introduction to the quantum hall effect and topological...

43
Introduction to the Quantum Hall Effect and Topological Phases Mark O. Goerbig Ecole du GDR “Physique M ´ esoscopique, Carg ` ese, November 2016

Upload: others

Post on 03-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Introduction to the Quantum Hall Effect andTopological Phases

Mark O. Goerbig

Ecole du GDR “Physique Mesoscopique, Cargese, November 2016

Page 2: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Historical Introduction

What is the common point between

• graphene,

• quantum Hall effects

• and topological insulators?

... and what is it?

Page 3: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

The 1920ies: Band Theory

• quantum treatment of (non-interacting) electrons in aperiodic lattice

• bands = energy of the electrons as a function of aquasi-momentum

Page 4: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

1950-70: Many-Body Theory

• Physical System described by a local order parameter(a) ∆k = 〈ψ†

−k,↑ψ†k,↓〉 (superconductivity)

(b) Mµ(r) =∑

τ,τ ′〈ψ†τ (r)σ

µτ,τ ′ψτ ′(r)〉 (ferromagnetism)

• Ginzburg-Landau theory of second-order phase transitions(1957)

∆ = 0(disordered)

↔ ∆ 6= 0(ordered)

• symmetry breaking(a) broken (gauge) symmetry U(1)(b) broken (rotation) symmetry O(3)

• emergence of (collective) Goldstone modes(a) superfluid mode, with ω ∝ |k|(b) spin waves, with ω ∝ |k|2

Page 5: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

The Revolution(s) of the 1980ies

3 essential discoveries:

• integer quantum Hall effect (1980, v. Klitzing, Dorda,Pepper)

• fractional quantum Hall effect (1982, Tsui, Störmer,Gossard)

• high-temperature superconductivity (1986, Bednorz, Müller)

Page 6: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Integer Quantum Hall Effect (I)

8 12 160 4Magnetic Field B (T)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ xy

(h/e

)2

0

0.5

1.0

1.5

2.0

ρΩ

xx(k

)

2/3 3/5

5/9

6/11

7/15

2/53/74/9

5/11

6/13

7/13

8/15

1 2/3 2/

5/7

4/5

3 4/

Vx

VyIx

4/7

5/34/3

8/57/5

123456

Magnetic Field B[T]

[mesurement by J. Smet et al., MPI-Stuttgart]

QHE = plateau in Hall res. & vanishing long. res.

Page 7: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Integer Quantum Hall Effect (II)

Quantised Hall resistance at low temperatures

RH =h

e21

n

h/e2: universal constantn: quantum number (topological invariant)

• result independent of geometric and microscopic details

• quantisation of high precision (> 109)

⇒ resistance standard: RK−90 = 25 812, 807Ω

Page 8: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Fractional Quantum Hall Effect

partially filled Landau level → Coulomb interactions relevant

1983: Laughlin’s N -particle wave function

• no (local) order parameter associated with symmetrybreaking

• no Goldstone modes• quasi-particles with fractional charges and statistics

1990ies : description in terms of topological (Chern-Simons)field theories

Page 9: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

The Physics of the New Millenium

• simulation of condensed-matter models with optical lattices(cold atoms)

• 2004 : physics of graphene (2D graphite)

• 2005-07 : topological insulators

Page 10: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Graphene – First 2D Crystal

• honeycomb lattice =two triangular (Barvais) lattices

AB

B

B

e3

e1

2e

band structure

Page 11: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Band Structure and Conduction Properties (Bis)

I II I II

gap

metal (2D)

energy

Fermi

level

momentum

electron metal hole metal

Fermi

levelinsulator (2D)

semimetal (2D) Fermi

level

graphene (undoped)Fermi

level

Fermilevel

energy

density

of states

Page 12: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Topological Insulators

generic form of a two-band Hamiltonian:

H = ǫ0(q)1+∑

j=x,y,z

ǫj(q)σj

• Haldane (1988): anomalous quantum Hall effect → quantumspin Hall effect (QSHE)

• Kane and Mele (2005): graphene with spin-orbit coupling• Bernevig, Hughes, Zhang (2006): prediction of a QSHE in

HgTe/CdTe quantum wells• König et al. (2007): experimental verification of the QSHE

⇒ 3D topological insulators (mostly based on bismuth):surface states ∼ ultra-relativistic massless electrons

Page 13: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Outline of the Classes

Mon : Introduction and Landau quantisation

Tue : Issues of the IQHE; Introduction to the Berry phase

Thu : Simple models for topological insulators

Page 14: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Further Reading

• D. Yoshioka, The Quantum Hall Effect, Springer, Berlin (2002).

