introduction to natural gas production engineering.ppt

Upload: agihsalam

Post on 02-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    1/105

    TM-3142 TEKNIKPRODUKSI GAS BUMI

    Prepared by:

    David Maurich, ST, MT.

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    2/105

    Sistem Evaluasi

    Kriteria Penilaian: Absensi Kehadiran = 10 % Tugas (PR) = 20 % Ujian Tengah Semester (UTS) = 30 %

    Ujian Akhir Semester (UAS) = 40 %

    Sumber Bahan Ujian:

    1. Text Book2. Catatan Kuliah di Kelas3. PR4. Slide

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    3/105

    Pustaka

    Lee, W.J. and Wattenbarger, R.A.: GasReservoir Engineering, SPE (1996).

    Ikoku. Chi U. (1984), Natural Gas Reservoir

    Engineering, John Wiley & Sons,. Other text/reference materials will be given out

    as needed-either in paper or electronic form.

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    4/105

    SATUAN ACARA PERKULIAHAN

    Pertemuan Pokok Bahasan

    Minggu 1 Pengenalan & sifat-sifat gas alamMinggu 2 Perkiraan cadanganMinggu 3 DeliverabilityMinggu 4 Pengaruh komplesi sumur

    Minggu 5 Aliran gas dalam pipaMinggu 6 Aliran gas dalam pipa: pengaruh adanya fluida di dalam aliran gas

    Minggu 7 Analisis nodal untuk aliran gasMinggu 8 Pengukuran laju alir gasMinggu 9 Ujian Tengahan Semester (UTS)Minggu 10 Decline curve analisis

    Minggu 11 Kinerja reservoirMinggu 12 Kinerja reservoirMinggu 13 Reservoir gas kondensat

    Minggu 14 Studi kasus dan praktek dengan menggunakan Tools: Prosper, PipesimMinggu 15 Ujian Akhir Semester

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    5/105

    Format Laporan PR

    Tugas-tugas Pekerjaan Rumah (PR) memiliki bobot20% dari total nilai akhir mata kuliah.

    PR harus dikerjakan sendiri, menyontek/kecuranganakan diberi nilai 0bagi yang mencontek dan yangmemberi contekan (indikasi: jawaban persis

    sama/sangat mirip sekali). Untuk menyeragamkan Laporan, maka dibuat format

    laporan seperti di Lampiran. Laporan PR boleh dikerjakan dengan komputer atau

    tulisan tangan yang rapi. Untuk plot, grafik, gambar atau perhitungan yang

    rumit sebaiknya dikerjakan dengan bantuankomputer.

    Informasi lain yang belum jelas dapat ditanyakanlewat email saya: [email protected]

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    6/105

    Anggaran Pendapatan dan Belanja NegaraPerubahan 2013 (APBNP 2013) yang dinyatakandalam Undang-Undang Nomor 15 Tahun 2013,pemerintah dan DPR menyepakati:

    1. Penerimaan negara dari pajak penghasilan (PPh)migas adalah Rp.74,28 triliun atau 4,95% dari targetpenerimaan negara 2013.

    2. Penerimaan negara bukan pajak (PNBP) dari sektormigas ditargetkan Rp.180,61 triliun atau 12,02% daritotal penerimaan negara.

    3. Total penerimaan negara dari sektor migas adalahRp.254,89 triliun atau 16,97% dari total pendapatannegara.

    Peranan Migas Dalam Pembangunan Nasional

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    7/105

    Peranan Migas Dalam APBN

    0

    200

    400

    600

    800

    1,000

    1,200

    1,400

    1,600

    2005 2006 2007 2008 2009 2010 2011 2012 2013

    495.22

    637.99707.81

    981.61

    848.76

    995.27

    1,210.60

    1,358.21

    1,502.01

    138.91

    201.27

    168.78

    288.64

    175.80211.61

    266.59 266.23 254.89

    3.19 6.78 5.88 10.45 10.77 12.99 16.93 15.62 18.62Pendapatan(Rp.Triliun)

    Tahun

    Pendapatan+Hibah (Negara)Pendapatan Migas

    Pendapatan Tambang+Panas Bumi

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    8/105

    Persentase Penerimaan Negara (APBN) DariSektor Migas

    28.05

    31.55

    23.85

    29.40

    20.7121.26

    22.02

    19.60

    16.97

    15

    17

    19

    21

    23

    25

    27

    29

    31

    33

    2005 2006 2007 2008 2009 2010 2011 2012 2013

    Persenta

    se(%)

    Tahun

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    9/105

    Subsidi BBM

    95.6

    64.2

    83.8

    139.1

    45.0

    82.4

    165.2

    137.4

    199.9

    0

    50

    100

    150

    200

    250

    2005 2006 2007 2008 2009 2010 2011 2012 2013

    Su

    bsisdi(Rp.Triliun)

    Tahun

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    10/105

    Latar elakang

    Setelah tahun 2002 konsumsi minyak Indonesialebih besar dari produksi minyak nasional.

