introduction to power consumption in digital integrated...

23
Introduction to Power Consumption in Digital Integrated Circuits Arnaud Tisserand CNRS, IRISA laboratory, CAIRN research team ECOFAC 2010 Plestin les Gr` eves March 29th – April 2nd, 2010 Summary Introduction Power/energy consumption sources Power/energy reduction methods Examples on arithmetic operators Conclusion & References A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 2/90 Power: Orders of Magnitude 10 -12 pW 10 -9 nW 10 -6 μW 10 -3 mW 1 W 10 3 kW 10 6 MW 10 9 GW 10 12 TW 10 15 PW total power received by the earth from the sun (170 PW) total electric production capacity worldwide in 2007 (4.4 TW) France peak consumption in 2009 (92 GW) Three Gorges dam in China (18 GW) nuclear power plant “slice” (900 MW) Google data center (20 MW) ENIAC computer in 1946 (150 kW) electric heater (2 kW) high-performance microprocessor Xeon X3470 2.4 GHz (95 W) low-power microprocessor VIA C7 1.2 GHz (5 W) 16-bit MCU TI MSP430-2xx active 3V 16 MIPS (250 μA/MIPS) 65 nm NAND2-D2 HP @ 100 MHz dynamic power (1.2 μW/MHz) 65 nm NAND2-D2 HP static power (15 μW) quartz wristwatch (1 μW) 8-bit MCU sleep mode (10 nW) human cell (1 pW) A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 3/90 Electric Energy Cost for Households US$/kWh 0 0.05 0.10 0.15 0.20 0.25 0.30 year 1999 2000 2001 2002 2003 2004 2005 2006 2007 France Canada Denmark Germany United States United Kingdom Switzerland Source: US Energy Information Administration. Aug. 2008 Electricity cost (EDF) in France, February/March 2010: 0.0839 e/kWh day rate 0.0519 e/kWh “night” rate 6.54 e/month for a small house A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 4/90

Upload: lyliem

Post on 12-Apr-2018

229 views

Category:

Documents


3 download

TRANSCRIPT

Introduction to Power Consumptionin Digital Integrated Circuits

Arnaud Tisserand

CNRS, IRISA laboratory, CAIRN research team

ECOFAC 2010Plestin les Greves

March 29th – April 2nd, 2010

Summary

• Introduction

• Power/energy consumption sources

• Power/energy reduction methods

• Examples on arithmetic operators

• Conclusion & References

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 2/90

Power: Orders of Magnitude

10−12 pW

10−9 nW

10−6 µW

10−3 mW

1 W

103 kW

106 MW

109 GW

1012 TW

1015 PW

total power received by the earth from the sun (170 PW)

total electric production capacity worldwide in 2007 (4.4 TW)France peak consumption in 2009 (92 GW)Three Gorges dam in China (18 GW)nuclear power plant “slice” (900 MW)

Google data center (20 MW)ENIAC computer in 1946 (150 kW)

electric heater (2 kW)high-performance microprocessor Xeon X3470 2.4 GHz (95 W)low-power microprocessor VIA C7 1.2 GHz (5 W)

16-bit MCU TI MSP430-2xx active 3V 16 MIPS (250 µA/MIPS)

65 nm NAND2-D2 HP @ 100 MHz dynamic power (1.2 µW/MHz)65 nm NAND2-D2 HP static power (15 µW)quartz wristwatch (1 µW)

8-bit MCU sleep mode (10 nW)

human cell (1 pW)

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 3/90

Electric Energy Cost for Households

US$/kWh

0

0.05

0.10

0.15

0.20

0.25

0.30

year19

9920

0020

0120

0220

0320

0420

0520

0620

07

France

Canada

Denmark

Germany

United States

United Kingdom

Switzerland

Source: US Energy Information Administration. Aug. 2008

Electricity cost (EDF) in France, February/March 2010:

• 0.0839 e/kWh day rate

• 0.0519 e/kWh “night” rate

• 6.54 e/month for a small house

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 4/90

Electricity Consumption Worldwide 1980–2006PWh

2

4

6

8

10

12

14

16

0year

1980

1985

1990

1995

2000

2005

total

North America

Europe

Eurasia

Asia & Oceania

Central&South AmericaMiddle EastAfrica

Source: US Energy Information Administration, Forecasts & Analysis.

http://www.eia.doe.gov

year 1980 1985 1990 1995 2000 2005world population [Gp] 4.435 4.831 5.263 5.674 6.070 6.454

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 5/90

Electric Consumption Forecasts

PWh

4

8

12

16

20

24

28

32

0year

2006

2010

2015

2020

2025

2030

total, world

renewables, world

total, OECD

renewables, OECD

total, non-OECD

renewables, non-OECD

World population: 6.5 Gp in 2005 −→ 8.2 Gp in 2030 (expected value)

Source: US International Energy Outlook 2009. Energy Information Administration Office of

Integrated Analysis and Forecasting U.S. Department of Energy. May 2009,

http://www.eia.doe.gov/oiaf/ieo/index.html

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 6/90

Energy Production and Consumption in France

TWh

50

100

150

200

250

300

350

400

450

500

550

0year

1970

1975

1980

1985

1990

1995

2000

200520

0620

07

Mp

50

52

54

56

58

60

62

popul.

