inverse modeling of the microbial loop j. steele & a. beet woods hole oceanographic institution

19
Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution

Upload: gervase-chase

Post on 17-Jan-2018

220 views

Category:

Documents


0 download

DESCRIPTION

BiBi NiNi Losses from System due to inefficiency, e i External Inputs, K i N i = e i (  a ij N j ) + K i 0 < e i < 1.0, “Ecopath type” solution; specify e i, a ij K i solve for N i There are an equal number of variables and equations A unique solution exists

TRANSCRIPT

Page 1: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution

Inverse Modeling of the Microbial Loop

J. Steele & A. Beet

Woods Hole Oceanographic Institution

Page 2: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution

Benthivorous Fish

Pelagic Invertebrate

Predators

Micro-Phytoplankton

(>20m)

Seabirds

Deposit-feedingBenthos

Suspension- feeding Benthos

Detritus Ammonia

Fishing

R

Micro-Zooplankton(2-200m)

Meso-Zooplankton

(>200m)

Nitrate

Nano-Phytoplankton

(<20m)

PlanktivorousFish

Piscivorous Fish

Pre-recruits Pre-recruits Pre-recruits

MarineMammals

spawning

recruitment

Page 3: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution

Bi

Ni

Losses from Systemdue to inefficiency, ei

ExternalInputs, Ki

Ni = ei ( aij Nj ) + Ki

0 < ei < 1.0 , “Ecopath type” solution; specify ei, aij Ki solve for Ni

i

ija 1

There are an equal number of variables and equationsA unique solution exists

jij Na

Page 4: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution

Benthivorous FishB: 0.88

Pelagic InvertebratePredators

Sullivan & Meise 1996

1197Phytoplankton

Seabirds0.08

55.54Deposit-feeding

Benthos

30.19Suspension-

feeding Benthos

DOC 638Detritus 2.2x10^6 mg at N s^ -1

Ammonia

FishingLobsters: 0.9Shellfish: 0.9

Fish: 0.24+0.48+0.24

Phyto 501 RZoo ?

285Micro-

Zooplankton

202Meso-

Zooplankton

4.8x10^5 mg at N s^ -1Nitrate+Nitrite

2793Nano-

Phytoplankton

PlanktivorousFish

B: 9.85

Piscivorous FishB: 2.76

6.2

Pre-recruits Pre-recruits Pre-recruits

MarineMammals

6.0 from fish & Squid

1.8 from Zoo

7.8 total

spawning

recruitment

900Bacteria

Page 5: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution

Bi

Ni

ExternalInputs, Ki

Ni = ei ( aij Nj ) + Ki

“Inverse” solution: set bounds on ei , , and solve for

Ni = bi . Bi where bi is turnover rate

Losses from Systemdue to inefficiency, ei

ija

Problem: There are more variables than equationsThere is no unique solution

ib jij Na

jij Na

Page 6: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution

To obtain a unique solution the introduction of an objective function is needed. The maximization or minimization of this function provides a unique solution.

Vezina and Platt, 1988Question

ecological; how appropriate is this function?

Alternative

maximize resilience

2FlowsMin

Page 7: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution

Phyto

Microz mesoZ

Detritus

NO3

Pel.F.

Dem.F

Regn.

S.P. L.P.

Page 8: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution

Phyto

Microz mesoZ

Detritus

NO3

Pel.F.

Dem.F

Regn.

S.P. L.P.

Page 9: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution

Phyto

Microz mesoZ

Detritus

NO3

Pel.F.

Dem.F

Regn.

S.P. L.P.

Page 10: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution

N1Phyto

N2Microz

N3mesoZ

N4 Detritus

NO3

Pel.F.

Dem.F

S.P. L.P.

R3

R2

R1

R4FluxesRegnLosses

Regn

Graz

Page 11: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution
Page 12: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution
Page 13: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution
Page 14: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution
Page 15: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution

jij Na

Page 16: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution

Proportion of intake to Z, D to higher levels

F-ratio Fraction of detritus regeneration

0.75 .34 / .40 .90 / .40

0.4 <= P->M <= 1(Resilience / Sum of squares)

Proportion of intake to Z, D to higher levels

F-ratio Fraction of detritus regeneration

0.75 .44/ .39 .10 / .40

0.5 <= P->M <= 1(Resilience / Sum of squares)

Page 17: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution
Page 18: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution
Page 19: Inverse Modeling of the Microbial Loop J. Steele & A. Beet Woods Hole Oceanographic Institution

Proportion of intake to Z, D to higher levels

F-ratio Fraction of detritus regeneration

0.75 .34 / .40 .90 / .40

0.5 .56 / .62 .90 / .30

0.25 .73 / .77 .90 / .10

0.4 <= P->M <= 1(Resilience / Sum of squares)

Proportion of intake to Z, D to higher levels

F-ratio Fraction of detritus regeneration

0.75 .44/ .39 .10 / .40

0.5 .62 / .60 .10 / .30

0.25 .74 / .74 .10 / .10

0.5 <= P->M <= 1(Resilience / Sum of squares)