investigation of nanostructures with large scale x-rays...

55
1 Investigation of nanostructures Investigation of nanostructures with large scale X with large scale X - - rays facilities rays facilities J.L. GALLANI J.L. GALLANI S. CHERIFI S. CHERIFI

Upload: others

Post on 22-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Investigation of nanostructures Investigation of nanostructures with large scale Xwith large scale X--rays facilitiesrays facilities

    J.L. GALLANIJ.L. GALLANIS. CHERIFIS. CHERIFI

  • 2

    TheThe synchrotron assynchrotron as seenseen by...by...

  • 3

  • 4

  • 5

  • 6

  • 7

  • 8

  • 9

  • 10

  • 11

    the Korean studentthe Korean student........

  • 12

    First synchrotron light at General Electric, 1947

  • 13

    ESRF ESRF -- GrenobleGrenobleDESY

    White beam

    Pohang Accelerator Laboratory

    APS Argonne (USA)

    BESSY

    SLS SwitzerlandSOLEIL - France

    NSLS - Brookhaven

  • 14

    LINACLINAC

    BoosterBooster

    beam

    line

    beam

    line

    undulatorundulatorwigglerwiggler

    bending magnetbending magnet

    quadrupolequadrupoleopticsopticssamplesample

    insertioninsertion devicedevice

    hutchhutch

  • 15

    charged particlecharged particle

    γγ

    bremstrahlungbremstrahlung

    bending magnetbending magnet -- SLSSLS

    ««sweepingsweeping» light» light

    BB

    bending magnetbending magnet

    needneed more flux? more flux?

    put moreput more magnetsmagnets!!

  • 16

  • 17

    SC SC -- 7T7T wigglerwiggler(BESSY)(BESSY)

    wigglerwiggler

    undulatorundulator

    broad beambroad beam ofofincoherentincoherent lightlight

    narrow beamnarrow beam of of semisemi--coherentcoherent lightlight

    TunableTunable insertioninsertion devicesdevices :: wigglerswigglers anan undulatorsundulators

  • 18

    xx--rays are EM radiationsrays are EM radiationsthey can be polarizedthey can be polarized

  • 19

  • 20

    monochromatormonochromator SiSi monocrystalsmonocrystals

  • 21

    44--23 MBI23 MBI--BESSYBESSY beamlinebeamlinephotonphoton induced process atinduced process at surfacessurfaces

  • 22

    So what can weSo what can we dodo withwith a synchrotron?a synchrotron?

    nanolithographynanolithographythinthin filmsfilms magnetometrymagnetometry : XMCD: XMCDxx--raysrays spectrospectro--microscopymicroscopy

  • 23

    AA firstfirst application :application : lithographylithography

    ITRSITRS roadmaproadmap

  • 24

    RayleighRayleigh criteriacriteria : :

    Current wavelengthCurrent wavelength : 193nm (: 193nm (DeepDeep UV)UV)Next stepNext step : 13.5nm (: 13.5nm (ExtremeExtreme UV)UV)

  • 25

    many problemsmany problems !!

    -- everything absorbs ateverything absorbs at 13.5nm13.5nm-- nono diffractive opticsdiffractive optics-- fabrication offabrication of the maskthe mask-- source source

  • 26

    zone plateszone plates

    binarybinary sinusoidalsinusoidal

    resolutionresolution :: focal distance :focal distance :

    zone plate operatingzone plate operating atat λλ=45nm=45nm

  • 27

    masklessmaskless nanonano--lithographylithography

    H.I. Smith, MITH.I. Smith, MIT

  • 28

    compact synchrotron (Strathclyde Uni.)compact synchrotron (Strathclyde Uni.)

    fabrication offabrication of thethe zone plateszone plateslight sourcelight source at high energies at high energies

  • 29

    A secondA second exampleexample : XMCD: XMCD

  • 30

    XMCD : X-ray Magnetic Circular Dichroism

    2 transition selection rules : Δl = 1 and Δm = ±1

  • 31

    Fermi’s «golden rule» gives the absorption coefficients µ+ and µ-:

    )()(~)( 20 ρσργ Δ±±=±

    zc EMµµEµ

    Absorption is spin dependent:

    fifif Mhρπλ

    22= ∫= υψψ dVM ifif

    *where :

    L2 absorption of RCP photon

    At the L2 edge, the atom preferentially (3/4) emits spin-down electrons

  • 32

    L3 absorption of RCP photon

    The photoelectron ejected in the absorption process acquires a spin σz and an orbital polarization lz

    At the L3 edge, the atom preferentially (5/8) emits spin-up electrons

  • 33

    μs = (nh↓ − nh

    ↑ )μB

    2p3/2

    σ+σ–

    2p3/2

    2p1/2

    3d

    3dEF

    exchange

    spin–orbit

    2p

    3d

    σ+ σ–

    62.5%

    25% 75%

    37.5%

    « spin-polarized source »

    « spin-sensitive detector »

  • 34

    Sample in cryostat

    X-rays

    fluorescence photo-electrons

    Differences in light absorption cause differences inthe photocurrent → dichroic signal

    H→

    λ

    XMCD :

    - is very sensitive (0.001 monolayers)

    - is element specific (also gives oxydation state)

    - can provide information on spin and orbital magnetizations separately(magneto-optical sum rules)

    A good review : T. Funk. et al., Coord. Chem. Rev. 249, 3-30, 2005More details : H. Wende, Rep. Prog. Phys. 67 (2004) 2105–2181

  • 35

    cryostat

    beamline(LURE)

    chamber lockincoming photons

  • 36

    ∗ 1 cryostat, two setups : -liquid 4He, down to 1.5K-3He dilution, down to 300mK

    ∗ Field up to 7T∗ Ultra-high vacuum (10-10mbar)

  • 37

    920 930 940 950 960 970 980

    -0,04

    -0,02

    0,00

    0,02

    1,0

    1,1

    1,2

    Cu L3,2 edges

    CuTb-hfac

    T~340mK & H=3T

    Photon Energy (eV)

    XM

    CD

    (arb

    . uni

    ts)

    XAS spectra for 2 polarizations

    Dichroism

    A real example

  • 38

    Dic

    hroi

    smus

    nur μS

    L3

    L2

    sz+1/2–1/2

    lz –2 –1 0 1 2

    3d

    spin moment only

    sz+1/2–1/2

    lz –2 –1 0 1 2

    orbital moment only

    3d

    dich

    rois

    m

    only μL

    Sum rules

    dich

    rois

    m

    only μS

    Dic

    hroi

    smus

    nur μL

    L3

    L2

    L 3 L 3

    L 2

    L 2

    Dic

    hroi

    sm

    Dic

    hroi

    sm

    Energy

    dich

    rois

    m

    μS and μLμS

    und μL

    Dic

    hroi

    smus

    L3

    L2

    L 3

    L 2Dich

    rois

    m

    Energy

    Energy

  • 39

    1170 1185 1200 1215 1230 1245

    -0,2

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    1,4

    1,6

    MIV

    MV

    Gd M edge

    MIV: 3d3/2 → 4fMV: 3d5/2 → 4f

    GdN 10K/6T

    TEY

    Photon energy (eV)

    Measured signals

    Dichroic signals

    pqq

    1170 1180 1190 1200 1210 1220 1230 12400,0

    0,5

    1,0

    1,5

    2,0

    2,5

    Sum

    of a

    bsor

    ptio

    n si

    gnal

    s

    E (eV)

    0

    2

    4

    6

    8

    10

    12

    r

    Integrated signals770 775 780 785 790 795 800 805 810

    -0.2

    -0.1

    0.0

    1.4

    1.5

    1.6

    1.7

    Co edge

    LII: 2p1/2 → 3dLIII : 2p3/2 → 3d

    LII

    LIII

    Co particles on K surface

    TEY

    Photon Energy (eV)

