introduction to finite element methods

195
Introduction to Finite Element Methods UNIT I

Upload: saman

Post on 23-Feb-2016

27 views

Category:

Documents


0 download

DESCRIPTION

Introduction to Finite Element Methods. UNIT I. Numerical Methods – Definition and Advantages. Definition: Methods that seek quantitative approximations to the solutions of mathematical problems Advantages:. What is a Numerical Method – An Example. Example 1: . - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Introduction to Finite Element Methods

Introduction to Finite Element Methods

UNIT I

Page 2: Introduction to Finite Element Methods

Numerical Methods – Definition and Advantages

Definition: Methods that seek quantitative approximations to the solutions of mathematical problems

Advantages:

Page 3: Introduction to Finite Element Methods

What is a Numerical Method – An Example

Example 1: 0)0( uuudtdu

Page 4: Introduction to Finite Element Methods

What is a Numerical Method – An Example

Example 1: 0)0( uuudtdu

Page 5: Introduction to Finite Element Methods

What is a Numerical Method – An Example

Example 2: 0t- )0( e52 uuu

dtdu

Page 6: Introduction to Finite Element Methods

What is a Numerical Method – An Example

Example 2: 1)0( e52 t- uudtdu

Page 7: Introduction to Finite Element Methods

What is a Numerical Method – An Example

Example 3: 1)0( 2 utudtdu

Page 8: Introduction to Finite Element Methods

What is a Finite Element Method

Page 9: Introduction to Finite Element Methods

Discretization

1-D 2-D

3-D?-D Hybrid

Page 10: Introduction to Finite Element Methods

Approximation

Numerical Interpolation

Non-exact Boundary Conditions

Page 11: Introduction to Finite Element Methods

Applications of Finite Element Methods

Structural & Stress Analysis Thermal Analysis Dynamic Analysis Acoustic Analysis Electro-Magnetic Analysis Manufacturing Processes Fluid Dynamics

Page 12: Introduction to Finite Element Methods

Lecture 2

Review

Page 13: Introduction to Finite Element Methods

Matrix Algebra • Row and column vectors

• Addition and Subtraction – must have the same dimensions• Multiplication – with scalar, with vector, with matrix

• Transposition –

• Differentiation and Integration

Page 14: Introduction to Finite Element Methods

Matrix Algebra • Determinant of a Matrix:

• Matrix inversion -

• Important Matrices• diagonal matrix• identity matrix• zero matrix• eye matrix

Page 15: Introduction to Finite Element Methods

Numerical Integration Calculate: dxxfI

b

a

• Newton – Cotes integration

• Trapezoidal rule – 1st order Newton-Cotes integration

• Trapezoidal rule – multiple application

)()()()()()( 1 axab

afbfafxfxf

b

a

b

a

bfafabdxxfdxxfI2

)()()()()( 1

n

n

n x

x

x

x

b

a

x

x

x

xn dxxfdxxfdxxfdxxfdxxfI

1

2

10

1

0

)()()( )()(

1

1

)()(2)(2

n

ii bfxfafhI

Page 16: Introduction to Finite Element Methods

Numerical Integration Calculate: dxxfI

b

a

• Newton – Cotes integration

• Simpson 1/3 rule – 2nd order Newton-Cotes integration

)())((

))(()())((

))(()())((

))(()()( 21202

101

2101

200

2010

212 xf

xxxxxxxxxf

xxxxxxxxxf

xxxxxxxxxfxf

b

a

b

a

xfxfxfxxdxxfdxxfI6

)()(4)()()()( 210022

Page 17: Introduction to Finite Element Methods

Numerical Integration Calculate: dxxfI

b

a

• Gaussian Quadrature

)(2

)()(2

)(2

)()()(

bfabafab

bfafabI

)()( 1100 xfcxfcI

Trapezoidal Rule: Gaussian Quadrature:

Choose according to certain criteria1010 ,,, xxcc

Page 18: Introduction to Finite Element Methods

Numerical Integration Calculate: dxxfI

b

a

• Gaussian Quadrature

• 2pt Gaussian Quadrature

• 3pt Gaussian Quadrature

31

311

1

ffdxxfI

77.055.0089.077.055.01

1

fffdxxfI

111100

1

1

nn xfcxfcxfcdxxfI

abaxx

)(21~Let:

xdxabbafabdxxfb

a

~~)(21)(

21)(

21)(

1

1

Page 19: Introduction to Finite Element Methods

Numerical Integration - Example Calculate: dxxeI x

1

0

sin

• Trapezoidal rule

• Simpson 1/3 rule

• 2pt Gaussian quadrature

• Exact solution90933.0

2cossinsin

1

0

1

0

xexedxxeI

xxx

Page 20: Introduction to Finite Element Methods

Linear System Solver Solve: bAx

• Gaussian Elimination: forward elimination + back substitution

Example:

