investigation of the short periodic terms of the rigid and non-rigid earth rotation series v.v....

36
Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of the Russian Academy of Science St.Petersburg Space Research Centre of the Polish Academy of Sciences Warszawa 2008

Upload: sibyl-pitts

Post on 17-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Investigation of the short periodic terms of the rigid and non-rigid

Earth rotation series V.V. Pashkevich

Central (Pulkovo) Astronomical Observatoryof the Russian Academy of Science

St.PetersburgSpace Research Centre of the Polish Academy of Sciences

Warszawa

2008

Page 2: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Investigation of the short periodic terms (diurnal and sub-diurnal) in a long time new high-precision series of the rigid (S9000A) and non-rigid Earth rotation (SN9000A).

Choice of the optimal spectral analysis scheme for this investigation.

Method1. To update the previous version of the high-precision

numerical solution of the rigid Earth rotation (V.V.Pashkevich, G.I.Eroshkin and A.Brzezinski, 2004), (V.V.Pashkevich and G.I.Eroshkin, Proceedings of “Journees 2004”) by using the integration step of 1 day and the interpolation step of 0.1 day. All calculations have been carried out with the quadruple precision (Real 16) on PC Intel® Core™2 Duo E6600 (2.4GHz) . We considered only the Kinematical (relativistic) case.

Aims:

Page 3: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Method (continued) 2. The initial conditions have been calculated from the model SMART97

(P.Bretagnon, G.Francou, P.Rocher, J.L.Simon,1998). The discrepancies between the numerical solution and the semi-analytical solution SMART97 were expressed in Euler angles over 2000 years with 0.1 day spacing.

3. Investigation of the discrepancies has been carried out by the least squares (LSQ) and by the spectral analysis (SA) algorithms (V.V.Pashkevich and G.I.Eroshkin, Proc. “Journees 2005”).

4. The high-precision rigid Earth rotation series S9000 (V.V.Pashkevich and G.I.Eroshkin, 2005 ) has been update by including the short periodic terms (diurnal and sub-diurnal).

5. The new high-precision non-rigid Earth rotation series (SN9000A) has been constructed. This series is expressed in the function of the three Euler angles and containing the short periodic terms. We applied the method of P.Bretagnon et al. (1999) and the transfer function of P. M. Mathews et al. (2002).

Page 4: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Part I:

The rigid Earth rotation

Page 5: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Fig.1 Numerical solution for the rigid Earth rotation minus solution SMART97 in the longitude of the ascending node of the Earth equator.

the computer system Parsytec CCe20 case the personal computer Intel® Core™2 Duo case

Secular terms of… Secular terms of…

smart97 (as) d (as) smart97 (as) d (as)

7.00 9.51

50384564881.3693 T - 206.50 T 50384564881.3693 T - 211.16 T

- 107194853.5817 T2

- 3451.30 T2

- 107194853.5817 T2

- 3481.61 T2

- 1143646.1500 T3

1125.00 T3

- 1143646.1500 T3

1142.76 T3

1328317.7356 T4

- 788.00 T4

1328317.7356 T4

- 712.75 T4

- 9396.2895 T5

- 57.50 T5

- 9396.2895 T5

- 71.86 T5

- 3415.00 T6

- 3464.88 T6

Page 6: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Fig.2 Numerical solution for the rigid Earth rotation minus solution SMART97 in the angle of the proper rotation of the Earth.

Secular terms of… Secular terms of…

smart97 (as) d(as) smart97 (as) d (as)

1009658226149.3691 6.58 1009658226149.3691 8.90

474660027824506304.0000 T 99598.30 T 474660027824506304.0000 T -236.95 T

- 98437693.3264 T2

- 7182.30 T2

- 98437693.3264 T2

-7235.36 T2

- 1217008.3291 T3

1066.80 T3

- 1217008.3291 T3

524.24 T3

1409526.4062 T4

- 750.00 T4

1409526.4062 T4

-684.84 T4

- 9175.8967 T5

- 30.30 T5

- 9175.8967 T5

-40.93 T5

- 3676.00 T6

-3717.78 T6

the computer system Parsytec CCe20 case the personal computer Intel® Core™2 Duo case

Page 7: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Fig.3 Numerical solution for the rigid Earth rotation minus solution SMART97 in the inclination angle.