    Cadangan minyak terbukti Indonesia tahun 2012sebesar 3,74 MMMBbls dan cenderung turun

    terus. Produksi minyak sebesar 917,75 MBbl/D. Peningkatan produksi minyak hanya bisa

    dicapai dengan kegiatan eksplorasi danimplementasi teknologi EOR.

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    11/105

    Produksi Minyak Cenderung Turun Terus Di BawahJumlah Konsumsi Minyak Yang Cenderung Naik

    -

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    1965 1975 1985 1995 2005 2015

    MBbls/D

    Year

    Indonesia Oil Production & Consumption

    Consumption

    Production

    2012: Produksi = 917,75 MBbl/D;Konsumsi =1565,24 Mbbl/D

    Total impor minyak tahun 2012 = 77.963.403 BOE,Impor produk BBM tahun 2011 = 27.366 ribu kL

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    12/105

    1

    7

    13

    19

    25

    31

    37

    1980 1984 1988 1992 1996 2000 2004 2008 2012

    MMMBbls

    Year

    Oil Proved Reserves History

    US China India Indonesia Malaysia

    Cadangan Minyak Terbukti Indonesia Pada Akhir Tahun 2012Sekitar 3,74 Milyar bbls & Cenderung Turun Dari Tahun Ke Tahun

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    13/105

    10

    2030

    40

    50

    60

    70

    80

    90

    100

    110120

    1975 1980 1985 1990 1995 2000 2005 2010 2015

    US$/Bbl

    Year

    Spot Crude Prices

    Mix (Dubai, Brent, Nigerian Forcados, West TexasIntermediate)ICP (Indonesia Crude Price)

    Harga Minyak Cenderung Naik Terus Sejak Tahun 1995(Tahun 2012: US$112.73/bbl)

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    14/105

    Indonesia Natural Gas Proved Reserve

    800

    900

    1000

    1100

    1200

    1300

    1400

    2002 2004 2006 2008 2010 2012

    TCM

    Year

    Indonesia Natural Gas Proved Reserve

    Reserve/Production: 41.2 Years

    World Share : 1.6%

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    15/105

    Indonesia Natural Gas Production &Consumption

    0.0

    1.02.0

    3.0

    4.0

    5.06.0

    7.0

    8.0

    9.0

    1966 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014

    BCF/D

    Year

    Indonesia Natural Gas Production & Consumption

    Natural GasProduction

    Natural GasConsumption

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    16/105

    Gas Prices

    0.00

    2.00

    4.00

    6.00

    8.00

    10.00

    12.00

    14.00

    16.00

    18.00

    1984 1988 1992 1996 2000 2004 2008 2012

    US$/MMBTU

    Year

    Gas Prices

    LNG

    Natural Gas

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    17/105

    Energy Prices Play A Key Role

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    18/105

    Gas Demand Growth Is Driven By Non-OECDNeeds

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    19/105

    BP Statistical Review of World Energy 2013 BP 2013

    Gas reserves-to-production (R/P) ratiosYears

    2012 by region History

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    20/105

    BP Statistical Review ofWorld Ener 2013

    Distribution of proved gas reserves in 1992, 2002 and 2012Percentage

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    21/105

    BP Statistical Review ofWorld Ener 2013

    Gas production/consumption by regionBillion cubic metres

    Consumption by regionProduction by region

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    22/105

    BP Statistical Review ofWorld Ener 2013

    Source: Includes data from Cedigaz.

    Gas consumption per capita 2012Tonnes oil equivalent

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    23/105

    BP Statistical Review ofWorld Ener 2013

    Gas prices$/Mmbtu

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    24/105

    BP Statistical Review ofWorld Ener 2013

    Source: Includes data from Cedigaz, CISStat, GIIGNL, IHS CERA, Poten, Waterborne.

