Sobolev pour la simulation numériquede condensats de Bose-Einstein en rotation.

[C26] (May 2009) First International Symposium on Green Energies, Cluj, Roumanie.Towards a better physical understanding of the gasoline fuel injection.

[C27] y (September 2008) Conference on Gross-Pitaevskii equation and related topics,Porquerolles, organized by E. Sandier et R. Danchin. Numerical simulation of theimaginary-time evolution of the 3D Gross-Pitaevski equation.

[C28] (May 2003) Turbulence conference in honor of Prof. R. A. Antonia, Newcastle,Australia. Vortex dipoles.

8

Page 10: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

Other conferences (peer-reviewed proceedings)

[C29] I. Danaila, G. Sadaka, A. Rakotondrandisa, C. Lothode, F. Luddens, P.-H.Tournier, Parallel 2D and 3D numerical simulations of melting with convection,European Turbulence Conference ETC-17, September 3-6, 2019, Torino, Italy.

[C30] I. Danaila, L. Danaila, M. Kobayashi, C. Lothode, F. Luddens, Ph. Parnaudeau,Spectral Simulations of Quantum Turbulence using the Gross-Pitaevskii Equation,European Turbulence Conference ETC-17, September 3-6, 2019, Torino, Italy.

[C31] I. Danaila, L. Danaila, M. Kobayashi, C. Lothode, F. Luddens, Ph. Parnaudeau,Simulations of dense vortex lattices and Quantum Turbulence using the Gross-Pitaevskii equation, Workshop on Quantum Systems in Cold-matter Physicsand Chemistry, April 22-26, 2019, Fields Institute, Toronto, Canada.

[C32] I. Danaila, F. Hecht, B. Protas, G. Vergez, Finite-element tools for the simulationof Bose-Einstein condensates, The 12th American Institute of MathematicalSciences Conference, July 5-9, 2018, Taipei, Taiwan.

[C33] I. Danaila, Energies renouvelables et gestion énergétique durable : problèmesmathématiques et numériques, 44ème Congrès d’Analyse Numérique CANUM-2018, Cap d’Agde, 28 mai - 1 juin 2018.

[C34] A. Rakotondrandisa, I. Danaila, Modélisation et simulation de matériaux àchangement de phase, 44ème Congrès d’Analyse Numérique CANUM-2018,Cap d’Agde, 28 mai - 1 juin 2018.

[C35] A. Rakotondrandisa, I. Danaila, L. Danaila, Etude numérique d’un cycle completfusion-solidification pour un matériau à changement de phase, 25ème CongrèsFrançais de Thermique, 29 mai - 3 juin 2018, Pau.

[C36] A. Rakotondrandisa, I. Danaila Simulation de matériaux à changement de phasepar une méthode d’éléments finis adaptatifs, 26ème Congrès Français de Ther-mique, 30 mai- 2 juin 2017, Marseille.

[C37] A. Rakotondrandisa, I. Danaila Simulation de matériaux à changement de phasepar une méthode d’éléments finis adaptatifs, 25ème Congrès Français de Ther-mique, 30 mai- 2 juin 2017, Marseille.

[C38] A. Papoutsakis, I. Danaila, F. Kaplanski, F. Luddens, S. S Sazhin Numericalmodelling of confined swirling vortex rings, 28th International Symposium onTransport Phenomena, 22-24 September 2017, Peradeniya, Sri Lanka.

[C39] A. Papoutsakis, S. S Sazhin, S. Begg, I. Danaila, F. Luddens A new approach tomodelling the two way coupling for momentum transfer in a hollow-cone spray,ILASS Europe 2017, 28th Annual Conference on Liquid Atomization and SpraySystems, 6-8 Sep. 2017, València, Spain.

9

Page 11: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

[C40] B. Protas, I. Danaila Reconstruction of Inviscid Vortices as an Inverse Problem,XXIV ICTAM, 21-26 August 2016, Montreal, Canada.

[C41] F. Kaplanski, I. Danaila, S. Begg, O. Rybdylova, S. S Sazhin, M. Heikal ConfinedVortex Rings in Gasoline Fuel Sprays: Modelling and Observations, ILASS Eu-rope 2016, 27th Annual Conference on Liquid Atomization and Spray Systems,4-7 Sep. 2016, Brighton, UK.