Secular terms of… Secular terms of…

smart97(as) d(as) smart97(as) d(as)

84381409000.0000 1.42 84381409000.0000 1.59

- 265011.2586 T - 96.61 T - 265011.2586 T - 97.64 T

5127634.2488 T2

- 353.10 T2

5127634.2488 T2

- 355.10 T2

- 7727159.4229 T3

771.50 T3

- 7727159.4229 T3

775.68 T3

- 4916.7335 T4

- 84.50 T4

- 4916.7335 T4

- 79.67 T4

33292.5474 T5

- 86.00 T5

33292.5474 T5

- 89.51 T5

- 247.50 T6

-250.65 T6

the computer system Parsytec CCe20 case the personal computer Intel® Core™2 Duo case

Page 8: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Fig.4. Differences between the numerical solutions and SMART97 after the formal removal of secular trends.

the computer system Parsytec CCe20 case the personal computer Intel® Core™2 Duo case

Page 9: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

D after removal of the secular trend

LSQ method computes the amplitudes

of the spectrum of D for the all periodical terms

LSQ method determines the amplitude and phase of the largest from the residual harmonics

if |Am| > ||

till the end of the spectrum

Set of nutation terms of SMART97

Removal of this harmonic from the D and

from the Spectrum

YesNo

Spectral Analysis (SA) A L G O R I T H M – 1 for removal of the periodical terms from the Discrepancies (D)

… Construction of the new nutation series New high-

precision series

S9000A1

Page 10: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

D after removal of the secular trend

LSQ method computes the amplitudes

of the spectrum of D for the long periodical terms

LSQ method determines the amplitude and phase of the largest from the residual harmonics

if |Am| > ||

till the end of the spectrum

Set of nutation terms of SMART97

Removal of this harmonic from the D and

from the Spectrum

YesNo

Spectral Analysis (SA) A L G O R I T H M – 2for removal of the periodical terms from the Discrepancies (D)

… Construction of the new nutation series

Construction of the new D-2 and apply the algorithm - 1

New high-precision

series S9000A

Page 11: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Fig.5. Spectra of the discrepancies between numerical solutions and SMART97 for the proper rotation angle.

for only long periodical terms for all periodical terms ALGORITHM – 1the computer system Parsytec CCe20 case the personal computer Intel® Core™2 Duo case

Page 12: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Fig.5. Spectra of the discrepancies between numerical solutions and SMART97 for the proper rotation angle. DETAIL

for only long periodical terms for all periodical terms ALGORITHM – 1the computer system Parsytec CCe20 case the personal computer Intel® Core™2 Duo case

Page 13: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

the computer system Parsytec CCe20 case the personal computer Intel® Core™2 Duo case for ALGORITHM – 1

Fig.6. The numerical solution - 2 NS-2 (NS-2A1) of the rigid Earth rotation minus S9000 (S9000A1) after formal removal of the secular trends in the proper rotation angle.

Page 14: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Fig.7. Spectra of the discrepancies between numerical solutions and SMART97 for the proper rotation angle. for only long periodical terms ALGORITHM – 2 for all periodical terms ALGORITHM – 11-iteration

The personal computer Intel® Core™2 Duo case

Page 15: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Fig.7. Spectra of the discrepancies between numerical solutions and SMART97 for the proper rotation angle. DETAIL

The personal computer Intel® Core™2 Duo case

for only long periodical terms ALGORITHM – 2 for all periodical terms ALGORITHM – 11-iteration

Page 16: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Fig.8. The numerical solution – 2 NS-2A2 (NS-2A1 ) of the rigid Earth rotation minus S9000A2 (S9000A1) after formal removal of the secular trends in the proper rotation angle. The personal computer Intel® Core™2 Duo case

The end of 1-iteration of the ALGORITHM – 2 (for only long periodical terms) ALGORITHM – 1 ( for all periodical terms)

The end of the

Page 17: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

for all periodical terms ALGORITHM – 2 for all periodical terms ALGORITHM – 12-iteration fig.7

Fig.9. Spectra of the discrepancies between numerical solutions and SMART97 for the proper rotation angle.