    Major gas trade movements 2012Trade flows worldwide (billion cubic metres)

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    25/105

    Shale Gas & Tight Oil Resources &Production

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    26/105

    Shale Gas Growth Will Gradually SpreadBeyond The US

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    27/105

    No. Country Date No. Country Date

    1 AUSTRALIA 7-Jun-71 18 JAPAN 28-Apr-64

    2 AUSTRIA 29-Sep-61 19 KOREA 12-Dec-96

    3 BELGIUM 13-Sep-61 20 LUXEMBOURG 7-Dec-61

    4 CANADA 10-Apr-61 21 MEXICO 18-May-94

    5 CHILE 7-May-10 22 NETHERLANDS 13-Nov-61

    6 CZECH REPUBLIC 21-Dec-95 23 NEW ZEALAND 29-May-737 DENMARK 30-May-61 24 NORWAY 4-Jul-61

    8 ESTONIA 9-Dec-10 25 POLAND 22-Nov-96

    9 FINLAND 28-Jan-69 26 PORTUGAL 4-Aug-61

    10 FRANCE 7-Aug-61 27 SLOVAK REPUBLIC14-Dec-00

    11 GERMANY 27-Sep-61 28 SLOVENIA 21-Jul-10

    12 GREECE 27-Sep-61 29 SPAIN 3-Aug-61

    13 HUNGARY 7-May-96 30 SWEDEN 28-Sep-61

    14 ICELAND 5-Jun-61 31 SWITZERLAND 28-Sep-61

    15 IRELAND 17-Aug-61 32 TURKEY 2-Aug-61

    16 ISRAEL 7-Sep-10 33 UNITED KINGDOM 2-May-61

    17 ITALY 29-Mar-62 34 UNITED STATES 12-Apr-61

    Organisation for Economic Co-operation andDevelopment (OECD)

    http://www.oecd.org/australia/http://www.oecd.org/japan/http://www.oecd.org/austria/http://www.oecd.org/korea/http://www.oecd.org/korea/http://www.oecd.org/belgium/http://www.oecd.org/belgium/http://www.oecd.org/luxembourg/http://www.oecd.org/luxembourg/http://www.oecd.org/canada/http://www.oecd.org/mexico/http://www.oecd.org/chile/http://www.oecd.org/netherlands/http://www.oecd.org/netherlands/http://www.oecd.org/czech/http://www.oecd.org/czech/http://www.oecd.org/newzealand/http://www.oecd.org/denmark/http://www.oecd.org/norway/http://www.oecd.org/estonia/http://www.oecd.org/poland/http://www.oecd.org/finland/http://www.oecd.org/portugal/http://www.oecd.org/portugal/http://www.oecd.org/france/http://www.oecd.org/slovakia/http://www.oecd.org/slovakia/http://www.oecd.org/germany/http://www.oecd.org/germany/http://www.oecd.org/slovenia/http://www.oecd.org/greece/http://www.oecd.org/spain/http://www.oecd.org/hungary/http://www.oecd.org/hungary/http://www.oecd.org/sweden/http://www.oecd.org/sweden/http://www.oecd.org/iceland/http://www.oecd.org/switzerland/http://www.oecd.org/switzerland/http://www.oecd.org/ireland/http://www.oecd.org/turkey/http://www.oecd.org/israel/http://www.oecd.org/unitedkingdom/http://www.oecd.org/unitedkingdom/http://www.oecd.org/italy/http://www.oecd.org/unitedstates/http://www.oecd.org/unitedstates/http://www.oecd.org/italy/http://www.oecd.org/unitedkingdom/http://www.oecd.org/israel/http://www.oecd.org/turkey/http://www.oecd.org/ireland/http://www.oecd.org/switzerland/http://www.oecd.org/iceland/http://www.oecd.org/sweden/http://www.oecd.org/hungary/http://www.oecd.org/spain/http://www.oecd.org/greece/http://www.oecd.org/slovenia/http://www.oecd.org/germany/http://www.oecd.org/slovakia/http://www.oecd.org/france/http://www.oecd.org/portugal/http://www.oecd.org/finland/http://www.oecd.org/poland/http://www.oecd.org/estonia/http://www.oecd.org/norway/http://www.oecd.org/denmark/http://www.oecd.org/newzealand/http://www.oecd.org/czech/http://www.oecd.org/netherlands/http://www.oecd.org/chile/http://www.oecd.org/mexico/http://www.oecd.org/canada/http://www.oecd.org/luxembourg/http://www.oecd.org/belgium/http://www.oecd.org/korea/http://www.oecd.org/austria/http://www.oecd.org/japan/http://www.oecd.org/australia/
  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    28/105

    Visi Pengusahaan Migas Di Indonesia:

    Memanfaatkan migas untuk sebesar-besarnyakemakmuran rakyat (pasal 33 UUD 1945).

