introduction to optics part ii - mit opencourseware · pdf fileintroduction to optics part ii...

26
16.684 Space Systems Product Development Chart: 1 February 13, 2001 MIT Space Systems Laboratory Introduction to Optics part II Overview Lecture Space Systems Engineering presented by: Prof. David Miller prepared by: Olivier de Weck Revised and augmented by: Soon-Jo Chung

Upload: dotram

Post on 21-Mar-2018

224 views

Category:

Documents


6 download

TRANSCRIPT

16.684 Space Systems Product DevelopmentChart: 1February 13, 2001 MIT Space Systems Laboratory

Introduction to Optics part II

Overview Lecture

Space Systems Engineering

presented by: Prof. David Millerprepared by: Olivier de Weck

Revised and augmented by: Soon-Jo Chung

16.684 Space Systems Product DevelopmentChart: 2February 13, 2001 MIT Space Systems Laboratory

Interferometer Types (NASA, AirForce)

Space Technology 3-2005 Air Force UltraLITESIM-2006Michelson Interferometer

Precision AstrometryMichelson Interferometer Fizeau Interferometer

Earth Observing Telescope

TPF - 2011NGST - 2007

Michelson Interferometer A Common Secondary Mirror (MMT, Fizeau)Primary Mirror = 8 m diameter

16.684 Space Systems Product DevelopmentChart: 3February 13, 2001 MIT Space Systems Laboratory

Interferometer Types (Ground)

Michelson Interferometer (Visible)

Keck Interferometer-2006Michelson Interferometer (Infrared)

Twin 10 m Keck Telescopes and four 1.8 m outriggersBaseline 85m

Palomar Testbed InterferometerMichelson Interferometer (Infrared)

Testbed for Keck and SIM

Mark III Interferometer

Keck Observatory: Multiple Mirror Telescope (MMT)

Fizeau Interferometer (Visible, Infrared)36 hexagonal segments => 10 m overall aperture

16.684 Space Systems Product DevelopmentChart: 4February 13, 2001 MIT Space Systems Laboratory

Michelson Interferometer

Independent Light Collectors feed light to a common beam combiner. Get interfered fringes => Inverse Fourier Transform (CLEAN,MEM)

Suitable for Astronomical Objects:Unchanged over a long period of time

BeamsplitterCollector

Collector

Michelson Interferometer

Stellar wavefront

Detector

DetectorOptical delay line

Object

Imaging with Michelson Interferometer

FT "FT-1"

Baseline orientations:

+y

x

yvvv

uu u x

u-v (Fourier plane) Reconstructed image

16.684 Space Systems Product DevelopmentChart: 5February 13, 2001 MIT Space Systems Laboratory

Fizeau Interferometer

Gives a direct image of a target from a large combined primary mirror, and a wide field of view (Imaging applications in space and MMT)

Suitable for Wide Angle Astrometry And for rapidly changing targets (Terrestrial, Earth Objects)

1 2 3

Telescope

Telescopes

Fizeau Interferometer

Fizeau Interferometer

DetectorDetector

Sparse aperture Telescope

"Beam combiner"

16.684 Space Systems Product DevelopmentChart: 6February 13, 2001 MIT Space Systems Laboratory

Comparison (Fizeau, Michelson)

Fi zea uInt erfer omet er

Miche lson Inte rfe romete r

Pro duce a dir ec t im age o f itstarg et ( Ful l Instan t u- v c over agepr ov ided)

Takes a sub se t o f u- v po intsobtaine d a peri od o f tim e.

W ide ang le(f ield) of viewim aging app lications

Ast rome try,Null ing Inter ferom etry

Rapidly Cha nging t arge ts(Terre st rial, Ea rth Objects)

Targ et u nc han ged(Ast ron omi cal Objects)

Takes t he comb ine d sci en celigh t from all the ap erture s an dfocuses it i nto C CD

Me as ure s po ints in Fouriertran sform of ima ges => Inver seFFT ne eded

U- V re so lu tion dep end s on b oththe separa tion and the s ize ofaper ture s

Angula r re so lu tion de pend ssolel y on the separa tion ofaper ture s

Optima l Con figura tion:Golay (m inim um aper ture s ize )