production

consumption

leakageimport

export

Source: Production-distribution de l’energie electrique en France et dans les regions en 2005

et 2006. Rapport du Commissariat general au developpement durable

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 7/90

Energy Production and Consumption in French Regions

TWh

0

20

40

60

80

100

120

Alsace

Aquitain

e

Auverg

ne

Basse

-Nor

man

die

Bourg

ogne

Breta

gne

Centr

e

Champag

ne-Ard

enne

Corse

Franch

e-Com

te

Hau

te-N

orm

andie

Ile-d

e-Fra

nce

Langu

edoc-

Rouss

illon

Limou

sin

Lorra

ine

Mid

i-Pyr

enee

s

Nor

d-Pas

-de-

Calai

s

Pays-

de-la

-Loi

re

Picar

die

Poito

u-Char

ente

s

Prove

nce-A

lpes

-Cot

e-Azu

r

Rhone-

Alpes

production consumption

Source: Production-distribution de l’energie electrique en France et dans les regions en 2005

et 2006. Rapport du Commissariat general au developpement durable

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 8/90

Power Production, Distribution and Consumption in France

2007 data:

• total energy production: 544 433 GWh

• nuclear energy production: 418 609 GWh

• coal + fuel oil energy production: 58 359 GWh

• hydroelectric + wind energy production: 67 465 GWh

• nuclear power capacity: 63 260 MW

• nuclear production time: 418 609×100063 260 ≈ 6617 h

• number of hours per year: 365.25 j× 24 h/j = 8766 h

2006 data:

• length of power lines: 705 517 km (LV) + 734 527 km (H&MV)

• Earth to Moon average distance: 384 403 km

Source: Production-distribution de l’energie electrique en France et dans les regions en 2005

et 2006. Rapport du Commissariat general au developpement durable

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 9/90

Power Production and Consumption in France

2009 data:

• energy consumptionI total: 486.4 TWh (−1.6 % 2009 / 2008)I leakage: 33.6 TWh

• energy productionI total: 518.8 TWhI nuclear: 390.0 TWhI coal + fuel oil: 54.8 TWhI hydroelectric: 61.8 TWhI wind: 7.8 TWhI other renewable energies: 4.4 TWh

• January 7th (very cold day, −7.8 oC / avg. temp.)I max. energy consumption: 2 037 GWhI max. power consumption: 92.4 GW

Source: L’energie electrique en France. Plaquette 2009 RTE (Reseau de transport

d’electricite). Valeurs provisoires

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 10/90

Power Consumption and Production in France (GW)

h0 2 4 6 8 10 12 14 16 18 20 22 24

GW

0

10

20

30

40

50

60

70

80

90

Jan. 5th, consumptionJan. 5th, total production

Jan. 5th, nuclear prod.

Jan. 5th, coal prod.Jan. 5th, fuel oil prod.

Jan. 5th, hydroelectric prod.

Jan. 7th, consumption

Sep. 22th, consumptionSep. 20th, consumption

date nuclear coal fuel oil hydroelectric totalTue. 2009-01-05 20h 57.5 6.8 2.2 14.2 80.9Sun. 2009-09-20 20h 39.1 2.0 0.0 3.9 45.1Tue. 2009-09-22 20h 42.5 4.8 0.0 4.3 51.7

Source: RTE (Reseau de transport d’electricite) http://www.rte-france.com/

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 11/90

Standby Power

product avg. standby power [W]

mobile phone charger 0.26

LCD computer display 1.38

desktop computer 21.13

notebook computer 15.77

laser printer 1.58

CD player 5.04

DVD player 1.55

microwave oven (door closed) 3.08

US values:

• 5—11 % of total electricity consumption

• 10 G$ electricity cost

• 40 products/household

Source: Lawrence Berkeley National Laboratory

http://standby.lbl.gov/summary-table.html

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 12/90

Power Consumption of US Servers and Data Centers

2006 data:

• all servers and data centers: 61 TWh (≈ 1.5 % US electricity)I cost 4.5 G$I requires 7 GW production (≈ 15 base-load power plants)I > consumption by nation’s color televisionsI consumption of ≈ 5.8 million average US householdsI 2× energy consumption in 2000 for this purpose

• federal servers and data centers: ≈ 6 TWh

• power and cooling infrastructure ≈ 50 % total consumption

• forecasts for 2011:I 2× energy (cost 7.4 G$)I would require 12 GW production and an additional 10 power plants

Source: Report to Congress on Server and Data Center Energy Efficiency. US Environmental

Protection Agency (EPA). Aug. 2007

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 13/90

Reasons for Reducing Power Consumption

year

1990

1995

2000

2001

2004

2005

2008

2010

$

0

500

1000

1500

2000

2500

3000

3500

server

total

infrastructure

energy

cost(energy for 1 server / 1 year) > cost(server)

Source: C. Belady. In the Data Center, Power and Cooling Cost More Than the IT Equipment

It Supports. Electronics Cooling Magazine, Vol. 13, N. 1, May 2007

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 14/90

Cooling in Data Centers

• cooling is a significant challenge

• < 50 % power for electronic equipments (30–40 % in some cases)

• problem: keeping the hardware cool and humidified

Source: J. Cho, T. Lim, B. S. Kim. Measurements and predictions of the air distribution

systems in high compute density (Internet) data centers. Energy and Buildings, vol. 41, pp.

