ionosphere - kth · time. room: subject. litterature: l1. 29/8. 13-15. e52. course description,...

57
Last lecture (5) • Ionosphere - index of refraction - reflection of radio waves - particle drift motion in magnetized plasma Today’s lecture (6) • Ionosphere -electrical conductivity in ionosphere Magnetosphere, introduction Magnetospheric size (standoff distance) Particle motion in the magnetosphere

Upload: others

Post on 25-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Last lecture (5) • Ionosphere

    - index of refraction - reflection of radio waves

    - particle drift motion in magnetized plasma

    Today’s lecture (6) • Ionosphere

    -electrical conductivity in ionosphere

    • Magnetosphere, introduction

    • Magnetospheric size (standoff distance)

    • Particle motion in the magnetosphere

  • Today

    EF2240 Space Physics 2016

    Activity Date Time Room Subject Litterature

    L1 29/8 13-15 E52 Course description, Introduction, The Sun 1, Plasma physics 1

    CGF Ch 1, 5, (p 110-113)

    L2 1/9 15-17 L52 The Sun 2, Plasma physics 2 CGF Ch 5 (p 114-121), 6.3

    L3 5/9 13-15 E51 Solar wind, The ionosphere and atmosphere 1, Plasma physics 3

    CGF Ch 6.1, 2.1-2.6, 3.1-3.2, 3.5, LL Ch III, Extra material

    T1 8/9 15-17 D41 Mini-group work 1 L4 12/9 13-15 E35 The ionosphere 2, Plasma physics 4 CGF Ch 3.4, 3.7, 3.8 L5 14/9 10-12 V32 The Earth’s magnetosphere 1, Plasma

    physics 5 CGF 4.1-4.3, LL Ch I, II, IV.A

    T2 15/9 15-17 E51 Mini-group work 2 L6 19/9 13-15 M33 The Earth’s magnetosphere 2, Other

    magnetospheres CGF Ch 4.6-4.9, LL Ch V.

    T3 22/9 15-17 E51 Mini-group work 3 L7 26/9 13-15 E31 Aurora, Measurement methods in space

    plasmas and data analysis 1 CGF Ch 4.5, 10, LL Ch VI, Extra material

    L8 28/9 10-12 L52 Space weather and geomagnetic storms CGF Ch 4.4, LL Ch IV.B-C, VII.A-C

    T4 29/9 15-17 M31 Mini-group work 4 L9 3/10 13-15 E52 Interstellar and intergalactic plasma,

    Cosmic radiation, CGF Ch 7-9

    T5 6/10 15-17 E31 Mini-group work 5 L10 10/10 13-15 E52 Swedish and international space physics

    research.

    T6 13/10 15-17 E31 Round-up, old exams. Written examination

    26/10 8-13 F2

  • EF22445 Space Physics II 7.5 ECTS credits, P2

    • shocks and boundaries in space

    • solar wind interaction with magnetized and unmagnetized bodies

    • reconnection

    • sources of magnetospheric plasma

    • magnetospheric and ionospheric convection

    • auroral physics

    • storms and substorms

    • global oscillations of the magnetosphere

  • Courses at the Alfvén Laboratory

    EF2260 SPACE ENVIRONMENT AND SPACECRAFT ENGINEERING , 6 ECTS credits, period 2

    • environments spacecraft may encounter in various orbits around the Earth, and the constraints this places on spacecraft design

    • basic operation principles underlying the thermal control system and the power systems in spacecraft

    • measurements principles in space

    Projects: • Design power supply for

    spacecraft

    • Study of radiation effects on electronics

    The Astrid-2 satellite Radiation environment in near-

    earth space

  • Mini-groupwork 2

    arctan sunsw

    ru

    ωψ =tan

    sunsw

    ru ωψ

    =

    a)

    ωsun = 2π/T = 2.9·10-6 s-1 (T = 25 days at equator) r = 1 A.U. tan ψ = |By/Bx| ≈ 3.6/2.6 (from figure) (ψ = 41°) With these figures I get usw = 313 km/s