The angul ar res olution im pro vesas t he sep ara tion incre as es

16.684 Space Systems Product DevelopmentChart: 7February 13, 2001 MIT Space Systems Laboratory

CCDBeamCombiner

Common Secondary vs Sub Telescope

Phased Sub-Telescope Arrays

Common Primary Sub Telescope FizeauPrecise Off Axis ConfigurationOff Axis Optical Aberration

Need Combiner + Phase sensing andcompensater mechanism (complex)

Less Central Obstruction(Off Axis) On Axis Suffers Central ObstructionHard to change the Configuration Can employ Off-the-shelf telescopes

Common Secondary Mirror Array

AirForce is studying two options for UltraLITE(Golay 6)

16.684 Space Systems Product DevelopmentChart: 8February 13, 2001 MIT Space Systems Laboratory

Optical Arrays

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Optical Array Configuration

X - Distance [m]

Y -D

ista

nce

[m]

Instead of using a single aperture use several and combine their light to form a single image

Aperture positions (uv) are critical -look at combined PSF / Transmissivity

of the Optical Array

Transmissivity Function:

Derivation see separatehandout (Mennesson)

16.684 Space Systems Product DevelopmentChart: 9February 13, 2001 MIT Space Systems Laboratory

CDIO: Breaking the Paradigm

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Optical Array Configuration

X - Distance [m]

Y -

Dist

ance

[m]

GolayGolay--3 0.6 m telescope3 0.6 m telescope-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Optical Array Configuration

X - Distance [m]

Y -

Dist

ance

[m]

Physical Physical ApertureApertureLayoutLayout

Monolithic 0.6 m telescopeMonolithic 0.6 m telescope

CompareArchitectures

withQuantitative

Metrics

PSFPSF

16.684 Space Systems Product DevelopmentChart: 10February 13, 2001 MIT Space Systems Laboratory

Effective Radius of Optical Array

How to find the effective radius(Reff) of the array?

• =the radius of the arraythought as that of a monolithicaperture.• UV coverage plot

x,y is any point within aperture• : the maximum radius ofuv plot without any holes •

• Fill Factor: the array’s total collecting area over the area of a filled aperture with the same uvcoverage(the same Reff)

u = ± x2 − x1

λv = ± y2 − y1

λ

Ruv

Reff

Reff = 0.5Ruv

16.684 Space Systems Product DevelopmentChart: 11February 13, 2001 MIT Space Systems Laboratory

Golay Configurations• Optimum Golay is

Deff-dependent• Labor moves

Golay benefits to larger Deff

• Golay’s sacrifice Encircled Energy

EE=83.5% EE=26.4% EE=9.3% EE=3.6% EE=2.2%

16.684 Space Systems Product DevelopmentChart: 12February 13, 2001 MIT Space Systems Laboratory

Technological Trends

• Lightweight (Low-Area-Density) Optics - 15kg/m2

• Deployable Optics• Adaptive and Active Optics• Membrane Mirrors and Inflatables• Ultra-Large Arrays (CCD Mosaics)• Distributed Optical Arrays• Space Based Astronomy• White light interferometry

16.684 Space Systems Product DevelopmentChart: 13February 13, 2001 MIT Space Systems Laboratory

Optical Performance Criteria

• Sensitivity(Effective Collecting Area)• Point Spread Function(PSF): Frequency used merit

function(Irradiance distribution),Can measure Phase difference, can derive Resolution,EE, MTF(OTF)

• Encircled Energy: particularly relevant merit function of the optic performance of an optical system whose purpose is to collect light and direct it thru the entrance slit of a spectrometer

• Modulation Transfer Function(MTF): For many imaging applications involving extended objects containing fine structure, the MTF is a more appropriate performance criterion than PSF. Practical Cutoff Frequency(Fr) -> Cutoff Frequency(Fc)

16.684 Space Systems Product DevelopmentChart: 14February 13, 2001 MIT Space Systems Laboratory

Optical Sensitivity

0.65 0.7 0.75 0.8 0.85 0.9 0.95 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N=8

N=6

N=2

Phase SubTelescope

Common Secondary

Effe

ctiv

e C

olle

ctin

g A

rea

REFLECTANCE R

• Sensitivity of Phased Telescope Array (Effective Collecting Area)R: the reflectanceN: the number of reflections