    Sum rules for 3d metals:

    rnqpatomm

    rnqatomm

    dBspin

    dBorb

    )10)(46(]/[

    )10(4]/[

    3

    3

    −−−≈

    −−=

    μ

    μ

  • 40

    abso

    rptio

    n

    900880860840820800780760

    photon energy (eV)

    CoNi

    magnetization parallel to x-rays

    magnetization antiparallel to x-rays

    L3

    L2L3

    L2

    σ– circular polarization6 ML Co/5 ML Cu/15 ML Ni/Cu(001)

    CoCuNi

    Element selectivity

  • 41

    A few recent examples :

    - Metal nanoparticles

    - Chromium on gold

    - Cobalt on platinum

    - Molecular magnetism

    - Single Molecule Magnets

  • 42

    Why metal nanoparticles?

    - fundamental reasons and questions:

    magnetism in low D, quantum effects, crossover 2D-3D,

    reduced coordination, new effects or behaviours (e.g. AF→ FM)

    - practical reasons : applications, applications, applications…

  • 43

    Chrome on gold

    C. Boeglin et al., Phys. Stat. Sol. B, 242, 9, 1775

    Possibility of ferromagnetism for Cr atoms in hexagonal symmetry

    0.07 ML 0.5 ML 0.75 ML

    0.004 monolayer

    - adatoms are atomic Cr- M = 4.5µB (paramagnetic)- clusters are AF with M = 0

    when size increases.

    7T / 10K

  • 44

    MAE of Cobalt on platinum

    Magnetic Anisotropy Energy determines the stabilityof the magnetization in the bulk and in nanoparticles.

    85 Å

    Co adatoms / Pt 0.01 Monolayer

    5K / 7T

    mL(meas.) = 1.1 µB/atommS(calc.) = 2.14µB mtot. = 5µB/atom

    P. Gambardella et al., Science, 300, 1130, 2003

    Quenching of Lwith cluster size

    Bulk Co 2D Co 1D Co chainsLmes. = 0.15 0.29 0.68 µB

    «Survival» of the atomic characters for 3d metal atoms on surfaces because of the reduced coordination

    And broken symmetry.

  • 45

    field

    x-rayssample

    θ

    T=5.5K

    isolated adatoms 4 atoms 16 atoms

    Extremely large MAE

    Adatoms Co in SmCo5 Co atomic chains

    MAE = 9.3 1.8 2.0 meV

    P. Gambardella et al., Science, 300, 1130, 2003

  • 46

    µ Bµ B

    µ B

    MAE

    MAE

    MAE

    MAE

    0.0

    0.05

    0.9

    9.3

    meV

    Mag

    neti

    zati

    on

    Magnetic field (T) 10

    10

    1

    10

    Mag

    neti

    zati

    onM

    agne

    tiza

    tion

    Mag

    neti

    zati

    onMagnetic field (T)

    Magnetic field (T)

    Magnetic field (T)

    in plane

    out of plane

    3.0 3.0

    LS

    µ B

    2.11.1

    LS

    2.1

    0.9

    LS

    1.6

    0.15LS

  • 47

    Reduced coordination of atoms on a flat surface favors survival of atomic-likecharacter.

    Stable ferromagnetic particles can be made smaller by artificially reducing the coordination.

    Magnetic anisotropy can be so high that a 7T field does not switch the moment of an adatom.

