iofs05

Upload: janu2k31

Post on 10-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 IOFS05

    1/77

    Lecture

    By

    Dr. Sahab Prasad

    ([email protected])

    IOFS -01

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    2/77

    Alloyisdefinedasthecombination oftwo or morechemicalelements, one ofwhichMUSTbea metalandtheresultantproductshouldhave metalliccharacteristics.

    Alloyscouldbe Binary, Ternary, Quaternaryandso ondependinguponthenumber ofelementspresent.

    Alloysareclassifiedbased onthestructuretheyhavei.e. a] h omogeneousb] mixture

    Alloys

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    3/77

    Phase : Aphaseissomethingwhichisphysically distinct,chemicallyhomogeneousandtosomeextentmechanicallyseparable(onthe microstructure level)

    Possiblephasesin Solidstatea] Pure Metal b] Compound /intermediatealloyphasec] Solid Solution

    Phases inAlloy Structure

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    4/77

    Compounds:

    a] ValenceCompounds betweentwodissimilar metalsfollowingvalencerulese.g.CaSe, Mg2Sn,Cu2Se

    b] InterstitialCompounds betweentransition metals Sc, Ti, Ta, W, Fe,WandC,H,B,O,Ne.g. TiC, TaC, Fe4N, TiH, Fe3C

    c] ElectronCompounds Some ofthealloy systemsshowsimilarlatticestructureatornearcompositionshavingadefiniteelectron /atomratios e.g.

    AgCd, Ag5Cd8, AgCd3

    Phases inAlloy Structure

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    5/77

    Solid Solutions: Asolutioninsolidstate.Substitutional: Wheresoluteatomssubstitute /replacethesolventatomsinthesolvent

    lattice.Canhaveeither ofthefollowing a] Limited Solubility

    b] Unlimited Solubility (e.g. Au-Ag,Cu-Ni, Sb-Bi)

    Unlimited SolubilitysolidsolutionsfollowHume-Rothery Guide-lines /factorsviz.Crystallatticefactor,Relativesizefactor,Chemicalaffinityfactor & Relativevalencefactor

    Interstitial: Wheresoluteatoms occupyinterstitial(inbetween)sitesinthesolventlattice.Restrictedsolublities.Importantexamplesinclude Ferrite, Austenite

    Phases inAlloy Structure

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    6/77

    Disordered Solid Solution

    Substitutional Solid Solution

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    7/77

    Ordered Solid Solution

    Substitutional Solid Solution

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    8/77

    Interstitial Solid Solution

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    9/77

    CoolingCurves

    Padaqa- iva&anaivaBaaga

    `

    For the pure Metals & mostof the Compounds

    For the Solid - solutions

    Liq

    s

    Liq

    Liq+s

    s

  • 8/8/2019 IOFS05

    10/77

    Number ofPhases,

    AmountofPhases,Type ofPhases &Form ofPhases

    Sowe mustknow a] theconditionsunderwhichthesephasesexist b] theconditionsunderwhich achangewill occur

    Greatdeal ofinformationregardingphasechangesisaccumulatedandrecordedin

    graphicalformintheform ofwhatisknownasPhase /Equilibrium /ConstitutionDiagrams.

    AlloyPhase Diagrams

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    11/77

    ISOMORPHOUS SYSTEMS

    Padaqa- iva&anaivaBaaga

    `

    Have complete solubility in the liquid andsolid states.

    Range of freezing temperature

    Depression / Elevation of freezing point of

    pure component

  • 8/8/2019 IOFS05

    12/77

    Construction ofPhase Diagram

    Padaqa- iva&anaivaBaaga

    `

    By taking a series of cooling curves for the same system over arange of compositions the liquidus and solidus temperatures foreach composition can be determined allowing the solidus andliquidus to be mapped to determine the phase diagram.

  • 8/8/2019 IOFS05

    13/77

    Construction ofPhase Diagram

    Padaqa- iva&anaivaBaaga

    `

    By removing the time axis from the curves and replacing itwith composition, the cooling curves indicate thetemperatures of the solidus and liquidus for a givencomposition.

    This allows the solidus and liquidus to be plotted toproduce the phase diagram.