    By

    -Bx

    EF2240 Space Physics 2016

    http://www.google.co.uk/imgres?imgurl=http://humbabe.arc.nasa.gov/MarsDustWorkshop/NASA_Logo.gif&imgrefurl=http://humbabe.arc.nasa.gov/MarsDustWorkshop/DustHome.html&h=857&w=1005&sz=44&tbnid=m0YhM3vHjtBOYM:&tbnh=127&tbnw=149&prev=/images?q=nasa+logo&hl=en&usg=__0kPVdOvODWC3RSZO6MPmj4_eV48=&ei=jkWpSuv_Cs7S-QavzsjXBg&sa=X&oi=image_result&resnum=1&ct=image

  • Mini-groupwork 2

    l = vt

    b)

    EF2240 Space Physics 2016

    The magnetic Reynolds number is calculated by using typical plasma flow velocities vc and typical length scales of magnetic field variations lc Use solar wind velocity obtained in a) for typical flow velocity. To obtain lc, multiply the time t it takes the magnetic field structure (indicated in the figure), to pass over the satellite and use lc, = vt. I get lc = 2.8·108 m. Using a temperature of 5·104 K, we can evaluate the conductivity, remembering that the temperature should be given in eV. We get the conversion from

    BW k T= which gives the result that 1 eV corresponds to a temperature of 7729 K. We then get T = 6.5 eV, and σ = 3.1·104 S/m Putting in the numbers I get Rm = µ0 σ vc lc ≈ 9.8·1014 >> 1 So the solar wind magnetic field is frozen into the plasma to a very good approximation.

    http://www.google.co.uk/imgres?imgurl=http://humbabe.arc.nasa.gov/MarsDustWorkshop/NASA_Logo.gif&imgrefurl=http://humbabe.arc.nasa.gov/MarsDustWorkshop/DustHome.html&h=857&w=1005&sz=44&tbnid=m0YhM3vHjtBOYM:&tbnh=127&tbnw=149&prev=/images?q=nasa+logo&hl=en&usg=__0kPVdOvODWC3RSZO6MPmj4_eV48=&ei=jkWpSuv_Cs7S-QavzsjXBg&sa=X&oi=image_result&resnum=1&ct=image

    The magnetic Reynolds number is calculated by using typical plasma flow velocities vc and typical length scales of magnetic field variations lc

    Use solar wind velocity obtained in a) for typical flow velocity. To obtain lc, multiply the time t it takes the magnetic field structure (indicated in the figure), to pass over the satellite and use lc, = vt. I get lc = 2.8·108 m.

    Using a temperature of 5·104 K, we can evaluate the conductivity, remembering that the temperature should be given in eV. We get the conversion from

    B

    WkT

    =

    which gives the result that 1 eV corresponds to a temperature of 7729 K. We then get T = 6.5 eV, and

    = 3.1·104 S/m

    Putting in the numbers I get

    Rm = 0 vc lc ≈ 9.8·1014 >> 1

    So the solar wind magnetic field is frozen into the plasma to a very good approximation.

    _1535524061.unknown

  • Frozen in magnetic flux PROOF II

    ( ) 20

    1t µ σ

    ∂= ∇× × + ∇

    ∂B v B B

    A B Order of magnitude estimate:

    ( )0

    22

    0 0

    1 m

    v BA L vL RBB

    L

    µ σ

    µ σ µ σ

    ∆∇× ×

    = ≈ = ≡∆

    v B

    B

    Magnetic Reynolds number Rm:

    Rm >> 1 ⇒ ( )t∂

    = ∇× ×∂B v B

    2

    0

    1t µ σ

    ∂= ∇

    ∂B BRm

  • Typical length scale L

    EF2240 Space Physics 2015

    B

    L dB Bdx L

    x

    https://www.google.se/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCNv_t6qzxMcCFUGGLAods8cDGw&url=https://commons.wikimedia.org/wiki/File:Simple_sine_wave.svg&ei=2nXcVduqIcGMsgGzj4_YAQ&psig=AFQjCNF-2gocZWIngNnu1M53FHHK37RC4Q&ust=1440597849251002

