introduzione tmm_eng_col.pdf

13
17/04/2012 1 Technology of of Metallic Materials Prof. G. Ubertalli Text-book: - Lecture notes - Prof. Graziano Ubertalli (portale della didattica) Main topics • Introduction Hardening mechanism Aluminium, magnesium, titanium, copper alloys Aluminium, magnesium, titanium, copper alloys Steels and cast irons Corrosion and prevention Heat treatments Technological tests, microscopy Laboratory Prof. G. Ubertalli Laboratory Intermediate test Final test

Upload: davidedisaverio

Post on 06-Nov-2015

225 views

Category:

Documents


1 download

TRANSCRIPT

  • 17/04/2012

    1

    Technology

    of of

    Metallic Materials

    Prof. G. Ubertalli

    Text-book:

    - Lecture notes - Prof. Graziano Ubertalli (portale della didattica)

    Main topics

    Introduction

    Hardening mechanism

    Aluminium, magnesium, titanium, copper alloys Aluminium, magnesium, titanium, copper alloys

    Steels and cast irons

    Corrosion and prevention

    Heat treatments

    Technological tests, microscopy

    Laboratory

    Prof. G. Ubertalli

    Laboratory

    Intermediate test

    Final test

  • 17/04/2012

    2

    Introduction of ... Metallic Materials

    Metallic bonds

    High plastic strain

    Hardened after work hardening

    The main alloys are ductile

    They are composite metallic materials

    Prof. G. Ubertalli

    They show a wide range of chemical,

    physical and technological properties.

    Lattice StructuresFace Cubic Centered Iron (907-1400 C)

    Copper

    Silver

    Gold

    Nickel

    Aluminium

    LeadLead

    Platinum

    Body Cubic Centered Iron (< 907 C, > 1400 C)

    Tungsten

    Vanadium

    Molybdenum

    Chromium

    Alcaline Metals (Na, K)

    Prof. G. Ubertalli

    Compact Hexagonal Zinc

    Magnesium

    Titanium

    Zirconium

    Beryllium

    Cadmium

    Cobalt

  • 17/04/2012

    3

    Cubic Lattice

    BCC BCC

    Prof. G. Ubertalli

    FCC

    Hexagonal lattice

    HEX, HCP HEX, HCP

    Prof. G. Ubertalli

  • 17/04/2012

    4

    Comparison FCC - HEXC

    Prof. G. Ubertalli

    Main ordered structures

    AuCu

    Cu

    Au3Cu

    Cu

    Some examples of ordered

    Cu

    Au

    Cu

    Au

    CuZn

    Cu

    Prof. G. Ubertalli

    Some examples of ordered

    structure that respect the

    stoichiometry formula.

    Cu

    Zn

  • 17/04/2012

    5

    Bond Energy

    ELegame forteStrong bond

    Strong bond

    Legame forte

    Legame debole

    Strong bond

    Weak bond

    Weak bond

    Prof. G. Ubertalli

    a

    Thermal expansion coefficient

    Coefficienti di dilatazione termica a 20 C

    70

    80

    Hg

    PbAl

    CuFe

    W

    CsCl

    NaCl

    MgO

    0

    10

    20

    30

    40

    50

    60

    70

    -100 900 1900 2900

    Temperatura di fusione (C)

    Coeff(*10E-6)

    Prof. G. Ubertalli

    Influence of lattice structure and bond energy

    (melting temperature) on the thermal expansion

    coefficient.

    Temperatura di fusione (C)

  • 17/04/2012

    6

    Bond Energy - Physical characteristics

    Poisson Modulus

    Elastic Modulus

    E (GPa)

    Melting Temperature

    (C)

    Lattice

    W 0,27 350 3410 CCC

    Fe 0,28 210 1537 CCC

    Cu 0,35 112 1083 CFC

    Al 0,34 70 660 CFC

    Mg 42 650 EXC

    Pb 0,4 15,4 327 CFC

    Prof. G. Ubertalli

    The greater the energy bond, the higher the elastic

    modulus and the higher the melting temperature.

    Crystallography

    In an ordered lattice there are preferred directions

    and planes that connect atomic sites. Atoms can be

    represented as rigid spheres in contact with each

    other. These are high packed directions and planes.

    In the BCC lattice the spheres touch each other in

    the direction of the main diagonals of the cube. In

    the FCC lattice this happens on the diagonals of the

    faces.

    Prof. G. Ubertalli

    faces.

    Along these high packed directions, plastic slip

    may take place.

  • 17/04/2012

    7

    Hardening mechanism

    Grains size

    Solid solution Solid solution

    Strain hardening

    Precipitation of a second phase

    Alloy #ot reinforced

    [MPa]

    Reinforced

    [MPa]

    Maximum

    [MPa]

    Prof. G. Ubertalli

    [MPa] [MPa] [MPa]

    Iron 100 900 3000

    Alluminium 50 350-450 700

    Copper 55 600 1350

    Lattice defects

    There are different types of lattice defects:

    Punctual vacancies

    Prof. G. Ubertalli

    Punctual vacancies

    Linear dislocations

    Plain grains boundaries

    Volume stacking faults

  • 17/04/2012

    8

    VacanciesA two-dimensional representation of

    a vacancy in an ordered lattice.