The personal computer Intel® Core™2 Duo case

Page 18: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Fig.9. Spectra of the discrepancies between numerical solutions and SMART97 for the proper rotation angle. DETAIL

The personal computer Intel® Core™2 Duo case

for all periodical terms ALGORITHM – 2 for all periodical terms ALGORITHM – 12-iteration fig.7

Page 19: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Fig.10. The numerical solution – 3(2) NS-3(NS-2A1) of the rigid Earth rotation minus S9000A (S9000A1) after formal removal of the secular trends in the proper rotation angle. The personal computer Intel® Core™2 Duo case

for all periodical terms ALGORITHM – 2 for all periodical terms ALGORITHM – 12-iteration fig.8

Page 20: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Part II:

The non-rigid Earth rotation

Page 21: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

TRANSFER FUNCTION

4

0 01

( ; | ) 1 11

RR

R

e QT e e N Q

e s

P.M. Mathews, T.A. Herring, B.A. Buffett, 2002:

Geophisical model includes the following effects:electromagnetic coupling, ocean tides, mantle inelasticity,atmospheric influence, change in the global Earth dynamical flattening and in the core flattening

0 0

( 1) is frequency in cycles per sidereal day (cpsd)

with respect to inertial space

/(1 ) ( 1; | ) , 1 1

/(1 )

, elli

Here

where

pt

RR R

R

e eT e e N N

e e

e e

icities for rigid and non-rigid Earth, respectively.

Page 22: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

4

0 1 0 10

4

0 1 0 10

4

0 1 0 10

[ sin( ) cos( )]

[ sin( ) cos( )]

[ sin( ) cos( )]

kS jk j j C jk j j

j k

kS jk j j C jk j j

j k

kS jk j j C jk j j

j k

t t t

t t t

t t t

0 0 2

51 5

50 1 5

50 1 5

...

, ...

...

pp

p p

p p

t t

t t

t t

Expressions for Euler angles:

Page 23: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

sin sin cos

sin cos sin

cos

R R R R R R

R R R R R R

R R R R

p

q

r

sin cos / sin

cos sin

cos

NR NR NR NR NR NR

NR NR NR NR NR

NR NR NR NR

p q

p q

r

( ; | )

NR NR R R R

NR R

p iq p iq T e e

r r

Algorithm of Bretagnon et al. (1999)

1.The rigid Earth angular velocity vector:

3.The derivatives of Euler angles for the non-rigid Earth rotation:

2.The non-rigid Earth angular velocity vector is obtained by:

Page 24: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

0 1 0 10

1 1 0 11

11 1 0 1

1 0 1 0 1

[ sin( ) cos( )]

[( )sin( )

( )cos

Here

( )]

[ sin( ) cos( )] ,

, ,

mk

k kk

m

k kk

kk k

mm m

j j j

x A c c t B c c t t

x kA c B c c t

kB c A c c t t

c B c c t A c c t t

x

1 1 1 1

1 1 1 1

1 1 1

1 1 1 1

1

/

/

1,..., ( ) / 3

( ) /

,...