  • Energy - temperature

    3223

    B

    B

    E k T

    ETk

    = ⇒

    =

    1 eV = 1.6·10-19 J ⇒

    19

    23

    2 2 1.6 10 J 7729KJ3 3 1.38 10K

    B

    ETk

    ⋅ ⋅= = =

    ⋅ ⋅

    Average energy of molecule/atom:

    EF2240 Space Physics 2016

  • But beware! In plasma physics, usually:

    32 B

    B

    E k T

    ETk

    = ⇒

    =

    1 eV = 1.6·10-19 J ⇒

    19

    23

    1.6 10 J 11594KJ1.38 10K

    BE k T−

    ⋅= = =

    EF2240 Space Physics 2016

  • Does the plasma follow the magnetic field (a) or the other way around (b)?

    Depends on relative energy density (pressure)

    pl Bp nk T=2

    02B

    Bpµ

    =

    pl

    B

    pp

    β =

    1β >>1β

  • Mini-groupwork 2

    c)

    e pn mρ = = 6.1·106·1.67·10-27 = 1.02·10-20

    Then the kinetic energy density is (v = 313 km/s): ρv2/2 = 5.0·10-10 Jm-3 The magnetic energy density is (using values of figure)

    2

    02Bµ

    = ( )22 2 2

    02x y zB B B

    µ

    + +=(2.62 + 3.62 + 1.72)·(10-9)2 /2µ0 = 9·10-12 Jm-3

    The ratio between the kinetic and magnetic energy densities is approximately 50, thus the plasma motion determines the magnetic field configuration, and not the other way around.

    EF2240 Space Physics 2016

    http://www.google.co.uk/imgres?imgurl=http://humbabe.arc.nasa.gov/MarsDustWorkshop/NASA_Logo.gif&imgrefurl=http://humbabe.arc.nasa.gov/MarsDustWorkshop/DustHome.html&h=857&w=1005&sz=44&tbnid=m0YhM3vHjtBOYM:&tbnh=127&tbnw=149&prev=/images?q=nasa+logo&hl=en&usg=__0kPVdOvODWC3RSZO6MPmj4_eV48=&ei=jkWpSuv_Cs7S-QavzsjXBg&sa=X&oi=image_result&resnum=1&ct=image

    ep

    nm

    r

    =

    = 6.1·106·1.67·10-27 = 1.02·10-20

    Then the kinetic energy density is (v = 313 km/s):

    v2/2 = 5.0·10-10 Jm-3

    The magnetic energy density is (using values of figure)

    2

    0

    2

    B

    m

    =

    (

    )

    2

    222

    0

    2

    xyz

    BBB

    m

    ++

    =(2.62 + 3.62 + 1.72)·(10-9)2 /20 = 9·10-12 Jm-3

    The ratio between the kinetic and magnetic energy densities is approximately 50, thus the plasma motion determines the magnetic field configuration, and not the other way around.

    _1220724889.unknown

    _1220724972.unknown

    _1220721865.unknown

  • Reflection of radio waves

    n1

    n2

    Total reflection at a sharp boundary (or

    large gradient) if

    2 1n n<

    EF2240 Space Physics 2016

  • Plasma oscillations parallel to B

    EF2240 Space Physics 2016

  • eF m a=

    F eE= −0

    E σε

    =

    een xσ =

    sin( )pex tω=

    2

    0

    epe

    e

    n em

    ωε

    2 2

    20

    e

    e

    n e x d xm dtε

    − =

    ⊗ L

    +

    + +

    + +

    + +

    +

    +

    +

    +

    + +

    +

    +

    +

    + +

    +

    + +

    - -

    -

    - -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    L

    x

    d

    EF2240 Space Physics 2016

  • Index of refraction for electromagnetic waves in a plasma

    EF2240 Space Physics 2016

    0 0 0 tµ µ ε ∂∇× = +

    ∂EB j

    t∂

    ∇× = −∂BE(1)