    Strategi Pengelolaan Migas di Indonesia:

    Kontrak Bagi Hasil (Production Sharing Contract-PSC)sebagaimana diatur dalam Undang-Undang RepublikIndonesia Nomor 22 Tahun 2001 Tentang Minyak & GasBumi dimana manajemen ada ditangan pemerintah.

    Tujuan Jangka Panjang PSC:Mengusahakan minyak kita sedapat mungkin oleh kitasendiri.

    Tinjauan Industri Migas Indonesia

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    29/105

    Tonggak Sejarah Dalam Industri MigasIndonesia (PricewaterhouseCoopers, 2011)

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    30/105

    Cadangan Minyak dan Gas Bumi dan

    sebarannya di Indonesia

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    31/105

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    32/105

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    33/105

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    34/105

    Tantangan Ke Depan dalam ProsesPeningkatan Produksi dan Perolehan MInyak

    Peningkatan produksi minyak hanya bisa dicapaidengan kegiatan eksplorasi dan implementasiteknologi EOR atau pemanfaatan unconventionalresources (heavy oils, oil & gas sand/shale, CBM,

    gas hydrate, dll.) yang membutuhkan teknologidan keahlian yang tinggi.

    Kegiatan eksplorasi migas butuh investasi & biayayang sangat besar,tingkat keberhasilan untukmenemukan migas hanya sekitar 30%-40% danbanyaknya di laut dalam sementara anggaranminim.

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    35/105

    Cadangan Hidrokarbon di Dunia

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    36/105

    GAS HYDRATES

    Gas Hydrate Value of X

    Methane CH4. XH2O 6to 7

    Ethane C2H6. XH2O 6to 8

    Propane C3H8. XH2O 7to 18

    Carbon dioxide CO2. XH2O 6to 7Natural gas NG . XH2O 9

    1 ft3of liquid methane@ 260oF 630 ft3of gaseous methane

    Temperatures > 260oF can be used if the liquid state is maintained at 325 psigand

    155oF.

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    37/105

    LIQUEFIED NATURAL GASLNG

    1 Gallon of LNG@ 263oF

    weighs 3.46 lbs

    has a specific gravityof 0.42

    has a heating valueof approximately86,000 Btu

    Heat of Vaporizationof LNG at 1 atm 10 Btu/SCF

    It requires 6575 Btuto vaporise 1 cu ftof liquid methane.

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    38/105

    Energy Resources

    Renewable Energy Resources

    (Solar, Wind, Bio-mass, hydal)

    Non-Renewable Energy Resources

    (Natural Gas, Petroleum, Coal)

    General Classification of Fuels

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    39/105

    General Classification of Fuels

    FUELS

    Conventional Nuclear

    Natural or Fossil Manufactured or Synthetic 238U92;238U92;

    239Pu93

    Solid

    Liquid

    Gaseous

    Wood , Coal

    Petroleum

    Natural GasCoal Bed Methane(CBM)

    Marsh Gas

    Solid

    Liquid

    Gaseous

    Coke , Charcoals

    Alcohols

    Coal gasCoke oven gasProducer gas

    Water gasHydrogen , etc.

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    40/105

    What is natural gas? Natural gas is a subcategory of petroleum that is a naturally

    occurring, complex mixture of hydrocarbons, with a minoramount of inorganic compounds.

    Geologists and chemists agree that petroleum originatesfrom plants and animal remains that accumulate on thesea/lake floor along with the sediments that formsedimentary rocks

    The processes by which the parent organic material isconverted into petroleum are not understood.

    The contributing factors are thought to be bacterial action;

    shearing pressure during compaction, heat, and naturaldistillation at depth; possible addition of hydrogen fromdeep-seated sources; presence of catalysts; and time(Allison and Palmer 1980).