    The amount of vacancies depends on

    the temperature of the alloy in

    respect to its melting temperature.

    nv

    n0= e

    W vKT

    Prof. G. Ubertalli

    Vacancies justify the motion of

    chemical elements in the lattice. D= D0e

    Q

    RT

    Dislocations

    A two-dimensional

    representation of an edge

    dislocation.

    1 2 3 4

    5 6 7

    dislocation.

    A three-dimensional

    representation of an edge

    dislocation.

    Prof. G. Ubertalli

    A TEM image of screw

    dislocations near second

    phase particles.

  • 17/04/2012

    9

    Schmidt's law - (max.)A law used to derive the maximum

    shear stress .

    As is a generic surface obtained by

    cutting a cylinder under an angle Pwith respect to the surface A,

    perpendicular to the applied load.

    We can write:

    AS = A / cos The tangential stress which works onthe inclined area AS is:

    = P / AS cos Substituting:

    As

    N

    Prof. G. Ubertalli

    Substituting:

    = P/A cos cos

    This equation evidences that the

    maxima shear stresses are obtained

    for and values of: = (90-) = 45

    Which gives: = 0,5P/A .

    P

    Dislocations

    The slipping of a

    complete complete

    crystallographic

    plane in a perfect

    lattice could bring

    about very high

    tangential stresses.0,5

    0,75

    1

    Prof. G. Ubertalli

    tangential stresses.

    0 1 2 3 4 5 6 7

    -1

    -0,75

    -0,5

    -0,25

    0

    0,25

    0,5

    Pi greco

    Energia

  • 17/04/2012

    10

    Dislocations

    If we take a glance at

    the two images on the

    right they may seen

    1 2 3 4

    5 6 7

    right they may seen

    equal ....

    .... but be careful!

    Prof. G. Ubertalli

    .... but be careful!

    A dislocation motion

    has taken place!

    1 2 3 4

    5 6 7

    Grains

    Petchs law.

    = + kD(-1/2)

    O ttone rico tto 70-30

    50

    60

    70

    Resistenza a trazione [psi]

    Allungamento %

    0 ,01 0,05 0,002 0 ,001

    | | | |

    0 = i + kD(-1/2)

    Prof. G. Ubertalli

    20

    30

    40

    0 1000 2000 3000

    A re a d e i b o rd i g ra n o [cm ^ 2 /cm ^ 3 ]

    Resistenza a trazione [psi]

    Allungamento %

    Resistenza

    Allungamento

    Grain size reticle

  • 17/04/2012

    11

    Grains IGrain size

    (average) [m]Average Area

    [m2]Number of

    grains in 1 mm2Grains per

    square inches at100 X

    A.S.T.M. Number

    280 62.000 16 1 1200 31.000 32 2 2200 31.000 32 2 2140 15.600 64 4 3100 7.800 128 8 470 3.900 256 16 550 1.950 512 32 635 980 1024 64 725 490 2048 128 8

    N = 2(n-1)

    Prof. G. Ubertalli

    N = 2

    where:N Grains per square inches

    n A.S.T.M. NumberCast iron

    Grains II

    Fine grains

    Ma

    xim

    um

    str

    en

    gth

    Transgranular Intergranular

    Fine grains

    Coarse grains

    Fracture mechanism as a function of the test temperature

    Prof. G. Ubertalli

    Te T [C]

    Transgranular Intergranular

    Grains size and deformability ..

  • 17/04/2012

    12

    Grains IIIExample

    A steel with 0.2% of C (AISI 1020).

    After annealing it shows a lower

    and upper yield stresses of about

    55 ksi and a rupture strength of 6555 ksi and a rupture strength of 65

    ksi (circles).

    After a permanent deformation of

    8%, the lower and upper yield

    stresses disappear (green

    triangles).

    After 30-minute heating at 625 C

    the yield stress of 77 ksi is reached

    Prof. G. Ubertalli

    the yield stress of 77 ksi is reached

    (blue squares).

    The work hardened material shows a very low rupture strain with respect to the annealed

    material. After the last type of thermo-mechanical treatment, an increase of strength is

    obtained, without loss of deformability.

    Solid Solution

    The increase of

    the strength of

    1000

    Strenght gain in respect of iron [MPa]the strength of

    the solid solution,

    induced by the

    presence of

    different metallic

    elements in solid

    solution in the

    lattice.

    10

    100

    Strenght gain in respect of iron [MPa]

    Prof. G. Ubertalli

    lattice.

    1

    0,1 1 10

    Strenght gain in respect of iron [MPa]

    Solute percent in volume

    Cr Mn Co Al, V Ni

    Mo Si, W Ti Be

  • 17/04/2012

    13

    Solid Solution II

    (A) (B) (C)

    Examples of local residual stresses (dash circles) in

    case of solute atoms and edge dislocation:

    Prof. G. Ubertalli

    case of solute atoms and edge dislocation:

    (A) Substitution atom of the same type of solvent atoms.

    (B) Smaller substitution atom

    (C) Larger substitution atom.

    Solid Solution III- curve of a low carbon steel characterized by

    lower and upper yield strengths, the Lders bands,

    strain hardening, necking and sample rupture.

    L

    u

    d

    e

    r'

    Strain hardening

    Yield stress- high- low

    Prof. G. Ubertalli

    B

    a

    n

    ds

    r'

    s