  • 8/8/2019 IOFS05

    14/77

    Phase Diagram

    Padaqa- iva&anaivaBaaga

    `

    For any given point (x, T) the phasediagram can answer the following:

    1. What phases are present?

    2. What are the phase compositions?

    3. What are the relative amounts of

    the phases (phase proportions orphase fractions)?

  • 8/8/2019 IOFS05

    15/77

  • 8/8/2019 IOFS05

    16/77

    Cu-Ni BinaryPhase Diagram

    Padaqa- iva&anaivaBaaga

    `

    Point A:60 wt% Ni at 1100C

    Q: Phase present?

    Ans: E

    Q: Phase composition ?

    Ans: 60 wt% Ni

    Q: Phase amount ?Ans: 100%

    Point B:35 wt% Ni at 1250C

    Q: Phases present?

    Ans: E + L

    Q: Phase compositions ?

    Rule - I

    Q: Phase amounts ?Rule - II

  • 8/8/2019 IOFS05

    17/77

    Padaqa- iva&anaivaBaaga

    `

    Composition ofphases in the two-phase region

    Rule - I

    CL

    = 31.5 wt% Ni

    CE= 42.5 wt% Ni

  • 8/8/2019 IOFS05

    18/77

    Padaqa- iva&anaivaBaaga

    `

    Amount ofphases in the two-phase region

    Rule - IIEL

    Tie-Line: A lever

    Alloy composition C0: Fulcrum

    fL: weight at liquidus point

    fE: weight at solidus point

    The lever is balanced)()( 00 CCfCCf LL !

    1! ff

    armlevertotal

    armleveroppositef !

    !

    E

    E 0

  • 8/8/2019 IOFS05

    19/77

    Development of Microstructure during Solidification

    Padaqa- iva&anaivaBaaga

    `

    727.01

    273.011

    3

    3243

    3235

    !!

    !!

    !

    ff

    f

    L

    Single phasepolycrystalline E

  • 8/8/2019 IOFS05

    20/77

    The Eutectic System

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    21/77

    The Eutectic System

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    22/77

    Tin BismuthAlloySystem

    The Eutectic System / Reaction

    Padaqa- iva&anaivaBaaga

    `

    EUTECTIC means

    EASY / LOWEST

    MELTING

    LIQUID SOLID1 + SOLID2

  • 8/8/2019 IOFS05

    23/77

    The Eutectic Transformation

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    24/77

    Eutectic Reaction & EutecticAlloy

    Padaqa- iva&anaivaBaaga

    `

    Invariantreaction

    L cool183C E F62

    wt%Sn18

    wt%Sn97

    wt%Sn

    Eutectic mixture

    375 X

  • 8/8/2019 IOFS05

    25/77

    HypoeutecticAlloy

    Padaqa- iva&anaivaBaaga

    `

    Amount of proeutectic E at a temperature just below 183C

    Tie line just below 183C (green)

    5.044

    22

    1862

    4062!!

    !Eprof 5.05.01 !!FEeutf

    18 9762

    Eutectic mixture EF

    Proeutectic orPrimary E

    = Amount of E at a temperature just above 183C

  • 8/8/2019 IOFS05

    26/77

    HypoeutecticAlloy

    Padaqa- iva&anaivaBaaga

    `

    Amount of total E and total F at a temperature just below 183C

    Tie line just below 183C(red)

    72.079

    57

    1897

    4097!!

    !

    totalf 28.072.01 !!Ftotalf

    18 9762

    Eutectic mixture EF

    Proeutectic orPrimary E

  • 8/8/2019 IOFS05

    27/77

    Phase Transformations

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    28/77

    Lead Tin Phase Diagram

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    29/77

    Aluminum Silicon Phase Diagram

    Padaqa- iva&anaivaBaaga

    `

  • 8/8/2019 IOFS05

    30/77

    Iron Carbon System

    Padaqa- iva&anaivaBaaga

    `

    Mild steel 0-0.3 wt% C

    BicycleframeShiphullCarbody

    Medium C steel 0.4-0.7 wt% C

    Railwheelrailaxle

    rails

    High C steel 0.8-1.4 wt% C

    Razorbladesscissors, knives

  • 8/8/2019 IOFS05

    31/77

    Phases in Fe-Fe3Csystem

    Padaqa- iva&anaivaBaaga

    `

    Phase Symbol Description

    Liquid L Liquid solution of Fe and C

    H-Ferrite H Interstitial solid solution of C in H-Fe (hightemperature bcc phase)