    (2)

    (3) e een= −j v

    (4) eem et∂

    = −∂v E

    Assume all quantities vary sinusoidally, with frequency ω, e.g.:

    ( )0

    i te ω⋅ −= k rE E

    ( )t

    ∂∇× ∇× = −∇×

    ∂BE(1)

    2

    0 2 2

    1t t c t

    µ∂ ∂ ∂∇× = +∂ ∂ ∂B j E

    (2)

    ∴ ( ) 22

    201

    tct ∂∂

    −∂∂

    −=×∇×∇EjE µ

    ( ) 22

    202 1

    tcten ee ∂

    ∂−

    ∂∂

    =∇−⋅∇∇EvEE µ

  • Index of refraction for electromagnetic waves in a plasma

    EF2240 Space Physics 2016

    Does not represent E.M. wave

    (4)

    2 22 2 2 2 20 0

    0 0

    1e ee e

    n e n ec k cm m

    µ µω ωµ ε−

    = − + = +

    ∴ 2 2 2 2pc kω ω= +

    2 2 22 2 22

    2 2 2 21p p

    ph

    c c knv

    ω ω ωω ω ω

    −= = = = −

    2 2

    2 21 1p pfn

    fωω

    = − = −

    ( ) ( ) ( )EvEEkk 2202 1 ωωµ −−−=+⋅− cienk ee

    ( )EEE 2202 1 ωωωµ −−

    −−=

    cmieenik

    ee

  • Large gradient when

    pef f≈

    h

    ne

    n2 n1

    2

    2ph

    2 1

    c 1v

    pefnf

    n n

    = = −

    ⇒<

    Higher frequencies → higher fpe (ne)

    Where does the total reflection

    take place?

    EF2240 Space Physics 2012

  • Ionosonde

    The pulse will be reflected where

    f = fpe The altitude will be determined by

    2h = ct

    Where t is the time between when the pulse is sent out and the registered again.

    EF2240 Space Physics 2012

  • Reflection of radio waves, oblique incidence

    EI2433 - 2015

    Snell’s law: βα sinsin0 nn =

    n0

    n

    α

    β

  • Refraction index

    for plasma

    2

    2ph

    c 1v

    pefnf

    = = −

    n

    f fpe

    Imaginary

    1

    Constant density

    n

    fpe f

    Imaginary

    1

    Constant frequency

    2

    0

    epe

    e

    n em

    ωε

    EI2433 - 2015

  • Reflection of radio waves, oblique incidence

    EI2433 - 2015

    Snell’s law + condition for reflection:

    α

    α

    αα

    α

    β

    βα

    cos

    cos

    1cos1sin

    sin

    1sin,1

    sinsin

    22

    22

    0

    0

    0

    p

    p

    p

    ff

    ff

    ff

    n

    nnn

    nnn

    <

    ⇒−>−

    ⇒−=>−=

    ⇒=>

    >=

    =

    n0

    n

    α

    β

  • Reflection of radio waves

    F2-layer during night:

    11 -3

    7

    5 10 m

    10 Hz = 10 MHz

    = HF/short wave

    e

    pe

    nf

    = ⋅ ⇒

    =

    Ground wave

    Sky wave

    EF2240 Space Physics 2012

  • E B

    EF2240 Space Physics 2016

  • Drift motion

    EF2240 Space Physics 2016

    ( ),0,x zE E=E

    Consider a charged particle in a magnetic field.

