introduction to the electron phonon renormalization of the electronic band structure

32
Elena Cannuccia Institut Laue-Langevin, Grenoble (France) Introduction to the electron Introduction to the electron phonon renormalization of phonon renormalization of electronic band structure electronic band structure

Upload: elena-cannuccia

Post on 18-Jul-2015

63 views

Category:

Science


1 download

TRANSCRIPT

Page 1: Introduction to the electron phonon renormalization of the electronic band structure

Elena CannucciaInstitut Laue-Langevin, Grenoble (France)

Introduction to the electron Introduction to the electron phonon renormalization of phonon renormalization of electronic band structureelectronic band structure

Page 2: Introduction to the electron phonon renormalization of the electronic band structure

The N particles The N particles world: world:

ionsions and and electronelectronss all togetherall together

Electron phonon renormalizationElectron phonon renormalization of electronic band structure of electronic band structure

Page 3: Introduction to the electron phonon renormalization of the electronic band structure

Born–Oppenheimer approximation Born–Oppenheimer approximation

a perturbative approacha perturbative approach

Electron phonon at workElectron phonon at work

beyond the beyond the Born–Oppenheimer approximationBorn–Oppenheimer approximation

Page 4: Introduction to the electron phonon renormalization of the electronic band structure

The separated worlds of The separated worlds of phononsphonons and electron and electronss

Electrons live in the bands generated by the ionic potential

Phonons are the quantizedionic vibrations on the potential

generated by the electrons

Page 5: Introduction to the electron phonon renormalization of the electronic band structure

Born–Oppenheimer approximation Born–Oppenheimer approximation

a perturbative approacha perturbative approach

Electron phonon at workElectron phonon at work

beyond the beyond the Born–Oppenheimer approximationBorn–Oppenheimer approximation

Page 6: Introduction to the electron phonon renormalization of the electronic band structure

Coupling electrons and phonons …Coupling electrons and phonons …Superconductivity Joule's heating

Electron relaxation(luminescence)

Polaronic transport Coherent PhononsPeierls instability

Raman Spectroscopyetc......

Page 7: Introduction to the electron phonon renormalization of the electronic band structure

EPC on the electronic structureEPC on the electronic structure

Kink in the band structure Mass Enhancement

Temperature dependence of band gaps

A. Marini, PRL 101,106405 (2008)

Page 8: Introduction to the electron phonon renormalization of the electronic band structure

Energy levels renormalizationEnergy levels renormalization

Thermal Thermal expansionexpansion

Electron-Phonon Electron-Phonon interactioninteraction

P.B. Allen and M. Cardona Phys. Rev. B 27 4760 (1983)

>>

Where does the coupling come from?

Page 9: Introduction to the electron phonon renormalization of the electronic band structure

Born–Oppenheimer approximation Born–Oppenheimer approximation

a perturbative approacha perturbative approach

Electron phonon at workElectron phonon at work

beyond the beyond the Born–Oppenheimer approximationBorn–Oppenheimer approximation

Page 10: Introduction to the electron phonon renormalization of the electronic band structure

A perturbative approach:A perturbative approach:Heine-Allen-Cardona 1/2Heine-Allen-Cardona 1/2

For a review see M. Cardona, Solid State Commun. 133, 3 (2005).

H (x+u)=H (x) + ∂V scf

∂ x u +

12

2V scf

∂ x2 u2 +...

Using Perturbation TheoryPerturbation Theory, we get the correction

to the energy

δ Ei=⟨Ψi(0)∣ ∣Ψi

(0)⟩ + ⟨Ψi

(0)∣ ∣Ψ i

(0)⟩ + ⟨Ψi

(0)∣ ∣Ψi

(1)⟩ +...

First order PT Second order PT

V scf (x+u)=V scf (x) + ∂V scf

∂ x u +

12

2V scf

∂ x2 u2 +....

Page 11: Introduction to the electron phonon renormalization of the electronic band structure

A perturbative approach:A perturbative approach:Heine-Allen-Cardona 2/2Heine-Allen-Cardona 2/2

Debye-Waller Fan

δ Ei(β) = [12

⟨∂

2V scf

∂ x2⟩ + ∑ j

(Ei−E j)−1

⟨∂V scf

∂ x∣j ⟩ ⟨ j∣

∂V scf

∂ x⟩] ⟨u2

Clear dependence on the Temperature

B(w) = Bose function

δ En k (β)=∑q λ n '[

∣gn n' kqλ ∣

En k−En ' k+q

−Λnn ' k

q λ

En k−En ' k

](2B (ωq λ)+1)

Thermal average

Average on theelectronic

wavefunction

FINAL FORMULA

Page 12: Introduction to the electron phonon renormalization of the electronic band structure

All the previous theory can be reformulated in term of Green's function including non­adiabatic effects 

Beyond the static Beyond the static perturbation theoryperturbation theory

Page 13: Introduction to the electron phonon renormalization of the electronic band structure

Electron-phonon coupling from a MBPT perspective

ϵn k En k(T )+iΓn k(T )

Electron scatters with 1 phonon at a time

Electron­Phonon Self Energy

Temperature dependenceSpectral Functions

Enk

Γnk

Page 14: Introduction to the electron phonon renormalization of the electronic band structure

Born–Oppenheimer approximation Born–Oppenheimer approximation

a perturbative approacha perturbative approach

Electron phonon coupling at workElectron phonon coupling at work

beyond the beyond the Born–Oppenheimer approximationBorn–Oppenheimer approximation

Page 15: Introduction to the electron phonon renormalization of the electronic band structure

Spectroscopy: theoretical point of

viewWhat really theoreticians

calculate!!