1107-1115, 2009

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 15/90

Power Distribution in Data Centers

bu

ildin

gp

ower

sup

ply

serverAC/DC

serverAC/DC

server

server

server

server

UPS

AC/DC DC/AC

PDU

UPS

AC/DC

UPS

AC/DC DC/AC

PDU PSU

AC/DC

Source: California Energy Commission’s Public Interest Energy Research Program

PDU: power distribution unit, PSU: power supply unit, UPS: uninterruptible power supply

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 16/90

Supercomputing Sites

rank site country # cores perf. power Wcore

MFlopsW

TFlops kW

1 ORNL USA 224 162 1 759 6 950 31 2532 LANL USA 122 400 1 042 2 345 19 4443 NICS USA 98 928 8314 FZJ Germany 294 912 825 2 268 8 3645 NSCCT China 71 680 5636 NASA USA 56 320 544 2 348 42 2327 LLNL USA 212 992 478 2 329 11 2058 ANL USA 163 840 458 1 260 8 3649 TACC USA 62 976 433 2 000 32 217

28 CINES France 12 288 128 608 49 21129 LANL USA 14 400 126 276 19 45830 NICS USA 17 956 125 888 49 141

32 IDRIS France 40 960 119 315 8 37933 ECMWF UK 8 320 115 1 329 160 8735 DKRZ Germany 8 064 115 1 288 160 90

Source: Nov. 2009 values from http://www.top500.org

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 17/90

Supercomputing Sites: Green500 View

rank1 50 100 150 200 250 300 350 400 450 500

MFlops/W

0

100

200

300

400

500

600

700

800top500 rank

2

54,8

16 9 7

10

Source: Nov. 2009 values from http://www.green500.org/

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 18/90

Power Consumption of Typical Server in a Data Center

component power [W]

CPU 80memory 36

disks 12peripheral 50

motherboard 25fan 10

leakage 38

total 251

251× 24× 365.25 = 2200 kWh/year

2200× 0.0839 = 184 e/year

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 19/90

Google Examples

Data centers:

• 450 000 servers

• 20–100 PFLOPS

• 20 MW

• 2 M$ electricity charges per month

One query:

• 4.5 Wh average energy

• 2–8 Wh typical energy range

Source: www.google.com query: google power consumption

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 20/90

Typical PC Power Consumption

Energy Calculator PC Equipment:http://www.eu-energystar.org/en/en_008b.shtml

Assumptions: active energy saving modes, 0.0839 e/kWh

computer type use standby avg. power costh/day kWh/year e/year

small PC + 17” LCD 8 16 68 5.7

multimedia PC + 24” LCD 8 16 172 14.4

HPC workstation + 24” LCD 8 16 346 29.0

small server 24 0 274 23.0

ultra-portable 13” 8 16 18 1.5

notebook 17” 8 16 46 3.9

P. Huber. Dig more coal – the PCs are coming. Forbes, May 1999

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 21/90

Electromigration• high current density movement of atoms in a conductor• mean time to failure (MTTF) of a wire, Black’s equation:

MTTF = A× J−n × eEakT

A section, J current density, n ≈ 2 scale factor (cst), Ea activation energy (cst for a

material), k Boltzmann’s constant, T temperature

• decreases IC reliability (permanent and intermittent failures)

e

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 22/90

Electromagnetic Interferences (EMI)Electromagnetic emissions from a device or system (the culprit orattacker) that interfere with the normal operation of another device orsystem (the victim)

time

current

thermography 80C51 MCU by Philips

synchronous (left), asynchronous (right)

Electromagnetic compatibility (EMC):

• ability to avoid introducing intolerable electromagnetic disturbance

• circuit specific design rules

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 23/90

CoolingProblems due to temperature:

• performance decreases with temperature

25 oC → 105 oC 30 % performance reduction• reliability decreases with temperature

IC temperature > 125 oC faults and characteristics damage

Solutions:

• reduce power consumption

• cool circuits (air, water,...)

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 24/90

A Good Reason for Reducing Power Consumption

Idees Noires. Franquin. p. 10, Fluide Glacial, ISBN 2-85815-042-7

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 25/90

Logic Values: Representation

The logic values {0, 1} are represented using voltages:

• 0 ⇐⇒ reference voltage or ground (VSS , )

• 1 ⇐⇒ supply voltage (VDD > 0 or )

Due to the noise in the circuit (from many sources), the logic values mustbe represented using voltage intervals (noise margins): digital vs. analog

VSS VDD

output

input0 1

G2G1

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Sup

ply

volta

ge (

VD

D)

Technology (µm)

1990

19931995

1997

19992002

2005

2008

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 26/90

MOS Transistor: N and P transistors

MOS = metal oxide semiconductor

N transistors are made of:

• bulk (Si), P-type doping

• drain and source,N-type doping

• insulator

• gate or grid z y

x

L

W

P

N N

drain

sourc

egate

bulk

insulator

In N-type doping area, the majority carriers are electrons (holes in aP-type area)

P transistor: bulk is N while source and drain are P areas

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 27/90

MOS Transistor: Logic Model

Simple logic behavior (≈ switch)

d

s s s

d dg

d d d

sss

g

P transistor

N transistor g=0 g=1

g=0 g=1

OFF ON

ON OFF

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 28/90

MOS Transistor: Simple Model

Current/Voltage (I/V) characteristic:

I =

8><>:0 VG < VT

β“

(VG − VT )VD − VD2

2

”0 < VD < VG − VT

β2

(VG − VT )2 0 < VG − VT < VD

where

β = Ctechno ×W

L

I

V

V = 1.3V

V = 1.0VG

G

V = 0.8VG

D

Threshold voltage: VT

3 modes of operation: cutoff, linear and saturation

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 29/90

MOS Transistor: Electrical Simulation Model

Spice model for an N transistor in technology 0.18µm from TSMC (106parameters, source: www.mosis.org) :

.MODEL CMOSN NMOS ( LEVEL = 49

+VERSION = 3.1 TNOM = 27 TOX = 4E-9

+XJ = 1E-7 NCH = 2.3549E17 VTH0 = 0.3618568

+K1 = 0.5821674 K2 = 2.962352E-3 K3 = 1E-3

+K3B = 3.1746246 W0 = 1E-7 NLX = 1.784411E-7

+DVT0W = 0 DVT1W = 0 DVT2W = 0

+DVT0 = 1.0776375 DVT1 = 0.3574214 DVT2 = 0.0606977

+U0 = 257.825805 UA = -1.445098E-9 UB = 2.280431E-18

+UC = 5.132975E-11 VSAT = 1.002296E5 A0 = 1.9572227

+AGS = 0.4279783 B0 = 1.291312E-8 B1 = 6.025607E-7

+KETA = -0.0112723 A1 = 3.225587E-4 A2 = 0.8886833

+RDSW = 105 PRWG = 0.5 PRWB = -0.2

+WR = 1 WINT = 0 LINT = 1.345391E-8

+XL = 0 XW = -1E-8 DWG = -1.012269E-8

+DWB = 8.38965E-9 VOFF = -0.090305 NFACTOR = 2.2452365

+CIT = 0 CDSC = 2.4E-4 CDSCD = 0

+CDSCB = 0 ETA0 = 3.37666E-3 ETAB = 1.141951E-5

+DSUB = 0.017061 PCLM = 0.7636672 PDIBLC1 = 0.1793189...

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 30/90

MOS Transistor: Imperfect Switch

N Transistor:

output

0

0

0

1

STRONG 0input output

input

P Transistor:

output

output

1

0

1input

input1

STRONG 1

DEGRADED 1

DEGRADED 0

0 1

STRONG close to VSS close to VDD

DEGRADED greater than VSS less than VDD

N transistor pull no higher than VDD − VTN

P transistor pull no lower than |VTP|

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 31/90

MOS Transistor: Imperfect Switch Simulation

Vin Vout

1

0

0.5

1

1.5

2

2.5

0 25 50 75 100

Vol

tage

[V]

Time[µs]

Vin Vout

Techno.: 0.25µm, VDD = 2.5 V , W = 0.72µm, L = 0.24µm,VTN

≈ 0.37 V

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 32/90

MOS Transistors: Series and Parallel

0

0

0

0

1 1

11g2

g1

a a

b

a aa

b b b b

?

0

0

0

0

1 1

11g2

g1

a a

b

a aa

b b b b

OFF ONOFF OFF? ON OFF OFF OFF

g1 g2

b

a

? OFF

a a a a

b b b b

ONONON

g1 g2

b

a

?

a a a a

b b b b

ONON

0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1

OFFON

N: (1=ON, 0=OFF), P: (1=OFF, 0=ON)

Series: both must be ON, Parallel: either can be ON

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 33/90

CMOS Logic

CMOS = complementary MOS

N and P transistors are only used for passing strong signals

0

1

G = 1G = 0

1 01

G = 0 G = 1

01 0

outputinputs

?

?

S D

G

P

S D

G

N

NetworkPull−up

P Transistors

N Transistors

Pull−downNetwork

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 34/90

Logic Gate: InverterThe simplest gate: only 2 transistors (1 N and 1 P)

A YA Y

0 1

1 0

P

N

1 1 1

0 0 0

0 1 1 0

circuit: behavior:

A Y

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 35/90

Logic Gate: NAND2 (2-input not–and)

A

BY

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

BA

A

B

Y

All logic functions can be built using only NAND gates:

A

B

AB

A

B

A+BA A

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 36/90

Logic Gate: NOR2 (2-input not–or)

A

BY

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

A

B

BA

Y

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 37/90

Logic Gate: AND2There is a very bad solution and a good one. . .

BA

D G

ATE

A

B

BA

Y

A

B

A

BY Y

• the bad one (left side): some output levels are degraded

• the good one (right side): AB = AB (6-transistor gate)

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 38/90

Logic Gate: NAND3 (3-input NAND)

A

B

C

Y

A B C Y

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

A

B

A B C

C

Y

The number of transistors in series is limited (3 to 5)

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 39/90

Fanout

The gate delay (change output state) de-pends on the output load. Fanout measuresthis load as the number of inputs of gateconnected to the output (normalized w.r.t.an inverter)

FO = 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

Del

ay [n

s]

FO

INV X1 (R)INV X1 (F)INV X4 (R)INV X4 (F)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Del

ay [n

s]

FO

NAND2 (R)NAND2 (F)NAND3 (R)NAND3 (F)NAND4 (R)NAND4 (F)

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 40/90

Signal regeneration

Buffers are used to regenerated the signal levels (f (x) = x)

BUF X1 WL

4.751

2.751

4.751

2.751

A

BUF X4

4.751

2.751 1

119

A

11OUT OUT

BUF X1 BUF X4

size (h×l) [λ] 53 × 25 53 × 50capacitance [fF] 5.89 5.89

T0→1 11 + 439 × Cout 17 + 132 × Cout

T1→0 12 + 318 × Cout 21 + 137 × Cout

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 41/90

Fast Circuit Design: Basic Ideas

• VDD ↗ =⇒ speed↗ but limited by the technology

• Transistor size :I W ↗ =⇒ speed↗ GOOD

I L↗ =⇒ speed↘ BAD

I but W ↗ =⇒ C ↗ =⇒ speed↘

Transistor Sizing

• Topology

• Logic optimizations

• Place and route optimizations

• Algorithms, data coding. . .