    Austenite K Interstitial solid solution of C in K-Fe (FCC phase

    of Fe)

    Ferrite E Interstitial solid solution of C in E-Fe (roomtemperature bcc phase) Soft and Ductile

    Cementite Fe3C Interstitial compound of Fe and C (orthorhombic

    system)H

    ard and BrittlePearlite E +Fe3C Eutectoid mixture of ferrite & cementite

    Ledeburite K +Fe3C Eutectic mixture of austenite & cementite

  • 8/8/2019 IOFS05

    32/77

    Invariant Reactions in Fe-Fe3Csystem

    Padaqa- iva&anaivaBaaga

    `

    Peritectic Reaction

    )%18.0()%5.0()%1.0( 1493 CwtCwtCwt Co

    HE p

    Eutectic Reaction

    )67.6()1.2()3.4(3

    1150 CwtCFeCwtCwtL Co

    p K

    Eutectoid Reaction

    )%67.6

    ()%02.

    0()%8.

    0( 3725

    Cwt

    CFe

    Cwt

    Cwt

    Co

    p EK

  • 8/8/2019 IOFS05

    33/77

    The Eutectoid Reaction

    Padaqa- iva&anaivaBaaga

    `

    Pearlite

    CFeCo

    3

    725 p EK

    0.8 0.02 6.67cool

    117.065.6

    78.0

    02.067.6

    02.08.03

    !!

    !pearlite

    CFf

  • 8/8/2019 IOFS05

    34/77

    Hypoeutectoid Steel

    Padaqa- iva&anaivaBaaga

    `

    Development of

    Microstructure

  • 8/8/2019 IOFS05

    35/77

    Hypereutectoid Steel

    Padaqa- iva&anaivaBaaga

    `

    Development ofMicrostructure

  • 8/8/2019 IOFS05

    36/77

    Microstructureof Steels

    Padaqa- iva&anaivaBaaga

    `

    Eutectoidsteel

    E+Fe3C

    Pearlite

    Hypoeutectoidsteel

    E+Fe3CPearlite +proeutectoid ferrite

    Hypereutectoidsteel

    E+Fe3C

    Pearlite +proeutectoid cementite

  • 8/8/2019 IOFS05

    37/77

    Heat Treatment

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    38/77

    Torelieveinternalstressessetupduringcold-working,casting,weldingandhot-working operations.Toimprove machineabilityTochangegrainsize

    Tosoften metalsforfurthertreatmentaswiredrawingandcoldrollingToimprove mechanicalpropertiesTo modifythestructuretoincreasewear,heatandcorrosionresistanceToremovetrappedgases

    Toremovecoringandsegregation

    WhyHeat Treatment?

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    39/77

    MetalsHandbookdefinesheattreatmentas

    Acombination ofheatingandcooling operations,timedandappliedtoa

    metal oralloyinthesolidstateinawaythatwillproducedesired*properties

    *structureandhencethedesired mechanical

    What isHeat Treatment?

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    40/77

    Aim To refine the grain To induce softness To improve machineability in some cases

    Process Heat to 20-25 degree C above the UCT (A3) for

    hypoeutectoid steel and LCT (A3,1) for hypereutectoidsteels

    Hold Cool in thermally insulated vessel or the furnace

    itself.

    Annealing

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    41/77

    Annealing

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    42/77

    Prolonged holding at a temperature just belowthe LCT

    Heating and cooling alternately between

    temperatures that are just above and just belowthe LCT

    Heating to a temperature above LCT and then

    either cooling very slowly in the furnace orholding at a temperature just below LCT

    Spheroidising

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    43/77

    Spheroidised Structure

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    44/77

    Aim

    To produce a harder and stronger steel thanfull annealing

    Process

    Heat to 35-40 degree C above the UCT

    Hold

    Cool in still air

    Normalising

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    45/77

    Effects offastercooling

    Equilibrium diagram no more valid

    Lesser amount of proeutectoid constituent is formed

    Temperature of Eutectoid transformation is lowered

    and Pearlite becomes finer.