Her

e ,H 1

e

re

k k k m m

k k k m m

k k k

m m k k k

m m

kA c B A c

kB c A B c

k m A kB c

c B B kA c

c A k m

Cascade method:

Common form of the periodic part of Euler angles:

Page 25: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

0 1 0 0

1

1 0 0 1

1 1 1 1 1

and by from

and from

He

cos sin

3

( sin cos ) / sin

cos 3 ,

Cascade me

, , ( ), ( ), ( )

tho

re

d

NR R NR NR NR NR NR

NR

NR NR NR NR NR NR

NR NR NR NR NR NR

NR NR NR NR NR NR

p q

p q

r

p q r p q r

1-th iteration

Details: Iterative solution of the algorithm of Bretagnon et al. (1999)

(Pashkevich, 2008)

Page 26: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

1 1

1 1

and by fr

cos sin

3

( sin cos ) / sin

cos 3 ,

, , ( ), ( ),

Ca om

an

scade metho

d from

Here ( )

d

n n nNR NR NR NR NR

nNR

n n n nNR NR NR NR NR NR

n n n n nNR NR NR NR NR NR

NR NR NR NR NR NR

p q

p q

r

p q r p q r

n-th iteration

Iterations are repeated until the absolute value of the difference between iterations K-1 and K exceedes some a priori adopted values

Details: Iterative solution of the algorithm of Bretagnon et al. 1999

(Pashkevich, 2008)

Page 27: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Period (days),

Argument

Solution

rigid Earth

rotation

Ψ(sin)

μas

Ψ(cos)

μas

Solution

non-rigid

Earth rotation

Ψ(sin)

μas

Ψ(cos)

μas

1.03505

λ3 +D- SMART97 S9000A

-34.8213

-34.8213

4.2714

4.2714

SMN

SN9000A

-33.6604

-33.6604

1.5930

1.5930

1.03474

3λ3 +3D-2F- SMART97 S9000A

-0.0133

-0.0806

0.0016

-0.0612

SMN

SN9000A

-0.0225

-0.0898

-0.0100

-0.0728

1.00000

λ3 - SMART97 S9000A

-0.1996

-0.1996

0.0275

0.0275

SMN

SN9000A

-0.1969

-0.1969

0.0005

0.0005

0.99758

λ3 +D-l- SMART97 S9000A

-19.8544

-19.8521

2.4906

2.4941

SMN

SN9000A

-19.8316

-19.8293

-1.0929

-1.0894

0.96215

λ3 +D+ SMART97 S9000A

38.1283

38.1283

4.6945

4.6945

SMN

SN9000A

36.3795

36.3795

2.1620

2.1620

0.527517

3λ3 +3D-2 SMART97 S9000A

-0.1783

-0.1783

0.2578

0.2578

SMN

SN9000A

-0.3211

-0.3211

0.4389

0.4389

1997; BMS- Bretagnon et al., 1999; MHB- Mathews et al., 2002,SMN=SMART97+MHB; SN9000A=S9000A+MHB.

Results:Table 1. Comparison of different solutions for selected durnal and semidurnal periodical terms in the longitude of the ascending node of the Earth equator.

Page 28: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Period (days),

Argument

Solution

rigid Earth

rotation

Ψ(sin)

μas

Ψ(cos)

μas

Solution

non-rigid

Earth rotation

Ψ(sin)

μas

Ψ(cos)

μas

0.51753

2λ3 +2D- 2SMART97 S9000A

25.3564

25.3564

14.5558

14.5558

SMN

SN9000A

26.3775

26.3775

21.4672

21.4672

0.507904

λ3 +D- 2SMART97 S9000A

-0.2193

-0.2193

0.3213

0.3213

SMN

SN9000A

-0.3258

-0.3258

0.3536

0.3536

0.50000

2λ3-2 SMART97 S9000A

10.6324

10.6324

6.0997

6.0997

SMN

SN9000A

11.2675

11.2675

9.2705

9.2705

0.49863

2 SMART97 S9000A

31.8523

31.8523

-18.2836

-18.2836

SMN

SN9000A

33.8043

33.8043

-27.8520

-27.8520

0.49860

λ3 +D-F- 2SMART97 S9000A

4.3198

4.3198

2.4797

2.4797

SMN

SN9000A

4.5837

4.5837

3.7774

3.7774

0.49795

λ3+2 SMART97 S9000A

-0.1957

-0.1957

-0.2142

-0.2142

SMN

SN9000A

-0.2732

-0.2732

-0.2130

-0.2130

1997; BMS- Bretagnon et al., 1999; MHB- Mathews et al., 2002,SMN=SMART97+MHB; SN9000A=S9000A+MHB.