    NATURA GAS

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    41/105

    NATURAL GAS

    Definition(in normal usage) :

    Natural Gas in normal usage, is considered to be a

    naturally occurring mixture of hydrocarbons[C1, C2, C3, C4, C5, C6+]and non-hydrocarbons

    [CO2, N2, He , H2O , H2S, RSH, COS, CS2,

    etc.]associated with petroliferous geologicformations (rocks in earths crust).

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    42/105

    Natural Gases as supplied by the utility gas companies,

    usual ly

    contain 80to 95% CH4, with C2H6,C3H8 ,N2,etc. making up the remainder.

    have heatingor calorific valueranging from 900 to 1200 Btu/SCF.

    have specific gravity(w.r.t. air = 1.0) varying from 0.58 to 0.79.

    Methane (CH4) (Some properties )

    Auto- or Spontaneous-ignition Temperature : 1004oF (540oC)

    Flammability Limits : 5% to 15% v

    Critical Pressure : 673 psia (45.8 atm)

    Critical Temp.: 116.3oF (343.7 oR) OR 82.4oC (191 oK)

    ( For other properties, see literature)

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    43/105

    Generally,

    1000 sft3( 1 MSCF )ofNatural Gas is equivalent to :

    58 kg of Wood

    52 kg of (indigenous)Coal

    28 liters of Kerosene

    0.168 barrel of Crude Oil(petroleum)

    285 kwh of Electricity

    0.024 tonne of Furnace Oil

    21 kg of LPG

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    44/105

    Raw Gas

    Water

    Helium

    Nitrogen

    Carbon dioxide

    Hydrogen sulphide

    Methane

    Ethane

    Propane

    N-Butane

    i-Butane

    Pentanes +

    GasProcessing

    Product Slate

    Water

    HeliumNitrogen

    Carbon dioxide

    Hydrogen sulphide

    Pipeline gas(Methane)

    Ethane

    Propane

    n-Butane

    i-Butane

    Natural gasoline

    Hydrocarbons Combustiblesvs

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    45/105

    Hydrocarbons Non-hydrocarbons

    Water H2O

    Carbon dioxide CO2

    Nitrogen N2

    Helium He

    Hydrogen sulphide H2SMercaptans RSH

    Carbon oxysulphide COS

    Carbon disulphide CS2

    Methane C1

    Ethane C2

    Propane C3

    n-Butane n-C4

    i-Butane i-C4

    Pentanes C5

    Hexanes+ C6+

    Natural GasConstituents

    Hydrocarbons Non-hydrocarbons

    Water H2O

    Carbon dioxide CO2

    Nitrogen N2

    Helium He

    Hydrogen sulphide H2SMercaptans RSH

    Carbon oxysulphide COS

    Carbon disulphide CS2

    Methane C1

    Ethane C2

    Propane C3

    n-Butane n-C4

    i-Butane i-C4

    Pentanes C5

    Hexanes+ C6+

    Natural GasConstituents

    Combustibles

    Natural Gas

    Constituents

    Non-combustibles

    H2O

    CO2

    N2

    He

    HCs

    H2S

    RSH

    COS

    CS2

    Combustibles

    Natural Gas

    Constituents

    Non-combustibles

    H2O

    CO2

    N2

    He

    HCs

    H2S

    RSH

    COS

    CS2

    vsNon-hydrocarbons

    vsNon- combustibles

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    46/105

    History of Natural Gas

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    47/105

    PETROLEUM ORIGIN

    Petroleum occurs underground, at various pressuresdepending on the depth.

    Because of the pressure, it contains considerablenatural gas in solution.

    Petroleum is derived from aquatic plants and animals

    that lived and died hundreds of millions of years ago. Their remains mixed with mud and sand in layered

    deposits that, over the millennia, were geologicallytransformed into sedimentary rock.

    Gradually the organic matter decomposed andeventually formed petroleum, which migrated fromthe original source beds to more porous andpermeable rocks, such as sandstone and siltstone,where it finally became entrapped. Such entrapped

    accumulations of petroleum are called reservoirs.

    IDEAL CONDITION FOR OIL AND

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    48/105

    IDEAL CONDITION FOR OIL ANDGAS FORMATION

    Hydrocarbon Oil: Temperature between180oF and 295 oF (7,00015,000 ft)

    Hydrocarbon gas: Temperature between295 oF and 450 oF (15,00025,000 ft).

    CO2and H2O: Temperature above 450oF.