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 42/90

Transistor Sizing: N and P Mobility DifferenceThe mobility of holes in silicon is typically lower than that of electronsµ = µN/µP ∈ [2, 3]

a

a

b

b

a

aa b

b

a

NAND2

INV

NOR2

y

y

out

2

1

2 2

2

2

4

4

1 1

1

1

1

1

1 1 1

1

1 1WL

1

1

1

1

1

1

12

1

2

2

2

4

4

1

1

Symmetric behavior: same current for both N and P transistor networks( same rising and falling times): W

L = µ = µNµP

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 43/90

Transistor SizingCurrent behavior (higher I =⇒ faster gate): I = β × f (VG ,VD ,VT )where the transistor gain is: β = Ctechno × W

L

C

C

C

C

W=1w

W=2w

W=4w

W=8w

Vin

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 20

30

60

90

120

150

Vol

tage

[V]

Cur

rent

[nA

]

Time [µs]

Vin=VT

VT

VinI(1w)

I(2w)I(4w)

I(8w)

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 44/90

Transistor Sizing: β Ratio Effects

Example in the inverter case:

• Sizing such that βNβP

= 1 (T0→1 ≈ T1→0)

• minimal L for all transistors

βN

βP

ββ

N

P

ββ

N

P

00

1

1

= 10

= 1WN

WP

= 1

= 0.1

Output

Input

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 45/90

Transistor Sizing: Gate Level Solution

Full custom: transistor sizing for all elements very complex

Standard cells: use cells from a library (several gates for one functionwith different output transistor sizes)

size [µm] delay [ns] powergate drive H W ↑ ↓ [µW/MHz]

INVX1 1X 5.04 1.32 0.0253 0.0146 0.0117

INVX2 2X 5.04 1.98 0.0228 0.0140 0.0218

INVX4 4X 5.04 2.64 0.0206 0.0125 0.0394

INVX8 8X 5.04 3.96 0.0198 0.0125 0.0773

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 46/90

Estimated or Measured Characteristics

• TimeI delay or clock period [s] [ns] [ps] [FO4] [#NAND2]I latency [#cycles]

• SpeedI clock frequency [Hz] [MHz] [GHz]I throughput [evt/s] [MIPS] [MFLOPS]

• AreaI real area [mm2] [µm2] [λ2]I arbitrary unit [#transistor] [#NAND2]

• Power consumption and energyI power [W] [µW/MHz]I energy [J] [A/h]I battery duration

• Compound: A.T , A.T 2, MIPS/W, MIPS2/W, MIPS3/W, . . .

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 47/90

Power Consumption: Basic Definitions

Instantaneous power:

P(t) = iDD(t) VDD

Energy over some time interval T:

E =

∫ T

0iDD(t) VDD dt

Average power over interval T:

Pavg =E

T=

1

T

∫ T

0iDD(t) VDD dt

VDD

i DD

circu

it

Units:• current A• voltage V• power W• energy J or Wh

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 48/90

Power Consumption: Components

Power dissipation in CMOS circuits comes from 2 main components:

• static dissipation:I sub-threshold conduction through OFF transistorsI leakage current through P-N junctionsI tunneling current through gate oxideI . . .

• dynamic dissipation:I charging and discharging of load capacitances (useful + parasitic)I short-circuit current

Ptotal = Pstatic + Pdynamic

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 49/90

Leakage Current(s)

• leakage current in P-N junctions: I = Is(eqV /kT − 1)E

S

transistor Ptransistor N

p

nppnn

• sub-threshold leakage

type of transistor sub-threshold leakage current

HP high performance 100 nA/µmLOP low-operation power 5 nA/µmLSTP low-standby power 50 pA/µm

• gate leakage by tunneling

Solution: use “better” technologies

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 50/90

Short-Circuit Current in CMOS Gates

Occurs when both N and P transistors are ON while the input switches

P

N

In Out

t

t

V

II

In

SCsc

Solution : short transition (crisp edges)

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 51/90

Reducing Short-Circuit Current

low slope (gradient) huge short-circuit current

material copper aluminum tungsten

width (µm) 1 0.59 1 0.36 0.25

raising time (ps) 20 7 13 2 0.4

t

V

R

C

R

C

R

C

R

C

t

V

input output

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 52/90

Charging and Discharging Load Capacitances

There are capacitances everywhere in the circuit: transistor gate, routing,parasitics. . .