[C42] O. Rybdylova, I. Danaila, A. Osiptsov, S. Begg, S. S Sazhin, Modelling of a two-phase vortex ring flow based on the fully Lagrangian Approach, ILASS Europe2016, 27th Annual Conference on Liquid Atomization and Spray Systems, 4-7Sep. 2016, Brighton, UK.

[C43] I. Danaila, P. Parnaudeau, High performance computing of the 3D structure ofBose Einstein condensates, Workshop on Computation Of Quantum SystemsIn Cold-matter Physics And Chemistry, February 22–26, 2016, The Fields In-stitute, Toronto.

[C44] G. Vergez, I. Danaila, S. Auliac, F. Hecht, A finite-element toolbox for the sta-tionary Gross-Pitaevskii equation with rotation, Workshop on Computation OfQuantum Systems In Cold-matter Physics And Chemistry, February 22–26,2016, The Fields Institute, Toronto.

[C45] I. Danaila, P. Parnaudeau, A. Suzuki Three-dimensional structure of quantized vor-tices in rotating Bose-Einstein condensates, European Turbulence Conference(ETC 15), Delft, The Netherlands, 2015.

[C46] I. Danaila, B. Protas On the optimal vorticity function of vortex rings, EuropeanTurbulence Conference (ETC 15), Delft, The Netherlands, 2015.

[C47] I. Danaila, Optimal vorticity function of vortex rings, Workshop on Jets and Vor-tex Rings, Brighton, UK, 2015.

[C48] I. Danaila, R. Moglan, F. Hecht, Newton and Sobolev gradient methods for Navier-Stokes-Boussinesq and Gross-Pitaevskii equations, 12ème Colloque franco-roumain de mathématiques appliquées, Lyon, August 28, 2014.

[C49] I. Danaila, R. Moglan, F. Hecht, S. Le Masson Accurate interface tracking forphase-change problems with natural convection, European Fluid MechanicsConference (EFMC10), Copenhagen, 2014.

[C50] B. Protas, I. Danaila Inverse problem of vortex ring reconstruction, 67th AnnualMeeting of the APS Division of Fluid Dynamics, in Bulletin of the AmericanPhysical Society, Vol 59, Nb 20, 2014.

[C51] I. Danaila, Condensation de Bose-Einstein: problèmes mathématiques etnumériques, Congrès national d’analyse numérique, Carry-le-Rouet, 2014.

[C52] R. Moglan, I. Danaila, S. Le Masson Méthodes d’ordre élevé pour la simulationnumérique des phénomènes thermo-aérauliques dans les armoires de télécommu-nications, Rencontres Mathématiques de Rouen, 2013.

10

Page 12: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

[C53] R. Moglan, I. Danaila, S. Le Masson High order numerical simulations of con-vection in domains with heated obstacles: application to heat management intelecom outdoor cabinets, European Fluid Mechanics Conference (EFMC9),Rome, 2012.

[C54] Y. Zhang, I. Danaila and F. Kaplanski Modelling and reconstruction of impulsivelystarted flows using vortex ring models, European Fluid Mechanics Conference(EFMC9), Rome, 2012.

[C55] R. Moglan, I. Danaila, S. Le Masson Simulation numérique des phénomènesthermo-aérauliques dans les armoires de télécommunications, JournéesAUM/AFM, Rouen, 2012.

[C56] Y. Zhang, I. Danaila, Vortex models for modeling the fuel injection in automotiveengines, 3rd Workshop on Freefem++, LJLL, Paris, 2011.

[C57] I. Danaila, FreeFem++ and quantized vortices in fast-rotating Bose-Einstein con-densates, 2nd Workshop on Freefem++, LJLL, Paris, 2010.

[C58] I. Danaila, G.-M. Cojocaru, S. Danaila, Direct numerical simulations of impul-sively started jets from conical nozzles, Fifth European Conference on Compu-tational Fluid Dynamics, Lisbone, 2010.

[C59] I. Danaila, Tourbillons en fluides et superfluides, Conference La Diaspora Scien-tifique Roumaine dans la Recherche, Bucharest, 2008.

[C60] S. Benteboula, I. Danaila, Variable density vortex rings, European TurbulenceConference (ETC 11), Porto, 2007.

[C61] I. Danaila, Vortices in fluids and superfluids, Second Workshop on Vortex Dom-inated Flows, Bucharest, 2006.

[C62] S. Benteboula, I. Danaila, Simulation numérique de l’injection gaz-gaz à massevolumique variable, Congrès Français de Thermique, Ile de Ré, 2006.