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    49/105

    SCHEMATIC ILLUSTRATION

    OF DEPOSITIONAL SYSTEM

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    50/105

    SEDIMENTATION

    ACCUMULATION TRANSFORMATION

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    51/105

    ACCUMULATION, TRANSFORMATIONAND MIGRATION

    CnH2n+2COOH or CnH2nO2 +Temperatures

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    52/105

    WHAT MAKES OIL STAY IN THERE: TRAPS

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    53/105

    Exploration Production Shipping RefiningChemical

    ManufacturingUses

    Oil and Gas Process

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    54/105

    Concept of Natural Gas System

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    55/105

    A General Scheme

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    56/105

    CL SSIFIC TION OF THE E RTHS ORG NIC SEDIMENTS

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    57/105

    (termasuk isomernya)

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    58/105

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    59/105

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    60/105

    Classification of hydrocarbon

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    61/105

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    62/105

    Polydispersivity

    GAS BUMI

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    63/105

    GAS BUMI

    Gas bumi adalah campuran hidrokarbon ringan dengan komponenutamanya C1atau metana. Kandungan (fraksi mol) C1didalamsuatu reservoir dapat berbeda dibanding dengan reservoir lain.

    Kandungan C1di suatu reservoir dapat mencapai lebih dari 95%,tetapi banyak reservoir memiliki kandungan C1hanya 70% atau

    bahkan kurang dengan komponen sisanya adalah C2, C3, C4, dst.plus seringkali gas non-hidrokarbon seperti N2, CO2, H2S, He.

    Gas bumi pada kondisi awal didalam reservoir berbentuk fasa gas.

    Gas bumi bila diproduksikan dari dalam reservoir akan

    menghasilkan di permukaan hanya gas saja ataugas dan cairanhidrokarbon (kondensat), tergantung dari komposisi gas itudidalam reservoir.

    Oleh karena itu, reservoir gas dapat dikatagorikan atas: reservoirgas kering, reservoir gas basah, dan reservoir gas kondensat.

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    64/105

    Contoh Komposisi dan Karakteristik Gas

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    65/105

    dan Minyak Bumi

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    66/105

    Karakteristik Gas Bumi

    1. Reservoir gasdapat dikelompokkan atas reservoir gaskering, reservoir gas basah dan reservoir gas kondensat.

    2. Reservoir gas keringmenghasilkan sangat sedikit

    sekali hidrokarbon cair dipermukaan.

    3. Reservoir gas basahmenghasilkan hidrokarbon cair dipermukaan dengan GORjauh diatas 15000 SCF/STB.

    4. Reservoir gas kondensatbisa menghasilkanhidrokarbon cair dipermukaan dengan GORdi atas 3500SCF/STB.

    FLUID SYSTEM: RETROGRADE GAS

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    67/105

    FLUID SYSTEM: RETROGRADE GAS

    Retrograde Gas

    Mid 50s < oAPI < 70

    Condensate = 0.25 cp1.5 < B < 2.5 to 3.53300 < Rinitial< 15,000 to 50,000

    Gas at initial condition

    Large quantities ofcondensate drop out inthe surface facilities

    Condensate drop outin the formation

    PHASE BEHAVIOR RETROGRADE GAS

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    68/105

    PHASE BEHAVIOR: RETROGRADE GAS

    Kondisiawaldi reservoir

    Kondisi didasar sumur

    Separator

    Temperatur

    Tekanan

    Diagram Fasa (P-T Diagram) Gas Kondensat

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    69/105

    g s ( g ) G s o de s

    FLUID SYSTEM: WET GAS

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    70/105

    Wet Gas

    o

    API >60Condensate = 0.25 cp

    1.5 < B < 2.5 to 3.515,000 to 50,000 < Rinitial< 100,000

    Gas at initial condition

    Condensate drop out inthe surface facilities

    Diagram Fasa (P-T Diagram) untuk Gas Basah

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    71/105

    Ciri-ciri Gas Basah (Wet Gas): gas yg diproduksikan ke permukaan (separator)menghasilkan cairan hidrokarbon (kondensat) dengan Gas-Oil Ratio atau Gas-Condensate Ratio dapat mencapai puluhan ribu SCF/STB. Komponen C1 dapatmencapai 85% dan kandungan C2 C6 lebih banyak dibanding gas kering.Komposisi gas separator beda dengan komposisi gas di reservoir. Air terkondensasi

    seringkali juga dihasilkan di separator.