CMOSgate gates

routing

parasitic

Solutions:

• design small circuits (small transistor, short wires, technologyshrinking)

• reduce the activity (algorithms, data coding, sleep mode)

• reduce VDD(without lowering speed)

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 53/90

Capacitances are Everywhere (1/2)

• Capacitance due to transistors structure:

n n silicon

oxide

metal

• Capacitance due to routing:

x

yz

DA

B

C

M1

M2

VIA

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 54/90

Capacitances are Everywhere (2/2)

• Parasitic capacitance:

M1

M2

M3

M2

• I/O pad huge capacitance:

to package

output pad

buffer

driving gate

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 55/90

Transitions

There are 2 kinds of transitions:

• useful transitions (data switching)

• redundant or parasitic transitions (imperfections)

a=1

b=1

c

a

b

c

s

a

b

s

y y

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 56/90

Simple Power Consumption Model

Average dynamic power dissipation (no leakage, no short circuit):

P = α× C × f × V 2DD

where

• α is the activity factor

• C is the average switched capacitance (at each cycle)

• f is the circuit frequency

• VDDis the supply voltage

Remark: the gate delay is d = γ × C×VDD(VDD−VT )2 ≈ 1

VDD

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 57/90

Power/Energy Reduction

Typical methods:

• use better algorithms and data structures

• use better technology

• use smaller gates

• use better placement and routing

• reduce power supply VDD

• reduce frequency

• reduce activity

• . . .

Use combinations at all levels

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 58/90

Power Reduction at Technology Level

• reduce the wire dimensions reduce capacitances

• use better insulators

example: SiO2 −→ high k insulators: Al2O3,HfO2,TiO2,ZrO2. . .

• use technologies with less leakage, e.g. SOI (silicon on insulator)

+ + +−−− + −

oxide insulator

n n p p

S

E

p np p

p

nn

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 59/90

Power Reduction at Transistor Level

Higher threshold voltage VT :

• leads to lower leakage current

• leads to slower transistor

Idea: use multiple VT (2 or 3 in current technologies)

• lower VT for high-speed gates

• higher VT for gates off the critical path

critical path

low VT high VT

in1

in2

out1

out2

a b c d e

f

g

Example: 70 nm, VDD = 0.8 V, VTL= 0.2 V, VTH

= 0.3 VA. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 60/90

Power Reduction at Gate Level

• gate and/or input reordering (reduce glitching power):Solution 1

Solution 21

s1

i

2

s2

s2

s1

i 2

i 1

i

c

b

a

t

b

c

b

a

a

c

• use complex gates (reduce internal capacitances and area):

AND3OR2

AND2

AND2

AND2

OR2

AND2

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 61/90

Power Supply Reduction

• Multiple VDD: adapt supply voltage to block speed

circuit

low VDD high VDD

• Power gating: cut the supply of unused blocks

block

VDD

s

GND

• Dynamic Voltage/Frequency Scaling (DVFS)

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 62/90

Power Reduction: Clock GatingFacts:

• latching uses 25–50 % of total power

• but only 10–30 % are useful at one moment (avg.)

Idea: gate off unused latches and associated logic

Example:

gated clockclk

enable

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 63/90

Power Reduction: Activity Reduction

• Data encoding (number representations for arithmetic operators)

• Bus encodingbus (large capacitances)circuit (low capacitances)

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 64/90

Low-Power Design: Parallelism

Idea: reduce supply voltage VDDwithout speed degradation

B CA

total supply circuit

solution capa. voltage freq. power consumption

standard (A) C V f PA = CV 2f

parallel (B) 2.2 C 0.6 V 0.5 f PB = 2.2C(0.6V )20.5f = 0.396 PA

pipeline (C) 1.2 C 0.6 V f PC = 1.2C(0.6V )2f = 0.432 PA

Problem: area ↗ =⇒ static current ↗

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 65/90

Processors Power Efficiency

Source:J. G. KoomeyOutperforming Moore’s LawIEEE Spectrum magazineVol. 47, n. 3, March 2010

Thanks to Daniel Chillet for the link

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 66/90

Predicting the Future: RoadmapInternational Technology Roadmap for Semiconductors (ITRS)http://public.itrs.net/

Semiconductor Industry Association (SIA)

Source: CMOS VLSI Design: A Circuits and Systems Perspective. N. Weste and D. Harris,

3rd ed., 2004, Addison Wesley. (extract from ITRS 2002 edition)

year 2001 2004 2007 2010 2013 2016

size [nm] 130 90 65 45 32 22

VDD[V] 1.1–1.2 1–1.2 0.7–1.1 0.6–1.0 0.5–0.9 0.4–0.9

MT/die 193 385 773 1564 3092 6184

Wire levels 8–10 9–13 10–14 10–14 11–15 11–15

I/O signals 1024 1024 1024 1280 1408 1472

Frequency [MHz] 1684 3990 6739 11511 19348 28751

FO4 delays/cycle 13.7 8.4 6.8 5.8 4.8 4.7

Max. power [W] 130 160 190 218 251 288

DRAM size [Gb] 0.5 1 4 8 32 64

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 67/90

ITRS 2009 Edition

High-performance processor and ASIC expected features:year 2009 2010 2011 2012 2013 2014 2015 2020

size [nm] 29 27 24 22 20 18 17 10.7

HP VDD[V] 1.0 0.97 0.93 0.9 0.87 0.84 0.81 0.68

LP VDD[V] 0.95 0.95 0.85 0.85 0.80 0.80 0.75 0.65

MT/chip 2 212 2 212 4 424 4 424 8 848 8 848 8 848 35 391

ML 12 12 12 12 13 13 13 14

# pckg pins 4 620 4 851 5 094 5 348 5 616 5 896 6 191 7 902

Freq. [MHz] 5 454 5 875 6 329 6 817 7 344 7 911 8 522 12 361

MaxPw [W] 143 146 161 158 149 152 143 130

DRAM [Gb] 2.15 2.15 4.29 4.29 4.29 8.59 8.59 34.36

size: physical gate length, HP: high performance, LP: low power, ML:metal layers, Freq.: local clock, MaxPw: maximum power with heatsink