[C63] I. Danaila, Vortex configurations in rotating Bose-Einstein condensates, Eu-romech Colloquium on Vortices and field interactions, Paris, 2004.

[C64] O. El Ganaoui, C. Habchi, G. Bruneaux, I. Danaila, Numerical model for thesingle-hole Diesel-like injection, ICFD Conference on Numerical Methods forFluid Dynamics, Oxford, 2004.

[C65] I. Danaila, Numerical simulation of a rotating Bose Einstein condensate, Congrèsnational d’analyse numérique, Montpellier, 2003.

[C66] I. Danaila, T. Baritaud, Direct numerical simulation of compressed tumbling vor-tices, Second International Symposium on Turbulence and Shear Flow Phe-nomena (TSFP-2), Stockholm, 2001.

11

Page 13: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

[C67] I. Danaila, C. Angelberger, Direct numerical simulation of compressed tumblingvortices, 13ème Séminaire de Mécanique des Fluides Numérique, CEA, 2001.

[C68] I. Danaila, Vortex dynamics investigation by direct numerical simulations: bi-furcating jets and tumbling flows, 5th French-Russian-Finnish Workshop onMathematical Modeling and Experimental/Computational Fluid Dynamics,Jyväskylä, Finland, 2000.

[C69] I. Danaila, T. Baritaud, Direct numerical simulation of IC engine flows using aboundary body-force method, 32e Congrès national d’analyse numérique, Portd’Albret, 2000.

Invited seminars (> 2000)

[S1] University of Brighton, Centre for Automotive Engineering, UK : Optimizationproblems for vortex rings, 24/08/2018.

[S2] IRMAR, Université de Rennes, Séminaire d’Analyse Numérique : Sobolevgradient and conjugate-gradient methods for solving optimization problems forfluid or superfluid systems, 17/05/2018.

[S3] Peking University, Beijing, Department of mathematics: Sobolev gradient andconjugate-gradient methods for solving optimization problems for fluid or super-fluid systems, 09/06/2017.

[S4] University of Kyoto, 11/04/2017. Department of mathematics: Computation ofstationary states of rotating Bose-Einstein condensates via Riemannian Optimiza-tion, Department of physics: Finite-element methods and tools for the simulationof fluid or superfluid flows.

[S5] University of Osaka, Department of physics: Finite-element tools for the simu-lation of Bose-Einstein condensates, 19/04/2017.

[S6] University of Brighton, Centre for Automotive Engineering, UK: On the for-mation number of confined vortex rings, 21/08/2017.

[S7] University of Brighton, Centre for Automotive Engineering, UK: On the opti-mal vorticity function of vortex rings, 24/08/2016.

[S8] Université de Rouen Normandie, LMRS: Rencontres mathématiques deRouen La simulation numérique comme outil d’exploration scientifique: quelquesapplications en mécanique des fluides et physiquequantique, 17/06/2016.

[S9] INSA de Rouen: Rencontres SMAI Mathématiques-Industrie Modèles math-ématiques et numériques pour les matériaux à changement de phase, 17/06/2016.

12

Page 14: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

[S10] McMaster University, Department of Mathematics and Statistics, Hamilton,Canada: Vortices in classical fluids and superfluid Bose-Einstein condensates: anumerical investigation, 02/03/2016.

[S11] The Fields Institute, Seminar of the Thematic Program, Toronto, Canada:Vortices in superfluid Bose-Einstein condensates: numerical and mathematicalcontributions, 10/02/2016.

[S12] University of Brighton, Centre for Automotive Engineering, UK: Direct Nu-merical Simulation of axisymmetric flows, 14/07/2015.

[S13] Université Pierre et Marie Curie: Bose-Einstein condensation and cold matter:the new technological revolution, FreeFem++ Days, December, 2014.

[S14] University of Newcastle, Department of Mechanical Engineering, Australia:Vortices in superfluid Bose-Einstein condensates: numerical and mathematicalcontributions, Seminar on Turbulence Research, 23/01/2014.

[S15] University of Newcastle, Department of Mechanical Engineering, Australia:Vortices in superfluid Bose-Einstein condensates: numerical and mathematicalcontributions, Seminar on Turbulence Research, 23/01/2014.

[S16] University of Brighton, Centre for Automotive Engineering, UK: Reconstruc-tion of the flow field generated by vortex rings, Workshop on Vortex rings: theoryand applications, 20/11/2013.