    Single Cobalt atoms on platinum

  • 48

    Ferromagnetism in Co chains on Pt

    P. Gambardella et al., Nature, 416, 301, 2002

    Easy direction

    80° away from easy direction

    Chains of ~80 atoms

    1D superparamagnetic ferro – TB ~ 15K

    ~15 spins blocks in ~80 atoms chains

  • 49

    Single Molecule Magnets : SMMs

  • 50

    Traditionally, ferromagnetism is a collective phenomenon :

    Tc

    But some molecules individually behave as small magnets :

    Single Molecule Magnets or SMM

    Fe8 Mn12Mn84Mn84

  • 51

    [Mn12O12(CH3COO)16(H2O)4] has S=10[V15As6O42(H2O)]- has S=1/2[Fe8O2(OH)12(tcan)6]8+ has S=10[Ni21(cit)12(OH)10(H2O)10]16- has S=3

    MnIVS=3/2

    MnIIIS=4/2

    Magnetization in Mn12

  • 52

    Measurement of a monolayer of Mn12

    1,2

    1,4

    L2L3

    H = 3TT = 2K

    RHCPL LHCPL degraded Mn12

    Photon Energy [eV]

    XA

    S In

    tens

    ity [a

    rb. u

    nits

    ]

    Mn edges

    640 650 660-0,05

    0,00

    0,05

    XMCD monolayer XMCD bulk

    XM

    CD

    [arb

    . uni

    ts]

    -3 -2 -1 0 1 2 3

    -1,0

    -0,5

    0,0

    0,5

    1,0[Mn12(L3,4,5-CB)16]

    2.0K

    XMCD data

    Mag

    netic

    mom

    ent o

    f Mn

    [arb

    . uni

    ts]

    Applied field [T]

    -1,0

    -0,5

    0,0

    0,5

    1,0

    Mag

    n. m

    omen

    t of m

    olec

    ule

    [arb

    . uni

    ts]

    SQUID on bulk sample

    M

    H

    EurEur. Phys. J. B., 73, 103. Phys. J. B., 73, 103--108, 108, 2010. 2010.

  • 53

    OO

    Cu

    N

    N

    O

    Tb

    O

    O

    F3C

    CF3

    O

    O

    CF3

    CF3

    OO

    O Cu N

    N

    Tb

    O

    O

    O

    OF3C

    CF3

    O

    O

    CF3

    F3C

    S=8.5 - TB=1.2K

    S. Osa, et al., J. Am. Chem. Soc., 2004, 126, 420-421.

    A 3d-4f SMM

  • 54

    1230 1240 1250 1260 1270 1280 1290-0.14-0.12-0.10-0.08-0.06-0.04-0.020.00

    1.0

    1.1

    1.2

    Tb M5,4 edge

    CuTb-hfac

    T~280mK XMCD (x10) at H=0T

    (before applying any field) XMCD at H=5T

    Photon Energy (eV)

    XM

    CD

    (arb

    . uni

    ts)

    920 930 940 950 960 970 980

    -0.04

    -0.02

    0.00

    0.02

    1.0

    1.1

    1.2

    Cu L3,2 edges

    CuTb-hfac

    T~340mK & H=3T

    Photon Energy (eV)

    XM

    CD

    (arb

    . uni

    ts)

    -6 -4 -2 0 2 4 6

    -0,8

    -0,6

    -0,4

    -0,2

    0,0

    0,2

    0,4

    0,6

    0,8

    Dy3Cu6Dy M5 edgeT=350mK

    XM

    CD

    / a

    .u.

    Applied field / T

    T. Hamamatsu, et al., Inorg. Chem., 2007, 46, 4458.

    « butterfly » magnetization curve :spin-phonons interactions

  • 55

    Magnetic polarization on N and O atoms

    395 400 405 410 415-0.0020

    -0.0015

    -0.0010

    -0.0005

    0.0000

    0.0005

    1.00

    1.05

    1.10

    XMCD ±6T1% edge jump effect

    CuTb_hfac

    T=600mKH=±6T

    Photon Energy (eV)

    XM

    CD (a

    rb. u

    nits)

    N K edge O K edge

    528 530 532 534

    -1

    0

    1

    2

    3

    CuIITbIII

    NiIITbIII

    CuIIDyIIIXAS

    (arb

    . uni

    ts)

    Energy (eV)

    0.0

    0.2

    0.4

    XM

    CD

    (arb. units)