Ngeoeff RAA =

2 types may be viable conceptfor quasi-monochromatic applications; however, phased telescope arrays will suffersubstantial sensitivity losses forbroadband spectral applications

A Region: UVB Region: Visible (Color)C Region: Quasi-Monochromatic

A B C

16.684 Space Systems Product DevelopmentChart: 15February 13, 2001 MIT Space Systems Laboratory

PSF,EE (Golay Array –3)Preliminary Calculation(0.3m GR) => D=2.0m,approx needed !!For Reff=1m, r=0.5m and Array Radius(L)= 1.m (Golay 3,monochrome)

r=0.3685m and Array Radius(L)= 1.1m (Golay 6,monochrome)

Using Analysis Tool:Evaluate Configuration Using •PSF(Point Spread Function)•Encircled Energy•MTF(ModulationTransfer Function)•FF(Fill Factor)

16.684 Space Systems Product DevelopmentChart: 16February 13, 2001 MIT Space Systems Laboratory

Modulation Transfer Function• An image of an extended object is far more complex thant point source(e.g) astrometry. PSF is not enough! -> MTF of each configuration is necessary• Both Resolution and Contrast (Modulation) Transfer IMPORTANT

0 5 10 15 20 25 30 35 40 45 50-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

TextEnd

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

IntensityOf Object

Image

Object

Optical Array

PSF of Optical Array

IntensityOf Image

Modulation= Imax − I min

Imax + I minFFT(I object)

OTF=FFT(PSF)

FFT(I image)

*

Real ImageInvFFT

MTF=abs(OTF)

16.684 Space Systems Product DevelopmentChart: 17February 13, 2001 MIT Space Systems Laboratory

Optical Control and Beam Combining

Optics ControlActuators

Piezoelectric translators (PZTs)Fast steering mirrors (Tilt and Tip)Optical delay lines (or inchworm positioners)Alignment mirrors

SensorsLaser interferometersQuad cellsCharge Coupled Device (CCDs) camerasAvalanche Photo Diodes (APDs)

16.684 Space Systems Product DevelopmentChart: 18February 13, 2001 MIT Space Systems Laboratory

Fine Optical Pointing and Phasing:Single Aperture

• Light path– Light enters spacecraft by reflecting off

primary and then secondary, after which it is collimated (not converging or diverging except for diffraction effects)

– Reflects off two-axis (tip and tilt) Fast Steering Mirror (FSM)

• FSM controls out the low level line-of-sight (LOS) jitter in the deadband of the attitude control

– Lens focuses light onto camera• LOS jitter control using FSM

– Feedforward attitude sensors to command FSM

– If bright point source in FOV, measure motion on camera and command FSM to minimize its motion

PrimaryMirror

SecondaryMirror

FastSteeringMirror

LightRays

CameraLens

16.684 Space Systems Product DevelopmentChart: 19February 13, 2001 MIT Space Systems Laboratory

CC

D

Fig.10, Cassegrain Type beam combiner (above) and refractive lense combiner

Beam Combining Goal:1. maintain the optical phase difference of each beam to a fraction of a

wavelength 2. align images from telescopes to within a fraction of a resolution

element over the whole field of view(Additionally) Field of curvatures on the order of wavelength, finer than

required for conventional telescopes

Beam CombinerPhase(Piston Error) Contributor:1. Lateral Pupil Geometry Error (Pupil Mapping

Error)=>the elimination of this error : golden rule of separated telescope ( significant in wide field of view telescope)

2. Piston Error: part of piston error is induced by pupil geometry e

3. Tilt Error : Measured separately from piston error. X-Tilt Error, Y-Tilt Error

16.684 Space Systems Product DevelopmentChart: 20February 13, 2001 MIT Space Systems Laboratory

Lateral Pupil Geometry Error

Physical Meaning:If the subapertures of the entrance pupilhave a D, and separated by S, with magnification M, the exit pupil must havedimensions for D/M and separation S/M

a a

)sin(aMP ε=pCorrect Pupil Geometry

Incorrect Pupil GeometryDifficult to measure lateral pupil geometry =>abstract optical quantity