    PHASE BEHAVIOR WET GAS

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    72/105

    PHASE BEHAVIOR: WET GAS

    Tekana

    n

    Temperatur

    Kondisi awaldi reservoir

    Kondisi didasar sumur

    Separator

    FLUID SYSTEM: DRY GAS

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    73/105

    Gas is composed primarily of methanewith only small amounts of ethane,propane and butane

    Produce no condensate

    Diagram Fasa (P-T Diagram) untuk Gas Kering

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    74/105

    g s ( g ) u u G s e g

    Ciri-ciri gas kering (Dry Gas): gas yg diproduksikan ke permukaan (separator)menghasilkan kondensat hidrokarbon sedikit sekali atau bahkan tidak NOL.Komponen C1 dominan plus sedikit C2 C4 dan mungkin ada C5+. Komposisigas di reservoir boleh dikatakan samna dengan komposisi di separator dan SG-nya juga sama. Seringkali kondensat air (H2O) dihasilkan juga.

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    75/105

    PHASE BEHAVIOR: DRY GAS

    Tekanan

    Temperatur

    Kondisi awaldi reservoir

    Dry gas

    Kondisi di

    dasar sumur

    Separator

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    76/105

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    77/105

    EQUATION FOR IDEAL GAS

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    78/105

    EQUATION FOR IDEAL GAS

    For n moles the equation becomes:

    T= absolute temperature oK or oR where

    K=273 +o

    C ando

    R=460 +o

    F To find the volume occupied by a quantity

    of gas, when the conditions of

    temperature and pressure are changedfrom state 1 to state 2 we note that:

    The Density of an Ideal Gas

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    79/105

    The Density of an Ideal Gas

    Density is defined as the weight per unitvolume, the ideal gas law can be used tocalculate densities.

    For 1 mole; m = MW

    Standard Conditions

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    80/105

    Sta da d Co d t o s

    Oil and gas at reservoir conditions clearly occurunder a whole range of temperatures andpressures.

    It is common practice to relate volumes toconditions at surface, ie 14.7 psia and 60F.

    This relationship assumes that reservoirproperties behave as ideal.

    sc - standard conditions res - reservoir conditions

    Mixtures of Ideal Gases

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    81/105

    Mixtures of Ideal Gases

    Petroleum engineering is concerned notwith single component gases but mixturesof a number of gases.

    Laws established over early yearsgoverning ideal gas mixtures includeDaltons Law and Amagats Law.

    Apparent Molecular Weight

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    82/105

    Apparent Molecular Weight

    A mixture does not have a molecularweight although it behaves as though ithad a molecular weight. This is called theapparent molecular weight(AMW)

    If yjrepresents the mole fraction of the jthcomponent:

    AMW for air = 28.97, a value of 29.0 isusually sufficiently accurate

    Specific Gravity of a Gas

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    83/105

    Specific Gravity of a Gas

    The specific gravity of a gas, gis the ratio

    of the density of the gas relative to that ofdry air at the same conditions.

    Where:

    Assuming that the gases and air are ideal.

    Mg= AMW of mixture, Mair= AMW of air.

    BEHAVIOUR OF REAL GASES

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    84/105

    BEHAVIOUR OF REAL GASES

    The ideal gas law, therefore, is not tooapplicable to light hydrocarbons and theirassociated fluids and it is necessary to usea more refined equation.

    There are two general methods ofcorrecting the ideal gas law equation:

    (1) By using a correction factor in theequation PV = nRT

    (2) By using another equation-of-state(EOS)

    Compressibility Factor (Z) for Natural Gases

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    85/105

    The correction factor z which is a function ofthe gas composition, pressure and temperatureis used to modify the ideal gas law to:

    z is an expression of the actual volume to whatthe ideal volume would be.

    The factor z is known as the compressibilityfactor & the equation is known as thecompressibility equation-of-state or thecompressibility equation.

    Compressibility Factor (Z) for Natural

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    86/105

    Compressibility Factor (Z) for Natural

    Gases

    The compressibility factor is not a constantbut varies with changes in gascomposition, temperature and pressure

    and must be determined experimentally. To compare two states the law now takes

    the form:

    Typical plot of the compressibility factor as a function of

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    87/105

    pressure at constant temperature

    Law of Corresponding States

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    88/105

    p g

    The law of corresponding states shows that the properties ofmany pure liquids and gases have the same value at the same

    reduced temperature (Tr) and pressure (Pr) where:

    Where, Tcand Pcare the pure component critical temperature

    and pressure. Although in many cases pure gases follow the Law of

    Corresponding States, the gases associated with hydrocarbonreservoirs do not. The Law has however been used to apply tomixtures by defining parameters calledpseudo criticaltemperature and pseudocritical pressure.