    Normalising

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    46/77

    Normalised Structure

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    47/77

    Process

    Heat to 20-25 degree C above the UCTforhypoeutectoid steel and LCTforhypereutectoid steels

    Hold

    Cool rapidly in water / brine

    Hardening

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    48/77

    Heating Rangefor variousProcesses

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    49/77

    TransformationisdiffusionlesswithnochangeinChemicalcomposition.

    Transformationproceedsduringcoolingandceasesifcoolingisinterruptedi.e.itdepends only ondecreaseintemperatureandindependentoftime.

    Transformation ofagivenalloycanneitherbesuppressednorthe Mstemperaturebechangedbyalteringcoolingrate.

    Itisaproductintransitionbetweenunstableausteniteandstableferritecementite mixture.

    Maximumhardnessfrom martensiticconditioninsteelisafunction ofcarboncontentonly.

    Itcanbeformedfromaustenite only.

    Alsofoundin Fe-Ni,Cu-Zn,Cu-Alsystems.

    Martensitic Transformation

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    50/77

    Martensitic Transformation

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    51/77

    Padaqa- iva&ana

    ivaBaaga`

    Martensitic Hardness

  • 8/8/2019 IOFS05

    52/77

    Martensitic Structure

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    53/77

    Martensitic Structure

    Padaqa- iva&ana

    ivaBaaga`

    I h l T f i Di

  • 8/8/2019 IOFS05

    54/77

    Why? SinceausteniteisunstablebelowLCT,itisnecessaryto knowataparticulartemperaturea]whentransformationbegins,b]whenitendsandc]whatisthetransformationproduct.

    Construction ofITDiagram

    Step 1: Takea largeno. ofsamplesandaustenitisethem.Step2: Transfersome ofthemtoafurnaceatsub-criticaltemperatureStep3: Takethem outoneby oneatregularinterval oftime and

    quenchinicedwater /brine.Step4: Studythemfor microstructureandconfirmby hardness

    measurements,Step5: Repeatsteps2,3 & 4forvarioussub-criticaltemperatures.

    Isothermal Transformation Diagrams

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    55/77

    Isothermal Transformation Diagram

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    56/77

    F t f A t lC li R t

  • 8/8/2019 IOFS05

    57/77

    Thestructure,hardnessandstrengthresultingfromaheattreatmentprocessaredependentontheactualcoolingratebythequenching operation.

    1.Type of Quenching Medium2.Temperature of Quenching Medium

    3. SurfaceCondition ofthepart, &4. Sizeand Mass ofthepart

    FactorsforActualCooling Rate

    Padaqa- iva&ana

    ivaBaaga`

    S f C li C IT Di

  • 8/8/2019 IOFS05

    58/77

    SurfaceCooling Curveson IT Diagram

    Padaqa- iva&ana

    ivaBaaga`

    H d P t ti C

  • 8/8/2019 IOFS05

    59/77

    HardnessPenetration Curves

    Padaqa- iva&ana

    ivaBaaga`

    H d P t ti C

  • 8/8/2019 IOFS05

    60/77

    HardnessPenetration Curves

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    61/77

    Animportantconclusion

    Forasteel offixedcompositionandausteniticgrainsize,regardless ofsizeandshape oftheworkpieceandquenchingconditions,wherevertheactualcoolingrateisthesame,thehardness mustbethesame.

    Converse ofthisstatementisnotnecessarily true.

    Padaqa- iva&ana

    ivaBaaga`

    Tempering

  • 8/8/2019 IOFS05

    62/77

    In asquenched martensitic condition, the steel is not only too

    brittle but also contains lots of residual stresses and so suchsteel is not straight away applied in most of the application.

    Quenched steel, in general, are followed by a process called

    TEMPERING for relieving residual stress and to improve

    ductility and toughness (which can be attained with thedecrease in strength and hardness).

    The process consists of heating to a desired* temperature

    below the LCT (Eutectoid temperature), held and cooledslowly.

    *dependsupon the required microstructure and hence the properties.