• S. M. Girvin, The Quantum Hall Effect: Novel Excitations and BrokenSymmetries, Les Houches Summer School 1998http://arxiv.org/abs/cond-mat/9907002

• G. Murthy and R. Shankar, Rev. Mod. Phys. 75, 1101(2003).http://arxiv.org/abs/cond-mat/0205326

• M. O. Goerbig, Quantum Hall Effectshttp://arxiv.org/abs/0909.1998

• B. A. Bernevig, Topological Insulators and TopologicalSuperconductors, Princeton UP (2013).

Page 15: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

1. Introduction To the Integer Quantum Hall

Effect and Materials

Page 16: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Classical Hall Effect (1879)

B

I

longitudinal Hallresistance resistance

C1

C4

C2 C3

C5C6

2D electron gas_ _ _ _ _ _

++ + + ++

Quantum Hall system :2D electrons in a B-field

Hal

l res

ista

nce

magnetic field B

RH(b)

Hall resistance:

RH = B/enel

Drude model (classical stationary equation):

dp

dt= −e

(

E+p

m×B

)

− p

τ= 0

Page 17: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Resistivity and Conductivity

σ0Ex = −enel

mpx −

enel

mpy(ωCτ)

σ0Ey =enel

mpx(ωCτ)−

enel

mpy

Ohm’s law : E = ρj with current density j = −enelv = −enelp/m

⇒ resistivity/conductivity tensor

ρ =1

σ0

(

1 ωCτ−ωCτ 1

)

σ = ρ−1 =σ0

1 + (ωCτ)2

(

1 −ωCτωCτ 1

)

Link with mobility µ = eτ/m: ωCτ = µB

Hall resistivity : ρH = ωCτ/σ0 = B/enel

Page 18: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Shubnikov-de Haas Effect (1930)H

all r

esis

tanc

e

magnetic field B

long

itudi

nal r

esis

tanc

e

Bc

(a)

Den

sity

of s

tate

s

EnergyEF

hωC

(b)

oscillations in longitudinal resistance→ Einstein relations σ0 ∝ ∂nel/∂µ ∝ ρ(ǫF )→ Landau quantisation (into levels ǫn)

σ0 ∝ ρ(ǫF ) ∝∑

n

f(ǫF − ǫn)

Page 19: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Quantum Hall Effect (QHE)

8 12 160 4Magnetic Field B (T)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ xy

(h/e

)2

0

0.5

1.0

1.5

2.0ρ

Ωxx

(k)

2/3 3/5

5/9

6/11

7/15

2/53/74/9

5/11

6/13

7/13

8/15

1 2/3 2/

5/7

4/5

3 4/

Vx

VyIx

4/7

5/34/3

8/57/5

123456

Magnetic Field B[T]

QHE = plateau in RH & RL = 0

1980 : Integer quantum Hall effect (IQHE)1982 : Fractional quantum Hall effect (FQHE)

Page 20: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Metal-Oxide Field-Effect Transistor (MOSFET)

conductionband

acceptorlevels

valenceband

conductionband

acceptorlevels

valenceband

conductionband

acceptorlevels

valenceband

E

z

FE

z

F

E

z

F

(a)

(b) (c)

VVG

G

metal oxide(insulator)

semiconductor

metal oxide(insulator)

semiconductor metal oxide(insulator)

II

I

VG

z

z

E

E

E

1

0

metaloxide

semiconductor

2D electrons

usually silicon-based materials (Si/SiO2 interfaces)

Page 21: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

GaAs/AlGaAs Heterostructure

dopants

AlGaAs

z

EF

GaAs

dopants

AlGaAs

z

EF

GaAs(a) (b)

2D electrons

Impurity levels farther away from 2DEG (as compared toSi/SiO2)