    For mixtures a pseudocritical temperature and pressure, Tpcand Ppcis used such that:

    the pseudo-critical pressure

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    89/105

    and pseudo-critical temperature of gases correlation

    Brown et al. (1948) presented in a graphical method. Standing (1977) expressed this graphical correlation in

    the following mathematical forms:

    Natural Gas Systems

    Gas-Condensate Systems

    Pseudo-critical

    properties of natural

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    90/105

    properties of natural

    gases

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    91/105

    For mixtures the compressibility factor (z)has been generated with respect to naturalgases, where z is plotted as a function of

    pseudo reduced temperature, Tprandpseudo reduced pressure Pprwhere

    Compressibility factors for natural

    gas (Standing & Katz)

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    92/105

    gas (Standing & Katz)

    Pseudocritical Properties

    of Natural Gases

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    93/105

    of Natural Gases

    Thepseudocriticalproperties ofgases can becomputedfrom the basiccomposition

    but can also beestimatedfrom the gasgravity.

    Impact of Nonhydrocarbon Components on z

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    94/105

    value

    Components like hydrogen sulphide, and carbondioxide have a significant impact on the value of z. Ifthe method previously applied is used large errors inz result.

    Wichert and Aziz have produced an equation whichenables the impact of these two gases to becalculated.

    T'pcand P'pcare used to calculate Tprand Ppr. Thevalue for is obtained from the Wichert and Azizchart or correlation.

    Wichert and Aziz pseudo-critical temperature adjustment

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    95/105

    factor () correlation

    Where:

    B = Mole fraction of H2S in the gas mixtureor (yH2S)

    The Carr-Kobayashi-Burrows Correction Method

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    96/105

    (1954)

    A simplified procedure to adjust thepseudo-critical properties of natural gaseswhen nonhydrocarbon components arepresent.

    The method can be used when thecomposition of the natural gas is notavailable.

    Adjustment factors for

    pseudocritical properties

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    97/105

    pseudocritical properties

    for non hydrocarbon

    gases

    (Wichert & Aziz)

    Physical Properties for Pure Components

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    98/105

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    99/105

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    100/105

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    101/105

    EXERCISE-1

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    102/105

    By using Wichert and Aziz method,calculate the pseudo critical properties ofthe gas which is made up of the following

    components; 25 lb of methane, 3 lb ofethane and 1.5 lb of propane, if it alsocontained 3 lb of hydrogen sulphide, 10 lb

    of carbon dioxide and 2.5 lb of nitrogen.

    solutionC W i h M l F i P T

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    103/105

    From Wichert & Azis chart for compositions of H2S and CO2, it is obtained = 19

    Components(j)

    Weight(lb)

    MW lb moleMole Fraction

    (Yj)P

    c

    (Psi)Y

    jP

    cj

    Tc

    (oR)Y

    jT

    cj

    C1 25 16.04 1.5586 0.743 667 495.783 344 255.696

    C2 3 30.07 0.0998 0.048 708 33.686 550 26.169C

    3 1.5 44.09 0.0340 0.016 616 9.995 666 10.806

    H2S 3 34.08 0.0880 0.042 1306 54.827 673 28.253

    CO2 10 44.01 0.2272 0.108 1071 116.056 548 59.383

    N2 2.5 28.02 0.0892 0.043 493 20.977 227 9.659

    Total 45 2.0969 1 731.324 389.965

    EXERCISE-2

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    104/105

    Calculate the Z factor of gas from Exercise-1for P = 5420 psia and T = 275 oF?

    solution

  • 8/10/2019 Introduction to Natural Gas Production Engineering.ppt

    105/105

    From solution of Exercise-1 it is found that: T'pc= 371

    oR

    P'pc = 694.3 psia

    Thus; Tpr = T/Tpc= (275

    oF+460)/371 oR= 1.98

    Ppr = P/Ppc= 5420 psia/694.3 psia = 7.81

    From Standing & Katz chart, Z is found to be1.05