Results:Table 1. Comparison of different solutions for selected durnal and semidurnal periodical terms in the longitude of the ascending node of the Earth equator.

Page 29: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Table 2. Comparison of different solutions for selected durnal and semidurnal periodical terms in the inclination angle.

Period (days),

Argument

Solution

rigid Earth

rotation

θ (sin)

μas

θ (cos)

μas

Solution

non-rigid

Earth rotation

θ (sin)

μas

θ (cos)

μas

1.03505

λ3 +D- SMART97 S9000A

-1.6400

-1.6400

-13.3708

-13.3708

SMN

SN9000A

-0.5515

-0.5515

-12.6886

-12.6886

1.03474

3λ3 +3D-2F- SMART97 S9000A

-0.0010

0.0073

-0.0085

-0.0065

SMN

SN9000A

-0.0044

0.0039

-0.0006

0.0014

1.00000

λ3 - SMART97 S9000A

-0.0109

-0.0109

-0.0790

-0.0790

SMN

SN9000A

-0.0001

-0.0001

-0.0777

-0.0777

0.99758

λ3 +D-l- SMART97 S9000A

-0.9877

-0.9891

-7.8729

-7.8720

SMN

SN9000A

0.4389

0.4375

-7.8522

-7.8513

0.96215

λ3 +D+ SMART97 S9000A

1.8625

1.8625

-15.1270

-15.1270

SMN

SN9000A

0.8531

0.8531

-14.4120

-14.4120

0.527517

3λ3 +3D-2 SMART97 S9000A

0.0201

0.0201

0.0131

0.0131

SMN

SN9000A

0.0915

0.0915

0.0471

0.0471

1997; BMS- Bretagnon et al., 1999; MHB- Mathews et al., 2002,SMN=SMART97+MHB; SN9000A=S9000A+MHB.

Results:

Page 30: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Table 2. Comparison of different solutions for selected durnal and semidurnal periodical terms in the inclination angle.

Period (days),

Argument

Solution

rigid Earth

rotation

θ (sin)

μas

θ (cos)

μas

Solution

non-rigid

Earth rotation

θ (sin)

μas

θ (cos)

μas

0.51753

2λ3 +2D- 2SMART97 S9000A

-5.7900

-5.7900

10.0863

10.0863

SMN

SN9000A

-8.5395

-8.5395

10.4933

10.4933

0.507904

λ3 +D- 2SMART97 S9000A

-0.1128

-0.1128

-0.0770

-0.0770

SMN

SN9000A

-0.1071

-0.1071

-0.1077

-0.1077

0.50000

2λ3-2 SMART97 S9000A

-2.4263

-2.4263

4.2293

4.2293

SMN

SN9000A

-3.6876

-3.6876

4.4822

4.4822

0.49863

2 SMART97 S9000A

-7.2728

-7.2728

-12.6702

-12.6702

SMN

SN9000A

-11.0792

-11.0792

-13.4478

-13.4478

0.49860

λ3 +D-F- 2SMART97 S9000A

-0.9867

-0.9867

1.7190

1.7190

SMN

SN9000A

-1.5033

-1.5033

1.8250

1.8250

0.49795

λ3+2 SMART97 S9000A

-0.0852

-0.0852

0.0778

0.0778

SMN

SN9000A

-0.0847

-0.0847

0.1086

0.1086

1997; BMS- Bretagnon et al., 1999; MHB- Mathews et al., 2002,SMN=SMART97+MHB; SN9000A=S9000A+MHB.