    Assume an electric field in the x-z plane:

    ( )dm qdt

    = × +v v B E

    xy x

    yx

    zz

    dvm qv B qEdtdv

    m qv Bdt

    dvm qEdt

    = + = − =

    Constant acceleration along z

    22

    2

    2 22

    2 2

    y yxg g x

    y x xg g y x

    dv dvd v qB vdt m dt dt

    d v dv dvqB q Bv Edt m dt dt m

    ω ω

    ω ω

    = = = −

    = − = − = − −

    y

    x B = B z

    +

  • Drift motion

    EF2240 Space Physics 2016

    22

    2

    2 22

    2 2

    y yxg g x

    y x xg g y x

    dv dvd v qB vdt m dt dt

    d v dv dvqB q Bv Edt m dt dt m

    ω ω

    ω ω

    = = = −

    = − = − = − −

    ∴ 2

    22

    2

    22

    xg x

    xy

    xg y

    d v vdt

    Ed vEB v

    dt B

    ω

    ω

    + = − +

    g x

    g y

    i tx

    i txy

    v v eEv v eB

    ω δ

    ω δ

    +⊥

    +⊥

    =

    = − +

    Average over a gyro period:

    ( ), 2 2

    yx x zdrift y

    E E BvB B B

    ×= − = − =

    E B

    In general:

    2 2 2driftq

    B qB qB× × ×

    = = =E B E B F Bv

  • Drift motion

    F = 0

    F = qE

    F = mg

    F = -µ grad B

    2drift qB×

    =F Bu

    EF2240 Space Physics 2016

  • Suppose you apply an electric field E in the direction showed in the figure, and that one electron and one ion (charge –e and e) is present. What will the resulting current be?

    Green

    F = 0

    F = qE

    F = mg

    F = -µ grad B

    2qB×

    =F Bu

    E

    Yellow ˆEeB

    = −I x

    Red 1 1ˆ ˆ2 2

    E Ee eB B

    = −I x y

    Blue 0=I

    ˆEeB

    =I y

    x

    y E e e≡ −i eI u u

    EF2240 Space Physics 2016

  • Blue

    e e≡ −i eI u u

    2 2 2ˆ ˆe EB E

    qB eB B B× ×

    = = = − = −iF B E Bu x x

    2 2 2ˆ ˆe EB E

    qB eB B B× − ×

    = = = − = −−e

    F B E Bu x x

    ( ) 0e e e≡ − = − =i e i eI u u u u

    EF2240 Space Physics 2016

  • So, if there is no current when you apply an electric field, is the conductivity of the ionospheric plasma zero ?

    EF2240 Space Physics 2016

  • What is the electron density at 100 km?

    What is the neutral density at 100 km?

    EF2240 Space Physics 2016

  • Gyro motion

    EF2240 Space Physics 2016

  • ExB-drift

    With collisions

    i+

    e-

    E B

    e-

    i+

    Without collisions

    EF2240 Space Physics 2016

  • Electric conductivity in a magnetized plasma

    • i// = parallel current • iP = Pedersen current • iH = Hall current

    EF2240 Space Physics 2016

  • Birkeland, Hall, Pedersen

    EF2240 Space Physics 2009

    Kristian Birkeland 1867-1917

    Norwegian scientist

    Edwin Hall 1855-1938

    American physicist

    Peder Oluf Pedersen 1874-1941

    Danish engineer and physicist

  • S

    I d= ⋅∫ j S

    i

    Current density

    The current density j is a vector field with dimension [i] = Am-2.

    The total current I through the surface S is

    EF2240 Space Physics 2016

  • 2222 11

    11

    igii

    egeeP τω

    στω

    σσ+

    ++

    =

    2222 11 igiigi

    iege

    egeeH τω

    τωσ

    τωτω

    σσ+

    −+

    =

    // e iσ σ σ= +

    eee mne /2 τσ = iii mne /

    2 τσ =

    ////// Ei σ=

    ⊥= Ei PP σ

    ⊥= Ei HH σ

    Electric conductivity in a magnetized plasma II

    or P H Bσ σ ⊥⊥ ⊥

    ×= +

    B Ei E

    EF2240 Space Physics 2016

  • May be formulated as a tensor equation

    Eσi ⋅=

    −=

    //0000

    σσσσσ

    PH

    HP

    σ

    Electric conductivity in a magnetized plasma II

    conductivity tensor

    EF2240 Space Physics 2016

  • Collisional frequency

    EF2240 Space Physics 2016

  • Ionospheric conductivities

    EF2240 Space Physics 2016

  • Consequence: Birkeland currents

    When the conductivity out in the magnetosphere is low, it is easier for the current to close through the ionosphere via currents parallel to the geomagnetic field. Such currents are called Birkeland currents.