⇒ enhanced mobility (FQHE)

Page 22: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Electronic Mesurement of Graphene

SiO

Si dopé

V

2

g

Novoselov et al., Science 306,p. 666 (2004)

Page 23: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

2. Landau Quantisation and Integer

Quantum Hall Effect

Page 24: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Landau quantisation (reminder of first class)

• 2D electrons in continuum limit (|q|a≪ 1)

H(px, py) p = ~q

• Peierls substitution : p → Π = p+ eA(r) for a/lB ≪ 1

H(px, py) → HB(Πx,Πy)

• Quantum mechanics

[x, px] = [y, py] = i~ → [Πx,Πy] = −i~2

l2B

⇒ Ladder operators [a, a†] = 1

Πx =~√2lB

(

a† + a)

Πy =~√2ilB

(

a† − a)

Page 25: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Simple Landau levels

Schrödinger fermions :

HB|n〉 = ǫn|n〉, a†a|n〉 = n|n〉, ǫn = ~ωC(n+ 1/2)

Dirac fermions (graphene) :

HB =√2~vFlB

(

0 aa† 0

)

, ψn =

(

unvn

)

, ǫλ=±,n = λ~vFlB

√2n

Page 26: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Simple Landau levels

Schrödinger fermions :

HB|n〉 = ǫn|n〉, a†a|n〉 = n|n〉, ǫn = ~ωC(n+ 1/2)

Dirac fermions (graphene) :

HB =√2~vFlB

(

0 aa† 0

)

, ψn =

(

unvn

)

, ǫλ=±,n = λ~vFlB

√2n

Eigenstates :

ψn=0 =

(

0|n = 0〉

)

ψλ,n= =1√2

(

|n− 1〉λ|n〉

)

Page 27: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Infrared Transmission Spectroscopy

10 20 30 40 50 60 70 80

0.96

0.98

1.00

B

E

2L3L

2L

3L

0L

1L

Be2cE1 ~1L

1E

1E

A

B

C

D

B

E

2L3L

2L

3L

0L

1L

Be2cE1 ~1L

1E

1E

A

B

C

D

(D)(C)

(B)

Rel

ativ

e tra

nsm

issi

on

Energy (meV)

(A)

0.4 T1.9 K

0.0 0.5 1.0 1.5 2.00

10

20

30

40

50

60

70

80 )(32 DLL )(23 DLL

)(12 CLL )(21 CLL

)(01 BLL )(10 BLL

)(21 ALL

Tran

sitio

n en

ergy

(meV

)

sqrt(B)

10 20 30 40 50 60 70 80 900.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Rel

ativ

e tra

nsm

issi

on

Energy (meV)

1 T

0.4T

2T4T

10 20 30 40 50 60 70 80 90

0.99

1.00

0.7T

0.2T

0.3T

0.5T

Grenoble high−field group: Sadowski et al., PRL 97, 266405 (2007)

transition C

transition B

rela

tive

tran

smis

sion

rela

tive

tran

smis

sion

Energy [meV]

Energy [meV]

Tra

nsm

issi

on e

nerg

y [m

eV]

Sqrt[B]

selectionrules :

λ, n→ λ′, n±1

Page 28: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Edge States

ymaxn+1

ν = n ν =

n−1

yymaxymaxn n−1

n+1

n

n−1

(a)

(b)

y

xν = n+1

µ

LLs bended upwards atthe edges (confinementpotential)

chiral edge states⇒ only forward scattering

ν= n+1 ν= n ν= n−1

Page 29: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Four-terminal Resistance Measurement

I I

R ~

56

2 3

41

R ~ µ − µ = µ − µ

3µ − µ = 02

5

L

H

µ = µµ = µ2 LL3

µ = µ = µ6 5 R

3 R L

: hot spots [Klass et al, Z. Phys. B:Cond. Matt. 82, 351 (1991)]

Page 30: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

IQHE – One-Particle Localisation

n

ε

(n+1)

ν

NL

(a)

density of states

RxyxxR

B=n

h/e n2

FE

Page 31: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

IQHE – One-Particle Localisation

n

ε

n

ε(b)

(n+1)