Page 16: Introduction to the electron phonon renormalization of the electronic band structure

Finite temperature electronic Finite temperature electronic and optical and optical

properties of zb-GaNproperties of zb-GaN

H. Kawai, K. Yamashita, E. Cannuccia, A. MariniPhys. Rev. B. 89, 085202 (2014)

What we can

do now!!!BroadeningBroadening induced

by electron-phonon scattering andtemperature dependence

Page 17: Introduction to the electron phonon renormalization of the electronic band structure

The gap of diamond The gap of diamond (1/2)(1/2)

F. Giustino, et al.  PRL, 105, 265501 (2010)E. Cannuccia, Phys. Rev. Lett. 107, 255501 (2011)

Logothedis et al. PRB 46, 4483 (1992) 

Electronic Gap: 7.715 eV

Renormalization: ~400 meV

Classical ions

Page 18: Introduction to the electron phonon renormalization of the electronic band structure

The gap of diamond The gap of diamond (2/2)(2/2)

Exp: Logothetidis et al.PRB 46, 4483 (1992)

Quantum (PI)MD calculations

Ramirez et al. PRB 73, 245202 (2006)

Page 19: Introduction to the electron phonon renormalization of the electronic band structure

Isotopic EffectsIsotopic Effects

⟨u2⟩=⟨

h4Mω

{2[e−hω/KT−1]

−1+1}⟩

At high T, independent of M (classical effect)

At low T, zero point vibrations (quantum)

⟨u2⟩∝KT

⟨u2⟩∝M−1/2

The quantistic The quantistic zero-point zero-point

motion effectmotion effect

Parks et al. PRB 49,14244 (1994)

This renormalization should be taken into account when state of the art ab initio calculations of the gap are

comparedwith experimental results.

Eg

MM→∞Eg electronic

Page 20: Introduction to the electron phonon renormalization of the electronic band structure

Shrinking of the gapShrinking of the gap

Page 21: Introduction to the electron phonon renormalization of the electronic band structure

It's time to revise previous electronic structure

calculations?

Page 22: Introduction to the electron phonon renormalization of the electronic band structure

What about dynamical effects?What about dynamical effects?

Page 23: Introduction to the electron phonon renormalization of the electronic band structure

Dynamical effects in diamondDynamical effects in diamond

Logothedis et al. PRB 46, 4483 (1992)

E. Cannuccia, Phys. Rev. Lett. 107, 255501 (2011)

Signature of Signature of the dynamical the dynamical

effectseffects

Page 24: Introduction to the electron phonon renormalization of the electronic band structure

Breakdown of the QP pictureBreakdown of the QP picture

E. Cannuccia and A. MariniE. Cannuccia and A. Marini

Europ. Phys. J. B. Europ. Phys. J. B. 8585, 320 (2012), 320 (2012)

Page 25: Introduction to the electron phonon renormalization of the electronic band structure

What if LDA fails to describe the electron-phonon coupling?

What if the electron-phonon coupling causes degeneracy and crossing of quasi-particle levels?

In the next talks......In the next talks......

Page 26: Introduction to the electron phonon renormalization of the electronic band structure

ConclusionsConclusions Perturbative approach to the electron­phonon coupling

   Finite temperature optical spectra

 Band gap renormalization induced by the EPC

 Dynamical effects on the electronic properties

Page 27: Introduction to the electron phonon renormalization of the electronic band structure

Thank you for your attention

Page 28: Introduction to the electron phonon renormalization of the electronic band structure

S. Ponce, G. Antonius, P. Boulanger, E. Cannuccia, et al. Comp. Mat. Science, 83, 341, (2014)

Implementation of large formula: source of infinite

errors but ...

Page 29: Introduction to the electron phonon renormalization of the electronic band structure

Carbon contributionSi contrib.

TotalRenorm.

Temp. Dep. of gap: SiC, path integral molecular dynamics

Hernández, Herrero, Ramírez, Cardona, PRB 77 045210 2008

Page 30: Introduction to the electron phonon renormalization of the electronic band structure

Polarons in an Hamiltonian representation (I)

k kq

k kq

q

q

Phonon population:

Basis setT = 0 °K

H

Many Body

GF's evaluated from the matrix diagonalization are equivalent to the  

MB ones

Two bands model

Page 31: Introduction to the electron phonon renormalization of the electronic band structure

Polaronic State:

More polarons than electrons!

H

T = 0 °KBasis Set

0

E

Spectral Function

Polarons in an Hamiltonian representation (II)

Page 32: Introduction to the electron phonon renormalization of the electronic band structure

A. Eiguren and C. Ambrosch-Draxl, PRL 101 036402 (2008)

Quasi-particle Band Structure Induced by the Electron-phonon interaction on a surface