[S17] Laboratoire de Mathématiques Nicolas Oresme, Caen: Méthodes de gradientde Sobolev pour la simulation numérique de condensats de Bose-Einstein, Sémi-naire de Modélisation Mathématique, Mécanique et Numérique, 28/01/2013.

[S18] Laboratoire de Mathématiques de Reims, : Méthodes numériques pour le cal-cul de solutions stationnaires de l’équation de Gross-Pitaevskii avec rotation,Journées ANR ArDyPiTeQ, 14/12/2012.

[S19] CANUM 2012: Méthodes d’ordre élevé pour la simulation d’écoulements fluideset super-fluides, Minisymposium "Méthodes d’ordre élevé pour Navier-Stokes",24/05/2012.

[S20] Fédération Normandie Mathématiques, : Simulation numérique de condensatsde Bose-Einstein, Colloquium, 02/02/2012.

[S21] Institut Élie Cartan de Nancy: Méthodes numériques pour la simulation de con-densats de Bose-Einstein, Séminaire EDP et Applications, 18/10/2011.

[S22] Université Joseph Fourier, Laboratoire Jean Kuntzmann, Grenoble: Tour-billons quantiques dans les condensats de Bose-Einstein en rotation , SéminaireMODANT (MODélisation, Analyse Numérique et Théorique), 13/04/2011.

[S23] Université Aix-Marseille III, LATP: Simulation numérique de condensats deBose-Einstein, Séminaire d’Analyse Appliquée, 12/01/2010.

[S24] Université de Rouen, CORIA: Modélisation et simulation numérique del’injection fluide monophasique: analyse des structures tourbillonnaires, Sémi-naire du CORIA, 19/06/2009.

13

Page 15: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

[S25] Université Blaise Pascal, Clermont-Ferrand: Tourbillons en fluides et super-fluides: qu’apporte la simulation numérique ?, Séminaire de Mathématiques Ap-pliquées, 15/05/2008.

[S26] Laboratoire Jacques-Louis Lions, Paris: Vortices in Bose-Einstein condensates,Présentation pour l’évaluation AERES du LJLL, 7/01/2008.

[S27] Siemens VDO Automotive, Rouen: Variable density vortex ring simulations,IDE2 Project Meeting, 30/08/2007.

[S28] Laboratoire Jacques-Louis Lions, Paris: Tourbillons en fluides et superfluides:qu’apporte la simulation numérique ?, Journées du laboratoire, 11/10/2007.

[S29] University of Castilla-La Mancha: Vortices in Bose Einstein condensates, Ap-plied Mathematics Seminar, 20/12/2006.

[S30] The Institute of Photonic Sciences, Barcelone: Numerical simulation of BoseEinstein condensates, Nonlinear Optics Seminar, 16/12/2006.

[S31] McGill University, Montreal, Canada: Variable density vortex rings, Dep. ofMechanical Engineering, 30/06/2006.

[S32] Université de Picardie-Jules Verne, Amiens: Tourbillons en fluides et superflu-ides - simulations numériques, Séminaire d’analyse appliquée A3, 6/03/2005.

[S33] Penn State University, USA: 3D vortex configurations in Bose Einstein conden-sates, Computational and Applied Mathematics Colloquium Series, 16/01/2004.

[S34] Institut Henri Poincaré: 3D structure of vortices in a Bose-Einstein conden-sate trapped in harmonic and quartic potentials, Journée entre mathématicienset physiciens autour des Condensats de Bose-Einstein, 14/10/2003.

[S35] Université Paris-Sud: Condensats de Bose-Einstein et tourbillons quantiques,Séminaire d’Equations aux Dérivées Partielles, 6/11/2003 .

[S36] Laboratoire Jacques-Louis Lions: Structure 3D des tourbillons quantiquesprésents dans un condensat de Bose-Einstein, Séminaire du laboratoire,28/03/2003.

[S37] University of Newcastle, Australia: Jets and vortices, Department of MechanicalEngineering, 26/07/2001.

[S38] Delft University of Technology, Pays Bas: Direct numerical simulation of com-pressed tumbling vortices, Department of Fluid Mechanics , 28/09/2000.

[S39] Université Paris 6: Approche numérique des écoulements industriels, Journées”Science en Fête”, 28/03/2000.

[S40] Institut Français du Pétrole: Simulation numérique de l’écoulement de rouleauavec une méthode de body-force, 20/01/2000.