    Tempering

    Padaqa- iva&ana

    ivaBaaga`

    Effect of Tempering

  • 8/8/2019 IOFS05

    63/77

    Effect of Tempering

    Padaqa- iva&ana

    ivaBaaga`

    Effect of Tempering Temperature

  • 8/8/2019 IOFS05

    64/77

    Effect of Tempering Temperature

    Padaqa- iva&ana

    ivaBaaga`

    Tempering Products

  • 8/8/2019 IOFS05

    65/77

    Tempering Products

    Padaqa- iva&ana

    ivaBaaga`

    Transformation Products of Austenite and Martensite

  • 8/8/2019 IOFS05

    66/77

    Transformation ProductsofAusteniteand Martensite

    Padaqa- iva&ana

    ivaBaaga`

    Conventional Quenching & Tempering

  • 8/8/2019 IOFS05

    67/77

    Conventional Quenching & Tempering

    Padaqa- iva&ana

    ivaBaaga`

    Conventional Quenching & Tempering

  • 8/8/2019 IOFS05

    68/77

    AdvantageofQuenchingand Temperingprocess liesinthebestYieldStrength,bestDuctilityand Fatigue Strengthaswellashighest

    Toughnesswhen medium Tensile Strengthisdesired.

    Conventional Quenching & Tempering

    Padaqa- iva&ana

    ivaBaaga`

    Austempering

  • 8/8/2019 IOFS05

    69/77

    Austempering

    Padaqa- iva&ana

    ivaBaaga`

    Austempering

  • 8/8/2019 IOFS05

    70/77

    Austempering

    Padaqa- iva&ana

    ivaBaaga`

    Austempering

  • 8/8/2019 IOFS05

    71/77

    AustemperedsteelbesideshavinggreaterDuctilityandToughnessalongwithhighHardnesshas lessdistortionanddanger ofquenchingcracks,sincethequenchisnotthat

    drasticasintheconventionalprocess.Limitation lies,however,inthesectionthickness.(

  • 8/8/2019 IOFS05

    72/77

    Martempering

    Padaqa- iva&ana

    ivaBaaga`

    Advantagesinclude

    minimisation ofresidualstressesandgreatreductionindanger ofdistortionandcracking.

    Heat Treatment Defects

  • 8/8/2019 IOFS05

    73/77

    Heat Treatment Defects

    Padaqa- iva&ana

    ivaBaaga`

    Types of defects and characteristics Causes Remedies

    1

    .Overheating

    Causes coarse grained microstructureWidmanstatten structure in annealed

    steel, coarse crystallic martensite in

    hardened steel, reduced ductility and low

    impact strength value

    Heating for long periods

    at temperatures

    exceeding normal values

    (a) Normal annealing and normalizing for slight overheating

    (b) Repeated normalizing for about 6 times

    2 BurningGrain boundaries having (a) regions

    enriched in carbon in first stage of

    burning; (b) non-oxidized cavities and

    blow holes in second stage of burning and

    (c) iron oxide inclusions in the third stage

    of burning, resulting in stone-like fracture

    and poor ductility.

    Heating for long duration

    at high temperature

    under oxidizing

    conditions or heating

    hear to melting point of

    steel

    (a) Homogenizing followed by double annealing for first stage of

    burning

    (b) Forging followed be annealing for second stage

    Not remediable if third stage has occurred

    3 OxidationThick layer of scale is seen on the surface

    of steel component

    Oxidizing atmosphere in

    heating furnace

    (a) To use reducing, neutral or protective atmosphere in heating

    furnace

    (b) Heating in box with used carburizing agent

    Heating in molten salt bath

    4 DecarburizationCarbon content decreases in the surface

    layer of steel component. Hardness and

    fatigue limits are lower

    Oxidizing atmosphere inheating furnace

    (a) Heating in furnace under reducing neutral or protectiveatmosphere

    (b) Heating in box with used carburizing agent or case iron chips

    Heating in molten salt bath

    (d) Removing decarburized layer by machining if machining

    allowance is available

    Heat Treatment Defects

  • 8/8/2019 IOFS05

    74/77

    Heat Treatment Defects

    Padaqa- iva&ana

    ivaBaaga`

    5 Excessive hardness of Hotworked

    Annealed steel

    Excessive cooling rate for simple annealing or

    insufficient soaking period for isothermal

    annealing.