ν

NL

(a)

density of statesdensity of states

RxyxxR

B

EF

RxyxxR

B=n

h/e n2

FE

Page 32: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

IQHE – One-Particle Localisation

n

ε

n

ε

n

ε(b) (c)

(n+1)

ν

NL

(a)

density of states density of states density of states

extended states

localised states

RxyxxR

B

EF

Rxy

B

xx

EF

R

h/e (n+1)

h/e n2

2

RxyxxR

B=n

h/e n2

FE

Page 33: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

IQHE in Graphene Novoselov et al., Nature 438, 197 (2005)

Zhang et al., Nature 438, 201 (2005)

V =15V

Density of states

B=9T

T=30mK

T=1.6K

∼ ν

∼ 1/ν

Graphene IQHE:

R = h/e

at = 2(2n+1)

at = 2n

ν

ν

H ν2

(no Zeeman)

Usual IQHE:

g

Page 34: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Percolation Model – STS Measurement

2DEG on n-InSb surface Hashimoto et al., PRL 101, 256802 (2008)

(a)-(g) dI/dV for different values of sample potentials (lower spinbranch of LL n = 0)

(i) calculated LDOS for a given disorder potential in LL n = 0

(j) dI/dV in upper spin branch of LL n = 0

Page 35: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Towards topological band theory

• Berry-ology :

– Berry connexion : ~An(k) = iψ†n(k)∇kψn(k)

– Berry curvature : ~Bn(k) = ∇k × ~An(k)

– Berry phase : γn =∮

dk · ~An(k)

→ Chern number : Cn = 1

BZdk · ~An(k)

Page 36: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Towards topological band theory

• Pseudo-Chern number of a (massive) Dirac point :

C =1

2ξsgn(m)

Page 37: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Towards topological band theory

• Pseudo-Chern number of a (massive) Dirac point :

C =1

2ξsgn(m)

• Remarks :– half integer (not a true toplogical invariant) due to

non-compact support k ∈ R2

– each Dirac point contributes ±1/2 to total Chern number→ Dirac points (on a lattice) come in pairs to get integer

Chern numbers ! (fermion doubling)– Haldane model (CK = CK′) : C = CK + CK′ = ±1– Kane-Mele model : C↑ = −C↓

Page 38: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Non-local transport in QSHE (I)

CdTe/HgTe quantum wells [Roth et al., Science 2009]

I1

2 3

4

56

V

I1

2 3

4

56

V

-0.5 0.0 0.5 1.0 1.5 2.00

5

10

15

20

25

30

35

40

R (

kΩ)

V* (V)

(1 x 0.5) µm2

(2 x 1) µm2

R14,14=3/2 h/e2

R14,23=1/2 h/e2

Page 39: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

Non-local transport in QSHE l’EHQS (II)

CdTe/HgTe quantum wells [Roth et al., Science 2009]

Fig. 4

0.0 0.5 1.0 1.5 2.00

5

10

15

20

25

R (

kΩ)

V* (V)

I: 1-4

V: 2-3

1

3

2

4

R14,23=1/4 h/e2

R14,14=3/4 h/e2

Page 40: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

3D topological insulators (I)

Frist generation based on Bi1−xSbx alloys [Hasan and Kane, RMP 2010]

→ band inversion above critical Sb concentration xc ≃ 0.04

Page 41: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

3D topological insulators (II)

• closing of (∼ mass) gap at band inversion

⇒ Dirac fermions at surface of 3D toplogical insulator (∼ edgestates in 2D) :

Hsurface = vp · σ

p : momentum in surfaceσ : characterises true spin

⇒ single Dirac point (contrary to graphene with 4)

Page 42: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

3D topological insulators (III)

2nd generation : Bi2Se3, Bi2Te2, Sb2Te3 [Zhang et al., 2009]

(ab initio calculations)

Page 43: Introduction to the Quantum Hall Effect and Topological Phasesmeso2016.sciencesconf.org/data/pages/Lecture_Mark_Cargese_1116.pdfTopological Insulators generic form of a two-band Hamiltonian:

3D topological insulators (IV)

ARPES measurements of de Dirac fermions at a Bi2Se3 surface[Hsieh et al., 2009]

→ change of Fermi level by chemical doping (absorption of NO2)