Source: http://public.itrs.net/Links/2009ITRS/Home2009.htm

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 68/90

ITRS 2009: Wafer Production Technology Capacity

Source: http://public.itrs.net/Links/2009ITRS/Home2009.htm

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 69/90

ITRS 2009: Low-Power Efforts Evolution

Source: http://public.itrs.net/Links/2009ITRS/Home2009.htm

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 70/90

ITRS 2009: Failure Rate Evolution

Source: http://public.itrs.net/Links/2009ITRS/Home2009.htm

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 71/90

Representation(s) of Numbers and Power Consumption

Impact of the representation of numbers:

• operator speed

• circuit area

• useful and useless activity

cycle value 2’s complement tc2 sign/magnitude tsm

0 0 0000000000000000 0 0000000000000000 01 1 0000000000000001 1 0000000000000001 12 -1 1111111111111111 15 1000000000000001 13 8 0000000000001000 15 0000000000001000 34 -27 1111111111100101 15 1000000000011011 45 27 0000000000011011 15 0000000000011011 1

total 61 10

• sign/magnitude (absolute value):

A = (saan−2 . . . a1a0) = (−1)sa ×n−2Xi=0

ai 2i

• 2’s complement:A = (an−1an−2 . . . a1a0) = −an−12n−1 +

n−2Xi=0

ai 2i

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 72/90

Useless Activity in a Carry Ripple Adder

s s s s s s

rrrrrr

5 5 4 4 3 3 2 2 1 1 0 0

05 4 3 2 1

012345s6

ba

FA

ba

FA

ba

FA

ba

FA

ba

FA

ba

FAVery simple architecture:

n FA cells connected in series

stable

activity

FA FA FA FA FA FA

V

V

CLK

t

t

cycle i

cycle i+1

1 1 0 0 1 1 0 0 1 1 0 0

110101010101

0 1 0 1 00

0

101010 0

01010 1

01000 0

00010 1

00000 0

00000

cycle i

cycle i+1CLK

Theoretical models (equiprobable and uniform distribution of inputs):

• worst case n2/2 transitions

• average 3n/2 transitions and only n/2 useful

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 73/90

Fast Multipliers

1. partial products generation ai bj

(with or without recoding)↪→ delay in O(1) (fanout ai ,bj

O(log n))

2. sum of the partial productsusing a carry-save reductiontree↪→ delay in O(log n)

3. assimilation of the carries usinga fast adder↪→ delay in O(log n)

2n bits

B

A

a bi j

P

P (carry−save)

n bits

4n bits

2n bits

n bits

reduction

PP generation

Multiplication delay O(log n), area O(n2)

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 74/90

Power Consumption in Fast Multipliers

0

10

20

30

40

50

60

70

PP gen. reduc. assim. PP gen. reduc assim. 0

10

20

30

40

50

60

70

Rel

ativ

e po

wer

con

sum

ptio

n [%

]

Rel

ativ

e de

lay

[%]

16%

67%

17% 15%

54%

31%

power delay

• 30% to 70% of redundant transitions (useless)

• place and route steps based on the internal arrival time

• add a pipeline stage

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 75/90

Squarer

1 ADD(9 bits)

3 FA + 2 HA

a0 a0

a5 a5

a5

a5 a4

a4

a3

a3 a2

a2 a1

a1

a0

a0

a0

a5

a4

a2

a3

a4a3

a2 a5

a5

a4

a3

a4

a3 a5

a5

a4

a3

a2

a1

a2

a3

a4

a1 a5

a4

a3

a2

a1

a1

a2

a3

a4

a5a0

a5 a0

a3

a2

a1

a0

a1

a2

a3

a4

a4 a0

a2

a1

a0

a1

a2

a3

a3 a0

a1

a0

a1

a2

a2 a0

a0 a1

a1 a0

a5

a4 a5

a4

a1 a0a2 a0a3 a0

a2 a1

a4 a0

a3 a1

a5 a0

a4 a1

a3 a2

a5 a1

a4 a2

a5 a2

a4 a3

a5 a3a5 a4

a5

a4

a3

a2

a1

a4 a0

a3 a1

a5 a0

a4 a1

a3 a2

a5 a1

a4 a2

a5 a2

a4 a3

a5 a3

a2 a1a3 a2

a4 a3

a5 a4a5 a4

a5 a4a5 a4

a0a2 a0a3 a0

a2 a1

a1 a0

a1 a0

a0a2 a0a3 a0

a2 a1

a1 a0

a1 a0

aiai ai=

aiaj ajai aiaj+ = 2

ai

aiaj ai aiaj

aiaj aj

aiaj aiaj

aiaj ai

15 AND + 5 IAND12

1

=

=

=

2 + −

2 + ( − )

2 +

+

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 76/90

Multiplication by Constants (1/2)

