ion-beam techniques rbs: rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/chapter 8...

25
M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 1 1 RBS: Rutherford backscattering ERD: Elastic recoil detection PIXE: Particle induced x-ray emission PIGE: Particle induced gamma emission NRA: Nuclear reaction analysis STIM: Scanning Transm. Ion Microscopy SE: Secondary emission CH: Channeling RBS Ion beam Target nucleus PIXE STIM PIGE SE Ion-beam techniques Electrostatic Accelerators Van de Graaff accelerator Pelletron Tandem Van de Graaff TECHNIQUE ION BEAM ENERGY (MeV) PIXE H + 1 - 4 RBS 4 He + , H + 2 ERD 35 Cl+, 20 Ne+ 3 He+, 4 He+ 2 - 40 NRA H+, D+ 0.4 - 3

Upload: others

Post on 16-Jul-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 11

RBS: Rutherford backscatteringERD: Elastic recoil detectionPIXE: Particle induced x-ray emissionPIGE: Particle induced gamma emissionNRA: Nuclear

reaction

analysisSTIM: Scanning Transm. Ion Microscopy SE: Secondary emission CH: Channeling

RBS

Ion beam

Target nucleus

PIXE

STIM

PIGESE

Ion-beam

techniques

Electrostatic

Accelerators

Van de Graaff

acceleratorPelletronTandem Van de Graaff

TECHNIQUE ION BEAM ENERGY(MeV)

PIXE H+ 1 -

4

RBS 4He+, H+ ≤

2

ERD 35Cl+, 20Ne+3He+, 4He+ 2 -

40

NRA H+, D+ 0.4 -

3

Page 2: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 2

PIXE: A Novel Technique for Elemental Analysis Sven A. E. Johansson and John L. Campbell

Publisher: John Wiley & Sons, 1988

Materials Analysis using a Nuclear Microprobe M B H Breese, D N Jamieson and P J C King

Publisher: John Wiley & Sons, 1996

Handbook of Modern Ion Beam Materials Analysis Edited by Joseph R. Tesmer

and Michael Nastasi

Publisher: Materials Research Society, Pittsburgh, Pa., 1995

Handbook of X-Ray Spectrometry Edited by Rene E. Van Grieken

and Andrzej

A. Markowicz

Publisher:

Marcel Dekker, Inc., 2nd Edition, 2002

Some

literature

on ion

beam

analysis

Page 3: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 33

Faraday cup

VacuumChamber

Annular particledetector (for ERDA)

Target

Ge(Li) γ-ray detector(for PIGE)

Annular particleDetector (for RBS)

Collimators

Si

(Li) x-ray detector(for PIXE)

Ion beam

ElectrostaticAccelerator

Experimental Setup for Ion Beam Analysis

H, . . . ,U(eV

-

MeV)

Detectors: ΔESi (Li) 120 –

200 eVGe (high purity) 120 –

600 eVSi (drift chamber) 150 –

200 eVCrystal spectrometer

1 eV

Page 4: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 44

Electrostatic

Accelerator

High VoltageGenerator

TargetIon beamVacuum

Vessel

Ion source

Ground

E field

Kinetic

particle

energy: Ekin

= q U = Ze

U

Van de Graaff: U ≤

10

MVTandem: U ≤

20

MV

Tandem Pelletron:

U ≤

30

MV

Page 5: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 55

Van de Graaff

accelerator

100 µA

10

MV

ΔE/E ≥

10-3

Page 6: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 66

Tandem van de Graaff

accelerator

Electron

stripping

in carbon

foil: -e → +N

e

Page 7: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 77

Pelletron

charging

system

PelletronRubber belt is replaced by a chain of short conductive rods connected by insulating links. Can be operated at much higher velocity than a belt, so both the voltage and currents attainable are higher than a conventional Van de Graaff

machine.

Pelletron

Tandem DC voltage: ≤

30 MV

Page 8: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 88

USP 8UD Pelletron

tandem

accelerator

Beam

energies

available

at Tsukuba

12UD Pelletron

tandem

Page 9: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 9

TECHNIQUE ION BEAM ENERGY(MeV) REMARK

PIXE H+ 1 -

4Maximum sensitivity in atomic ranges 10<Z<35 and 75<Z<85

RBS 4He+, H+ ≤

2

Non-Rutherford scattering becomes significant for energy >2 MeV

ERDA35Cl+, 20Ne+3He+, 4He+ 2 -

40

Mass of incident ion must be greater than that of target nucleus. 3He+ and 4He+ are used only for the measurement of H.

NRA H+, D+ 0.4 -

3Reactions used include (p,g) (p,p'g), (p,ag), (d,p), (d,pg)

TYPICAL ION BEAMS AND INCIDENT ENERGIES USED IN VARIOUS ION BEAM TECHNIQUES

Page 10: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 1010

Proton Induced X-ray Emission = PIXE

Lund Institute of Technology -

1970

MeV proton

Energy

1s

2s

2p

3s

K

L1

L2,3

M1

Bohr:

-linehν

Z E(Kα) (keV)8 O 0.524920

Ca 3.6916840

Zr 15.775170

Yb 52.388992 U 98.439

Page 11: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 11

PIXE System (Harvard) PIXE Spectra

Page 12: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 1212

Raster generator

X-ray spectrometer

Quadrupole lens multiplet

forms image of aperture on sample

MeV

ion beam

Aperture

Sample

Scan coils

PIXE microscope

Page 13: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 1313

SP Ca

Fe WTi

Nuclear microprobe PIXE elemental maps from 400 mm x 400 mm scanover a section of a lung tissue taken from a patient suffered from

hard metal lung disease:

Page 14: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 1414

All elements with Z > 14 (Si)

(Kα= 1.73998 KeV) can be analyzed. For instance in biological samples the concentrations of about 15 elements are

normally determined

simultaneously.