14

Page 16: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

Scientific illustrations

[V1] One of my films on the vortex pairing in a round jet was selected for the last editionof the CDrom Multimedia Fluid Mechanics, Cambridge University Press, 2008.

[V2] Some of my images of quantized vortices in Bose-Einstein condensates are usedas illustrations in the book by A. Aftalion, Vortices in Bose-Einstein Condensates,Birkhäuser, 2006.

[V3] One of my images of a giant vortex in rotating Bose-Einstein condensates is on thecover of the special issue Bose Einstein condensates: recent advances in collectiveeffects, CRAS de Physique, 2004.

[V4] One of my images on bifurcating jets is used as illustration in the book by P. Durbinand B. Pettersson Reif, Statistical Theory and Modeling of Turbulent Flows, JohnWiley & Sons, 2000.

Research visits abroad (> 2000)• 2019 (4 weeks) – Institute of Mathematics of Singapore. Collaboration with W. Bao.

• 2019 (3 weeks) – Fields Institute, Toronto, Canada. Organizer of workshop.

• 2018 (2 weeks) –University of Brighton, Sir Ricardo Laboratories, UK. Collaborationwith: S. Sazhin, F. Kaplanski.

• 2017 (4 weeks) – University of Kyoto. Collaboration with: R. Fukuizumi, M. Kobayashi.

• 2017 (1 week) – Beijing Computational Science Research Center, Beijing, China. Col-laboration with: W. Bao, Y. Cai.

• 2017 (2 weeks) – University of Brighton, Sir Ricardo Laboratories, UK. Collaborationwith: S. Sazhin, F. Kaplanski.

• 2016 (4 moths) – The Fields Institute for Research in Mathematical Sciences, Toronto,Canada. Lead organizer of the thematic program on Multiscale Scientific Computing:From Quantum Physics and Chemistry to Material Science and Fluid Mechanics, January1 to April 30, 2016.

• 2016 (2 weeks) – Beijing Computational Science Research Center, Beijing, China. Col-laboration with: W. Bao, Y. Cai.

• 2016 (1 week) – University of Brighton, Sir Ricardo Laboratories, UK. Collaborationwith: S. Sazhin, F. Kaplanski.

• 2015 (1 week) – University of Brighton, Sir Ricardo Laboratories, UK. Collaborationwith: S. Sazhin, F. Kaplanski. Modelling of confined vortex rings.

15

Page 17: Ionut Danailaionut.danaila.perso.math.cnrs.fr/...publications.pdf · [A10] y P. Kazemi, I. Danaila, Sobolev gradients and image interpolation, SIAM Journal on Imaging Sciences, 5(2),

• 2015 (1 week) – National University of Singapore. Collaboration with: W. Bao. Bench-marks for solving the Gross-Pitaevskii equation.

• 2014 (4 weeks) – University of Newcastle, Australia. Collaboration with: Collaborationwith: R. A. Antonia, L. Djenidi. Vortex rings and turbulence.

• 2010 (1 week) – Tohoku University, Sendai, Division of Mathematics, Japan. Collabo-ration with: R. Fuikuzimi. Bose-Einstein condensates: mathematics and simulations.

• 2006 (1 week) – University of Castilla–La Mancha, Departement of Mathematics,Spain. Collaboration with: Víctor M. Pérez-García. Bose-Einstein condensates in op-tical traps.

• 2006 (1 week) – The Institute of Photonic Sciences, Barcelona, Spain. Collaborationwith: L. C. Crasovan. Vortices in Bose-Einstein condensates.

• 2006 (2 weeks) – McGill University, Dept. of Mechanical Engineering, Montreal,Canada. Collaboration with: L. Mydlarski. Physics of vortex rings.

• 2006 (1 week) – Delft University of Technology, Dept. of Mechanics, The Netherlands.Collaboration with: B. J. Boersma. Low-Mach numerical simulations.

• janvier 2004 (1 week) – Penn State University, Dept. of Mathematics. Collaborationwith: Q. Du. Numerical simulation of Bose-Einstein condensates.

• juillet 2003 (3 weeks) – University of Newcastle, Australia. Collaboration with: R. A.Antonia, L. Djenidi. LES simulation of flows on rough walls.

• septembre 2000 (3 weeks) – Delft University of Technology, The Netherlands. Collab-oration with: B. J. Boersma. Bifurcating jets.

16