Results:

Page 31: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Period (days),

Argument

Solution

rigid Earth

rotation

φ (sin)

μas

φ (cos)

μas

Solution

non-rigid

Earth rotation

φ (sin)

μas

φ (cos)

μas

1.03505

λ3 +D- SMART97 S9000A

-32.2917

-32.2917

3.9612

3.9612

SMN

SN9000A

-31.2266

-31.2266

1.5038

1.5038

1.03474

3λ3 +3D-2F- SMART97 S9000A

-0.0129

-0.0754

0.0016

-0.0564

SMN

SN9000A

-0.0213

-0.0838

-0.0090

-0.0670

1.00000

λ3 - SMART97 S9000A

-0.1834

-0.1834

0.0253

0.0253

SMN

SN9000A

-0.1809

-0.1809

0.0005

0.0005

0.99758

λ3 +D-l- SMART97 S9000A

-18.2334

-18.2314

2.2873

2.2908

SMN

SN9000A

-18.2125

-18.2105

-1.0005

-0.9974

0.96215

λ3 +D+ SMART97 S9000A

35.0904

35.0904

4.3205

4.3205

SMN

SN9000A

33.4859

33.4859

1.9970

1.9970

0.527517

3λ3 +3D-2 SMART97 S9000A

-0.1117

-0.1117

0.1630

0.1630

SMN

SN9000A

-0.2427

-0.2427

0.3291

0.3291

1997; BMS- Bretagnon et al., 1999; MHB- Mathews et al., 2002,SMN=SMART97+MHB; SN9000A=S9000A+MHB.

Results:Table 3. Comparison of different solutions for selected durnal and semidurnal periodical terms in the angle of the proper rotation of the Earth.

Page 32: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Period (days),

Argument

Solution

rigid Earth

rotation

φ (sin)

μas

φ (cos)

μas

Solution

non-rigid

Earth rotation

φ (sin)

μas

φ (cos)

μas

0.51753

2λ3 +2D- 2SMART97 S9000A

-0.1279

-0.1279

-0.0728

-0.0728

SMN

SN9000A

0.8089

0.8089

6.2684

6.2684

0.507904

λ3 +D- 2SMART97 S9000A

-0.2471

-0.2471

0.3617

0.3617

SMN

SN9000A

-0.3448

-0.3448

0.3914

0.3914

0.50000

2λ3-2 SMART97 S9000A

-0.4033

-0.4033

-0.2352

-0.2352

SMN

SN9000A

0.1794

0.1794

2.6739

2.6739

0.49863

2 SMART97 S9000A

31.9704

31.9704

-18.3513

-18.3513

SMN

SN9000A

33.7614

33.7614

-27.1303

-27.1303

0.49860

λ3 +D-F- 2SMART97 S9000A

4.7817

4.7817

2.7448

2.7448

SMN

SN9000A

5.0238

5.0238

3.9354

3.9354

0.49795

λ3+2 SMART97 S9000A

-0.1964

-0.1964

-0.2148

-0.2148

SMN

SN9000A

-0.2675

-0.2675

-0.2137

-0.2137

1997; BMS- Bretagnon et al., 1999; MHB- Mathews et al., 2002,SMN=SMART97+MHB; SN9000A=S9000A+MHB.

Results:Table 3. Comparison of different solutions for selected durnal and semidurnal periodical terms in the angle of the proper rotation of the Earth.

Page 33: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

Kinematical solution of the rigid Earth rotation= Dynamical solution of the rigid Earth rotation + Geodetics corrections

Kinematical solution of the non-rigid Earth rotation= Kinematical solution of the rigid Earth rotation + TRANSFER FUNCTION

Page 34: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

CONCLUSION

• The optimal spectral analysis scheme for this investigation (with respect to the accuracy) has been determined. It is algorithm-2, which used two iterations. The first iteration investigated the discrepancies for only the long periodical harmonics, while the second iteration investigated the discrepancies for all harmonics.

• The new version the high-precision rigid Earth rotation series S9000A has been constructed. It contains the short periodic terms (diurnal and sub-diurnal).