The method is

fast.

A typical irradiation lasts about

10 min.

Highly sensitive:

Concentrations of elements down to

a few 100 ppb

(10-8)can be measured.

The spatial resolution of the beam is 1 mm.

The penetration depth in a solids: ~ 100 µm; allows determinations of

elemental distributions or profiles

High

accuracy: relative errors are between 1-10 %

Small-size samples

few mg

Non-destructive technique: This enables analyses of precious objects, e.g. ancient coins or paintings.

PIXE features

Page 15: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 15

Competition

to PIXE: Neutron Activation

Analysis (NAA)

109Ag+n ⇒110Ag* ⇒110Cd+ γ

(658 KeV)

Nuclear reactions3H(p,n)3He, 6Li(p,n)6Be, 7Li(p,n)7Be, 9Be(p,n)9B,

Neutron sourcesNuclear reactors

RadioisotopesSpontaneous fission Cf-252(α,n) reactionse.g. 241Am:Be

14N+n ⇒15N* ⇒15N+ γ

(10.8 MeV)

Page 16: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 16

Neutron Activation

Analysis

Sensitivity

(picograms) Elements

1 Dy, Eu

1–10 In, Lu, Mn

10–100 Au, Ho, Ir, Re, Sm, W

100–1E3 Ag, Ar, As, Br, Cl, Co, Cs, Cu, Er, Ga, Hf, I, La, Sb, Sc, Se, Ta, Tb, Th, Tm, U, V, Yb

1E3–1E4 Al, Ba, Cd, Ce, Cr, Hg, Kr, Gd, Ge, Mo, Na, Nd, Ni, Os, Pd, Rb, Rh, Ru, Sr, Te, Zn, Zr

1E4–1E5 Bi, Ca, K, Mg, P, Pt, Si, Sn, Ti, Tl, Xe, Y

1E5–1E6 F, Fe, Nb, Ne

1E7 Pb, S

Gamma spectrum

Page 17: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 17

( ) ⎥⎦

⎤⎢⎣

+=Λ=

φ22

21

21002 cos4

MMMMEEE

Coulomb

repulsion between high energy incident ions and target nuclei

RBS -

Rutherford Backscattering

Spectrometry

ERD –

Elastic

recoil

detection

M1

M2

φ

θ+= 210 EEE

p, α

E0

2 MeV

( )( ) ⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

+−+

==θθ

2

221

2221

001 /1sin/cos

MMMM

EKEE

Page 18: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 1818

RBS –

Projectile is the detected particle M1

<<M2

Depth and mass information encoded on detected particle energy

Detector

Elastic RecoilDetection

(b)

M1

M2

Detector

BackscatteringSpectrometry

(a)

M1

M2

ERDA–

The target atom is the detected particle M1

>>M2–

Depth information encoded on energy

Isotopic identity carried directly by recoil

RBS vs. ERDA

Page 19: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 1919

RBS (Rutherford Backscattering

Spectrometry)

Recoil

energy

substrate

metalimpurities

Intensity

E0

E1

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

E1/E0

E1/E

0

M2/M1

The

recoil

energy

depends

on the

target

mass

and the

path

length

Page 20: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 20

RBS spectrum

of Ta implanted

in Si

Si (A=28)

Si

230 nm Ta

590 nm Ta (A=181)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

E1/E0

E1/E

0M2/M1

Page 21: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 2121

0 10 20 300.0

0.1

0.2

0.3

M2 (target) = 2

M2 (target) = 1

E 2/E0

M1 (projectile)

ERD –

Elastic

recoil

detection

Analysis of the

distribution

of light elements

(H, He, etc) in solids

M (projectile) > M (target)

Page 22: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 22

Nuclear Resonant Reaction Analysis (NRRA)

NRRA with

the

15N(p,αγ)12C reaction

measures

the

hydrogen

concentration

Nuclear

reactions

with

sharp

resonances

are

usedto study

impurity

concentration

in solids

Example: The

reaction

1H(15N, αγ)12C

equiv.

15N(p,αγ)12C

6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 710-1

100

101

102

103

104

105

Energy (MeV)

1H(15N,αγ)12C

cros

s se

ctio

n

6.400 MeV

4.44 MeV

Page 23: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 23

Resonances

used

in NRRA

Page 24: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 24

The

Channeling

Effect

Ion beam

p or

α

Single crystalle.g. Al2

O3

detector

Tilt

angle

coun

ts

Page 25: Ion-beam techniques RBS: Rutherford backscatteringmesonpi.cat.cbpf.br/e2012/arquivos/pg07/Chapter 8 Ion Beam analys… · Materials Analysis using a Nuclear Microprobe . M B H Breese,

M. Forker, Nuclear Methods in Solid State Research, CBPF 2012 2525

ß-

Determination of the

position

of implanted

ions

Emission channeling