Problem: substitute a complete multiplier by an optimized sequence ofshifts and additions and/or subtractionsExample: p = 111463× x

algo. p = 111463× x = #op.

direct (x � 16)+(x � 15)+(x � 13)+(x � 12)+(x � 9) 10 ±+(x � 8)+(x � 6)+(x � 5)+(x � 2)+(x � 1)+x

CSD (x � 17)−(x � 14)−(x � 12)+(x � 10) 7 ±−(x � 7)−(x � 5)+(x � 3)−x

Bernstein (((t2 � 2)+x) � 3)−x 5 ±wheret1 = (((x � 3)−x) � 2)−xt2 = t1 � 7+t1

Our (t2 � 12)+(t2 � 5)+t1 4 ±wheret1 = (x � 3)−xt2 = (t1 � 2)−x

CSD: canonical signed digit, 111463 = 110110011011001112 = 1001010100101010012

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 77/90

Multiplication by Constants (2/2)

Power savings: 30 up to 60%operator init. [1] [2] our

DCT 8b 300 94 73 56DCT 12b 368 100 84 70DCT 16b 521 129 114 89DCT 24b 789 212 — 119

Power savings: 10%operator init. [1] [2] our

8× 8 Had. 56 24 — 24(16, 11) R.-M. 61 43 31 31(15, 7) BCH 72 48 47 44

(24, 12, 8) Golay 76 — 47 45

Power savings: up to 40%operator init. [22] our

8 bits 35 32 2416 bits 72 70 46

Parks-McClellan filterremez(25, [0 0.2 0.25 1], [1 1 0 0]).

FIR (1, 5, 5, 1)DD D

4

4

D D D

4

D D D

4

D

D D D

4

D D

4

E

D

C

B

A

x[t]

x[t]

x[t]

x[t]

x[t]

y[t]

y[t]

y[t]

y[t]

y[t]

z[t]

z’[t]

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 78/90

Polynomial ApproximationsExample:

√x over [1, 2] and µ ' 8 bits

p∗ = 1.0007638368+0.4838846338x−0.07119874509x2

p = 1 + (0.100001)2x − (0.0001001)2x2

replace × by a small number of ±

×

x

1 6 4 71

+

+ + − − −

p

solution area period #cycles latency power

wo. tools 1.00 1.00 2 1.00 1.00

w. tools 0.59 0.97 1 0.48 0.45

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 79/90

Side Channel Analysis/Attacks (SCA)

A B

E D

M

k

Ek (M)

k

Dk (Ek (M)) =M

E

measure

k, M???attack

General principle: measure external parameter(s) on running device inorder to deduce internal informations

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 80/90

What Should be Measured?

Answer: everything that can “enter” and/or “get out” in/from thedevice

• power consumption

• electromagnetic radiation

• temperature

• sound

• computation time

• number of cache misses

• number and type of error messages

• ...

The measured parameters may provide informations on:

• global behavior (temperature, power, sound...)

• local behavior (EMR, # cache misses...)

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 81/90

Power Consumption Analysis

General principle: measure the current I in the circuit

circuit

VDD

GND

I

traces

Notations: VDD power supply (5, 3, 2.5, 1.2 V), GND ground

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 82/90

“Read” the Traces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

• algorithm =⇒ decomposition into steps

• detect loopsI constant time for the loop iterationsI non-constant time for the loop iterations

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 83/90

Differences & External SignatureAn algorithm has a current signature and a time signature:

r = c0

f o r i from 1 to n doi f ai = 0 then

r = r + c1

e l s er = r × c2

I+ I×t

I

iai

1

0

2

1

3

1

4

0

5

1

6

0

7

0

8

1

T+T×t

T

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 84/90

Simple Power Analysis (SPA)

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 85/90

ConclusionABCDEFG

A

Photo source: Intel

Needs:• better technologies, transistors, gates, architectures, CAD tools• accurate power models at all levels• tools and languages to support power information

Power reduction is an interdisciplinary work:• micro-electronics• computer science• applied mathematics• applications

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 86/90

References (1/2)

Low-power Electronics Design

Edited by C. Piguet

2005, CRC PressISBN: 0–8493–1941–2

Micro et nanoelectroniqueBases, Composants, Circuits

H. Fanet

2006, DunodISBN: 2–10–049141–5

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 87/90

References (2/2)

CMOS VLSI DesignA Circuits and Systems Perspective

N. Weste and D. Harris

3rd Edition, 2004, Addison WesleyISBN: 0–321–14901–7

Logical EffortDesigning Fast CMOS Circuits

I. Sutherland, B. Sproul and D. Harris

1999, Morgan Kaufmann PublishersISBN: 1–55860–557–6

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 88/90

The end, some questions ?

Contact:

• mailto:[email protected]

• http://www.irisa.fr/prive/Arnaud.Tisserand/

• CAIRN Group http://www.irisa.fr/cairn/

• IRISA Laboratory, CNRS–INRIA–Univ. Rennes 16 rue Kerampont, BP 80518, F-22305 Lannion cedex, France

Thank you

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 89/90

We Should Work on Power Consumption Reduction...

Source:Idees NoiresFranquinp. 10, Fluide Glacial

ISBN 2-85815-042-7

A. Tisserand, CNRS–IRISA–CAIRN. Introduction to Power Consumption in Digital Integrated Circuits 90/90