• The high-precision non-rigid Earth rotation series SN9000A (containing the short periodic terms) has been constructed. This series is expressed in the function of the three Euler angles with respect to the fixed ecliptic plane and equinox J2000.0 and is dynamically adequate to the ephemerides DE404/LE404 over 2000 years.

Page 35: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

R E F E R E N C E S

1. P.Bretagnon and G.Francou. Planetary theories in rectangular and spherical variables // Astronomy and Astrophys., 202, 1988, pp. 309–-315.

2. P.Bretagnon, G.Francou, P.Rocher, J.L.Simon. SMART97: A new solution for the rotation of the rigid Earth // Astron. Astrophys. , 1998, 329, pp. 329-338.

3. P.Bretagnon,P.M.Mathews,J.-L.Simon. Non Rigid Earth Rotation // in Proc. Journees 1999: Motion of Celestial Bodies, Astrometry and Astronomical Reference Frames Les Journees 1999 \& IX. Lohrmann - Kolloquium, (Dresden, 13-15 September 1999), p. 73-76.

4. V.A.Brumberg, P.Bretagnon. Kinematical Relativistic Corrections for Earth’s Rotation Parameters // in Proc. of IAU Colloquium 180, eds. K.Johnston, D. McCarthy, B. Luzum and G. Kaplan, U.S. Naval Observatory, 2000, pp. 293–302.

5. V.Dehant and P.Defraigne. New transfer functions for nutations of a non-rigid Earth // J. Geophys. Res., 1997,102, pp.27659-27688.

6. P. M. Mathews and P.Bretagnon. Polar Motions Equivalent to High Frequency Nutations for a Nonrigid Earth with Anelastic Mantle // Astron. Astrophys. , 2003, 400, pp. 1113-1128.

7. Mathews, P. M., Herring, T. A., and Buffett B. A.. Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth's Interior // J. Geophys. Res., 2002, 107, B4, 10.1029/2001JB000390.

8. V.V.Pashkevich, G.I.Eroshkin and A. Brzezinski. Numerical analysis of the rigid Earth rotation with the quadruple precision // Artificial Satellites, Vol. 39, No. 4, Warszawa, 2004, pp. 291–304.

9. V. V. Pashkevich and G. I. Eroshkin. Spectral analysis of the numerical theory of the rigid Earth rotation // in Proc. of “Journees 2004”, Fundamental Astronomy: New concepts and models for high accuracy observations» (Observatoire de Paris, 20-22 September 2004.), pp. 82-87.

10. V.V.Pashkevich and G.I.Eroshkin. Choice of the optimal spectral analysis scheme for the investigation of the Earth rotation problem // in Proc. of “Journees 2005”, Earth dynamics and reference systems: five years after the adoption of the IAU 2000 Resolutions (Space Research Centre of Polish Academy of Sciences, Warsaw, Poland, 19-21 September 2005), pp. 105-109.

11. V.V.Pashkevich and G.I.Eroshkin. Application of the spectral analysis for the mathematical modelling of the rigid Earth rotation // Artificial Satellites, Vol. 40, No. 4, Warszawa, 2005, pp. 251–260.

12. V.V. Pashkevich. Construction of the Non-Rigid Earth Rotation Series // Artificial Satellites, 2008 in press.13. T.Shirai and T.Fukushima. Construction of a new forced nutation theory of the nonrigid Earth // The Astron.

Journal, 121, 2001, pp.3270-3283.14. J.M.Wahr. The forced nutationsof an elliptical, rotating, elastic and oceanless Earth // Geophys. J. R. Astron. Soc.,

1981, 64, pp.705-727.

Page 36: Investigation of the short periodic terms of the rigid and non-rigid Earth rotation series V.V. Pashkevich Central (Pulkovo) Astronomical Observatory of

A C K N O W L E D G M E N T S

The investigation was carried out at the Central (Pulkovo) Astronomical Observatory of the Russian Academy of Sciences and at the Space Research Centre of the Polish Academy of Sciences, under a financial support of the agreement cooperation between the Polish and Russian Academies of Sciences, Theme No 31.