    Repeated annealing with cooling at

    specified rate

    6 Black FractureFree carbon inclusions are seen in the steel

    Excessive heating time and slow cooling after

    annealing

    Heating the steel to high temperature and

    thorough forging.

    7 Deformation andDimensional Changes

    After HardeningThe Higher the hardenability of steel, more

    sever is the deformation in hardening.

    Increase in volume of steel due to martensitic

    transformation

    (a) Using steels which are slightly

    deformed by quenching

    (b) Cooling slowly in martensitic range

    Apply surface hardening where

    possible

    8 WarpingAsymmetrical deformation of component

    occurs during quenching

    (a) Change in volume in heating or cooling(b) Non-uniform heating or cooling of

    component

    Internal stresses in the component before

    heat treatment

    (d) Lowering component into quenching bath

    in inclined position

    (a) Using alloy steels which are onlyslightly deformed by quenching

    (b) Cooling slowly in martensitic range

    Applying surface hardening wherever

    possible

    (d)Annealing, normalizing or tempering

    at high temperature before hardening

    (e) Heating uniformly for hardening

    (f) Quenching as uniformly as possible

    (g) Keeping component in proper position

    in quenching bath(h) Using special quenching jigs

    9 Low hardness after Quenching Low hardening, temperate cooling rate, andinsufficient soaking period at hardening

    temperature

    Normalizing or annealing, followed by

    hardening with proper procedure

    Heat Treatment Defects

  • 8/8/2019 IOFS05

    75/77

    Heat Treatment Defects

    Padaqa- iva&ana

    ivaBaaga`

    10 SoftSpotsCertain portions on the surface of

    component with lower hardness

    (a) Presence of vapour blanket on the

    surface of component

    (b) Localized decarburization

    Inhomogeneity of internal structure

    after solidification

    (a) Using more effective quenchant

    (b) Annealing or normalizing before hardening for

    more homogeneous structure

    11 Excessive Hardness after Tempering Low temperature or insufficient soakingtime in tempering

    A second tempering with proper temperature and

    soaking time

    12 Insufficient Hardness after Tempering Low temperature or insufficient soakingtime in tempering

    Annealing, hardening and tempering at normal

    temperature

    13 ErosionReduction in size of component or in

    respect of form due to loss of material

    from its surface

    Chemical reaction and oxidation of

    components heated in molten salt baths

    (a) Using deoxidizing salt bath with ferro-silicon

    or borax

    (b) Proper positioning of component in salt bath

    14 CorrosionPitting

    (a) High content of sulphuric salts (over

    0.7-0.8%) in molten salt bath

    (b) Bath having become rich in oxygen or

    iron oxides

    (a) Careful control of salt composition

    (b) Deoxidizing the bath

    15 Quench CrackExternal or internal and zig-zag in

    appearance

    (a) Internal stresses

    (b) Non-uniform cooling

    Cannot be remedied but may be prevented by

    (a) avoiding sharp projections, sharp corners and

    sudden change in size;

    (b) heating to minimum before hardening

    heating to minimum suitable temperature for

    hardening

    (d) cooling slowly in martensitic range by using oil

    as the quenching medium and

    (e) quenching, followed by tempering immediately

    ACKNOWLEDGEMENT

  • 8/8/2019 IOFS05

    76/77

    Thespeakerwould liketoacknowledgewithgratitudethediscussionswithhissenioraswellas juniorcolleaguesandtheir lecture-notesforpreparingthispresentation.

    Thespeakerwouldalso liketoacknowledgethevariousbooksauthoredbynamely (a) YLakhtin,(b) SH Avner,(c)VRaghavan,(d)VanVlack,(e)Rajan, Sharma & Sharmaetc.,

    whichhewentthroughduringhis morethan26 years oftenureas Teacher.

    Thespeakeralsoacknowledgestheefforts ofhisstudentsandcolleaguesfordownloadingand / or makingvariousdrawings /picturesshowninthepresentation.

    ACKNOWLEDGEMENT

    Padaqa- iva&ana

    ivaBaaga`

  • 8/8/2019 IOFS05

    77/77

    Padaqa- iva&ana