Use the relationship and Kalman filter to estimate ε

Pg

ψ

)sin(M

Pgψε=

ε :lateral pupilgeometry error

16.684 Space Systems Product DevelopmentChart: 21February 13, 2001 MIT Space Systems Laboratory

Optical Tolerance

p

γ

r

Tilt induced piston error

)sin(γrPt =])sin([)sin(

)(

pM

r

pppm gtp

++=

++=

ψεγ

FOV=4km,h=500km,piston error55nm =>1µm

Lateral pupil Geometry Error

<1/10 of Airy Disk Diameter=> 33

µrad

Alignment Error(Image Rotation)

1/10 of λ, r=0.5m => 110 nradTilt1/10 of wavelength = 55 nmPiston

Total Piston Error

P :the opticalpath differencebetween beams

ToleranceErrors

DFOVHalfAngle

)44.2)(1.0( λ<∆Φ

16.684 Space Systems Product DevelopmentChart: 22February 13, 2001 MIT Space Systems Laboratory

Beam Combining Layout

OPDA(Optical Path Difference Adjuster) :is driven by

•Piezoelectric translator(PZT) = Fine Control Translation Range (-12 µm),Resolution(5nm), SlewRate(4.5 µm/s)Angular Tilt Range(700 µrad),Resolution (200 nrad)

•Burleigh inchworm positioners = Coarse ControlTranslation Range(5mm) with a resolution of 0.1 µm

CCDRetro Mirror

Sensor System (Interferometer)

Scraper(Scan) Mirror

OPDA

16.684 Space Systems Product DevelopmentChart: 23February 13, 2001 MIT Space Systems Laboratory

Sensor System Optics(Example from AFRL)

PolarizingBeam Splitter

FilterBeam Splitter

Direction to Scraper Mirror

Line ScanCamera

Line ScanCamera

Beam Expander Argon Laser

Motor

Field Scan Mirror (ψ)

Piston Sensing

: Lateral Effective Photo detector(LEP)

: Split PolarizerTilt

Sensing : Microscope Lens

16.684 Space Systems Product DevelopmentChart: 24February 13, 2001 MIT Space Systems Laboratory

Fine Optical Pointing and Phasing:Multiple Aperture

• Now need to stabilize both absolute and relative LOS jitter (Differential Wavefront Tilt)

• Also need to interfere same wavefront of light at combiner– Use Optical Delay Lines (ODLs)

• ODLs add and subtract optical pathlength from the companion telescope to the combiner.

• Used to control small positional mis-alignment and S/C attitude error

• Typically a multi-stage device with voice coils and piezoelectrics

PrimaryMirror

SecondaryMirror

FastSteeringMirror

LightRays

CameraLens

SecondaryMirror

LightRays

FastSteeringMirror

OpticalDelayLine

FoldMirrors

BeamCombiner

16.684 Space Systems Product DevelopmentChart: 25February 13, 2001 MIT Space Systems Laboratory

References

[1] Larson, W.J., Wertz, J.R., “Space Mission Analysis and Design”, Second Edition, 9.5 Designing Visual and IR Payloads, pp.. 249-274, Microcosm, Inc,1992

[2] Born Max, Wolf Emil, “Principles of Optics”, Electromagnetic Theory of propagation interference and diffraction of light, Sixth Edition, Cambridge University Press, 1998

[3] Hecht E. “Optics”, Addison-Wesley, 1987

[4] Günter Diethmar Roth, “Compendium of Practical Astronomy”, Volume 1, Instrumentation and Reduction Techniques, Springer Verlag, Berlin, New York, ISBN 3-540-56273-7, 1994

16.684 Space Systems Product DevelopmentChart: 26February 13, 2001 MIT Space Systems Laboratory

Optical System Design Process

From SMAD Chapter 9

1. Determine Instrument Requirements2. Choose preliminary aperture3. Determine target radiance4. Select detector candidates5. “Optical Link Budget”, SNR considerations6. Determine Focal Plane architecture and scanning schemes7. Select F# and telescope/optical train design8. Complete preliminary design and check MTF9. Estimate weight, power and ACS requirements10. Iterate and document - code optics software module