    Region of low conductivity

    EF2240 Space Physics 2016

  • Exemple: Electric field 700 km above the aurora.

    -1

    -1

    ˆ ˆ

    1Vm

    1 μVm

    x y

    x

    z

    E E

    EE

    = +

    =

    =

    E x y

    jP = jx = 0.01 µAm-2

    j// = jz = 40 µAm-2

    jP = jx = 10.0 µAm-2

    j// = jz = 4.0 µAm-2

    B x

    z

    Nightside, solar maximum.

    Yellow

    Red

    EF2240 Space Physics 2016

    jP = jx = 1.0 µAm-2

    j// = jz = 40 mAm-2 Blue

  • -8 -1

    -1//

    8 -2 -2

    6 -2 -2// //

    1 10 Sm

    40Sm

    1 10 Am 0.01μAm

    40 10 Am 40μAm

    P

    P x P x

    z z

    j j Ej j E

    σ

    σ

    σ

    σ

    ≈ ⋅

    = = = ⋅ =

    = = = ⋅ =

    Yellow

    EF2240 Space Physics 2016

  • How do we define ”the magnetosphere”?

    The region in space where the magnetic field is dominated by the geomagnetic field.

    EF2240 Space Physics 2016

  • Polar (spherical) coordinates

    EF2240 Space Physics 2016

    http://en.citizendium.org/images/e/e7/Spherical_unit_vectors.png

  • Geomagnetic field

    Approximated by a dipole close to Earth.

    3( ) cosEr pRB Br

    θ=

    3( ) sin2

    p EB RBrθ

    θ=

    3

    0

    2 E pR Baπ

    µ=

    magnetic dipole moment Magnetic field at the

    “north pole”

    ˆrB r

    ˆBθθθ

    EF2240 Space Physics 2016

    B

  • Geomagnetic field

    Alternative formulation of dipole field

    3( ) cosEr pRB Br

    θ=

    3( ) sin2

    p EB RBrθ

    θ=

    3

    0

    2 E pR Baπ

    µ=

    magnetic dipole moment

    03

    1 cos2r

    aBr

    µ θπ

    =

    03

    1 1 sin2 2

    aBrθ

    µ θπ

    = ⋅ ⋅

    EF2240 Space Physics 2016

  • Geomagnetic field

    • Angle between dipole axis and spin axis: ≈ 11°

    • The geographic north pole is a magnetic south pole, and vice versa.

    • Bequator = 31 µT, Bpole = 62 µT

    EF2240 Space Physics 2016

  • Geomagnetic field Modified by solar wind into tail-like configuration

    EF2240 Space Physics 2016

  • Stand-off distance from pressure balance

    2SWSWd vp ρ=

    Dynamic pressure: 2

    02B

    Bpµ

    =

    Magnetic pressure:

    solar wind

    - dense plasma with high conductivity

    - weak magnetic field • thin plasma • large magnetic field

    magnetosphere

    EF2240 Space Physics 2016

  • Meissner effect in super-conductors

    EF2240 Space Physics 2016

  • Dynamic (kinetic) pressure

    ρ,v A

    v dt

    ( ) ( ) 21 1d

    d mv mvF Av t vp vA dt A t A tA

    ρ ρ∆ ⋅ ∆ ⋅

    = = ≈ = =∆ ∆

    EF2240 Space Physics 2016

  • ⇒= Bd pp⇒

    = 0

    2

    302 2/1

    πµρ

    ravSWSW

    ( ) 6/1203/1

    0 24

    = SWSW v

    ar ρµπ

    µ

    2SWSWd vp ρ=

    2

    0

    12B

    p Bµ

    =

    30 1

    4 ra

    µ=

    Dynamic pressure:

    Magnetic pressure:

    Dipole field strength (in equatorial plane):

    a = 8x1022 Am2, v=500 km/s, ρSW=107x1.7x10-27 kg/m3:

    r = 7 Re (1 Re = 6378 km)

    Magnetopause ”stand-off distance”

    r Solar wind Magnetosphere

    EF2240 Space Physics 2016

  • Standoff distance

    Green

    Yellow

    Red

    Blue r = 1.8 Re

    ( ) 6/1203/1

    0 24

    = SWSW v

    ar ρµπ

    µ

    v=500 km/s, ρSW=107x1.7x10-27 kg/m3: r = 7 Re

    r

    How will the standoff distance change if the magnetosphere is hit by a coronal mass ejection (CME)? (ρ = 10ρSW , v = 1000 km/s)

    r = 3.8 Re

    r = 5.8 Re

    r = 9.8 Re

    EF2240 Space Physics 2016

  • ( )( ) ( )1/3 1/31/ 6 1/ 62 2 1/ 60 0

    0 02 20 2 41 40

    4 SW SW SWSWa ar v vµ µµ ρ µ ρ

    π π

    − − − = =

    40-1/6·7 = 0.54 ·7 = 3.8

    Green r = 3.8 Re

    Standoff distance

    EF2240 Space Physics 2016

  • Particle motion in magnetic field gyro radius

    mvqB

    ρ ⊥=

    gyro frequency

    gqBm

    ω =

    magnetic moment µ = IA = q fgπ ρ2 = mv⊥2/2B

  • Adiabatic invariant

    DEFINITION:

    An adiabatic invariant is a property of a physical system which stays constant when changes are made slowly.

    By ’slowly’ in the context of charged particle motion in magnetic fields, we mean much slower than the gyroperiod.

    ’First adiabatic invariant’ of particle drift:

    2

    2mv

    Bµ ⊥=

    EF2240 Space Physics 2016

    Slide Number 1Slide Number 2EF22445 Space Physics II�7.5 ECTS credits, P2Slide Number 4Slide Number 5Slide Number 6Frozen in magnetic flux PROOF IITypical length scale LSlide Number 9Slide Number 10Slide Number 11Slide Number 12Reflection of radio wavesSlide Number 14Slide Number 15Slide Number 16Slide Number 17Where does the total reflection take place?IonosondeReflection of radio waves,�oblique incidenceRefraction index �for plasmaReflection of radio waves,�oblique incidenceReflection of radio wavesSlide Number 24Slide Number 25Slide Number 26Drift �motion Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32ExB-driftElectric conductivity in a magnetized plasmaBirkeland, Hall, Pedersen Slide Number 36Electric conductivity in a magnetized plasma IIElectric conductivity in a magnetized plasma IICollisional frequencySlide Number 40Consequence: �Birkeland currentsExemple: Electric field 700 km above the aurora. Slide Number 43Slide Number 44Slide Number 45Slide Number 46Slide Number 47Slide Number 48Geomagnetic fieldSlide Number 50Slide Number 51Dynamic (kinetic) pressureMagnetopause ”stand-off distance”Slide Number 54Slide Number 55Particle motion in magnetic fieldSlide Number 57Magnetic mirrorMagnetic mirrorMagnetic mirrorSlide Number 61Magnetic mirrorSlide Number 63Slide Number 64Particle motion in geomagnetic field Drift �motion Slide Number 67Ring current and particle motionRadiation beltsRadiation beltsCRAND (Cosmic Ray Albedo Neutron DecayRadiation beltsRadiation beltsParticle motion in geomagnetic field Structure of magnetosphereMagnetospheric structureOutflow from the ionosphereSlide Number 78Slide Number 79Frozen in magnetic field linesXReconnectionSlide Number 83Slide Number 84Slide Number 85Magnetospheric dynamicsSlide Number 87Slide Number 88Slide Number 89Slide Number 90