0 33322

062

21

321

321

xxxxx

xxx

230

610960

621

3

2

1

xxx

230

031322621

3

2

1

xxx

2330

21500960

621

3

2

1

xxx

Page 21: Introduction to Finite Element Methods

Linear System Solver Solve: bAx

• Gaussian Elimination: forward elimination + back substitution

Pseudo code:

Forward elimination: Back substitution:

Do k = 1, n-1Do i = k+1,n

Do j = k+1, nkk

ik

aac

kii

kjijij

cbbb

caaa

Do ii = 1, n-1i = n – iisum = 0Do j = i+1, nsum = sum +

ii

ii a

sumbb

jijba

Page 22: Introduction to Finite Element Methods

Finite Element Analysis (F.E.A.) of 1-D Problems

UNIT II

Page 23: Introduction to Finite Element Methods

Historical Background

• Hrenikoff, 1941 – “frame work method” • Courant, 1943 – “piecewise polynomial

interpolation” • Turner, 1956 – derived stiffness matrice for

truss, beam, etc• Clough, 1960 – coined the term “finite element”

Key Ideas: - frame work method piecewise polynomial approximation

Page 24: Introduction to Finite Element Methods

Axially Loaded Bar Review:

Stress:

Strain:

Deformation:

Stress:

Strain:

Deformation:

Page 25: Introduction to Finite Element Methods

Axially Loaded Bar Review:

Stress:

Strain:

Deformation:

Page 26: Introduction to Finite Element Methods

Axially Loaded Bar – Governing Equations and Boundary

Conditions• Differential Equation

• Boundary Condition Types • prescribed displacement (essential BC)

• prescribed force/derivative of displacement (natural BC)

LxxfdxduxEA

dxd

0 0)()(

Page 27: Introduction to Finite Element Methods

Axially Loaded Bar –Boundary Conditions

• Examples• fixed end

• simple support

• free end

Page 28: Introduction to Finite Element Methods

Potential Energy• Elastic Potential Energy (PE)

- Spring case

- Axially loaded bar

- Elastic body

x

Unstretched spring

Stretched bar

0PE

2

21PE kx

undeformed:

deformed:

0PE

L

Adx02

1PE

dvV

Tεσ21PE

Page 29: Introduction to Finite Element Methods

Potential Energy• Work Potential (WE)

B

L

uPfdxu 0

WP

Pf

f: distributed force over a lineP: point forceu: displacement

A B

• Total Potential Energy

B

LL

uPfdxuAdx 002

1

• Principle of Minimum Potential Energy For conservative systems, of all the kinematically admissible displacement fields,

those corresponding to equilibrium extremize the total potential energy. If the extremum condition is a minimum, the equilibrium state is stable.

Page 30: Introduction to Finite Element Methods

Potential Energy + Rayleigh-Ritz Approach

Pf

A B

Example:

Step 1: assume a displacement field nixau ii

i to1

is shape function / basis functionn is the order of approximation

Step 2: calculate total potential energy

Page 31: Introduction to Finite Element Methods

Potential Energy + Rayleigh-Ritz Approach

Pf

A B

Example:

Step 3:select ai so that the total potential energy is minimum

Page 32: Introduction to Finite Element Methods

Galerkin’s Method

Pf

A B

Example:

PdxduxEA

xu

xfdxduxEA

dxd

Lx

)(

00

0)()( Seek an approximation so

PdxudxEA

xu

dVxfdxudxEA

dxdw

Lx

Vi

~)(

00~

0)(~

)(

u~

In the Galerkin’s method, the weight function is chosen to be the same as the shape function.

Page 33: Introduction to Finite Element Methods

Galerkin’s Method

Pf

A B

Example:

0)(~

)(

dVxf

dxudxEA

dxdw

Vi 0

~)(

~)(

00 0

L

i

L L

ii

dxudxEAwfdxwdx

dxdw

dxudxEA

1 2 3

1

2

3

Page 34: Introduction to Finite Element Methods

Finite Element Method – Piecewise Approximation

x

u

x

u

Page 35: Introduction to Finite Element Methods

FEM Formulation of Axially Loaded Bar – Governing Equations

• Differential Equation

• Weighted-Integral Formulation

• Weak Form

LxxfdxduxEA

dxd

0 0)()(

0)()(0

dxxf

dxduxEA

dxdw

L

LL

dxduxEAwdxxwf

dxduxEA

dxdw

00

)()()(0

Page 36: Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example:

Step 1: Discretization

Step 2: Weak form of one element P2P1x1 x2

0)()()()()(2

1

2

1

x

x

x

x dxduxEAxwdxxfxw

dxduxEA

dxdw

0)()()( 1122

2

1

PxwPxwdxxfxw

dxduxEA

dxdwx

x

Page 37: Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example (cont):

Step 3: Choosing shape functions - linear shape functions

2211 uuu

lx1 x2

x xx1 x0 x1

lxx

lxx 1

22

1 ;

2

1 ;2

121

xx

11 2

1 ;12 xlxxxl

xx

Page 38: Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example (cont):

Step 4: Forming element equation

Let , weak form becomes1w 0111211

122

1

2

1

PPdxfdxl

uuEAl

x

x

x

x

1121

2

1

Pdxful

EAul

EA x

x

Let , weak form becomes2w 0112222

122

1

2

1

PPdxfdxl

uuEAl

x

x

x

x

2221

2

1

Pdxful

EAul

EA x

x

2

1

2

1

1

1 1 1 1

2 2 2 22

1 11 1

x

x

x

x

fdxu P f PEAu P f Pl

fdx

E,A are constant

Page 39: Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example (cont):

Step 5: Assembling to form system equation

Approach 1:

Element 1:

1 1 1

2 2 2

1 1 0 01 1 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0

I I I

I I II I

I

u f Pu f PE A

l

Element 2:1 1 1

2 2 2

0 0 0 0 0 0 00 1 1 00 1 1 00 0 0 0 0 0 0

II II IIII II

II II IIII

u f PE Au f Pl

Element 3:

1 1 1

2 2 2

0 0 00 0 0 00 0 00 0 0 0

0 0 1 10 0 1 1

III III

III III IIIIII

III III III

E Au f Plu f P

Page 40: Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example (cont):

Step 5: Assembling to form system equation

Assembled System:

1 1 1

2 2 2

3 3 3

4 4 4

0 0

0

0

0 0

I I I I

I I

I I I I II II II II

I I II II

II II II II III III III III

II II III III

III III III III

III III

E A E Al l

u f PE A E A E A E Au f Pl l l lu f PE A E A E A E Au f Pl l l l

E A E Al l

1 1

2 1 2 1

2 1 2 1

2 2

I I

I II I II

II III II III

III III

f Pf f P Pf f P P

f P

Page 41: Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example (cont):

Step 5: Assembling to form system equation

Approach 2: Element connectivity table Element 1 Element 2 Element 3

1 1 2 3

2 2 3 4

global node index (I,J)

local node (i,j)

eij IJk K

Page 42: Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example (cont):

Step 6: Imposing boundary conditions and forming condense system

Condensed system:

2 2

3 3

4 4

000

0

I I II II II II

I II II

II II II II III III III III

II II III III

III III III III

III III

E A E A E Al l l u f

E A E A E A E A u fl l l l

u f PE A E A

l l

Page 43: Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example (cont):

Step 7: solution

Step 8: post calculation

dxdu

dxdu

dxdu 2

21

1 2211 uuu

dxdEu

dxdEuE 2

21

1

Page 44: Introduction to Finite Element Methods

Summary - Major Steps in FEM• Discretization • Derivation of element equation• weak form• construct form of approximation solution over

one element• derive finite element model

• Assembling – putting elements together• Imposing boundary conditions• Solving equations• Postcomputation

Page 45: Introduction to Finite Element Methods

Exercises – Linear Element

Example 1:E = 100 GPa, A = 1 cm2

Page 46: Introduction to Finite Element Methods

Linear Formulation for Bar Element

2

1

2212

1211

2

1

2

1

uu

KKKK

ff

PP

2

1

2

1

, x

xii

x

xji

jiij dxffKdx

dxd

dxdEAKwhere

x=x1 x=x2

1 2 1 1

x

x=x1 x= x2

u1 u2

1P 2Pf(x)

L = x2-x1

ux

Page 47: Introduction to Finite Element Methods

Higher Order Formulation for Bar Element

(x)u(x)u(x)u(x)u 332211

)x(u)x(u)x(u)x(u(x)u 44332211

1 3

u1 u3ux

u2

2

1 4

u1 u4

2

ux

u2 u3

3

)x(u)x(u)x(u)x(u)x(u(x)u nn44332211

1 n

u1 un

2

ux

u2 u3

3

u4 ……………

4 ……………

Page 48: Introduction to Finite Element Methods

Natural Coordinates and Interpolation Functions

21 ,

21

21

xx

Natural (or Normal) Coordinate:

x=x1 x= x2

x=-1 x=1

xx

0x x l

1xxx 1 2

2/ 2

x xx

lx

1 32

xx=-1 x=1

1 2

xx=-1 x=1

1 42

xx=-1 x=1

3

21 ,11 ,

21

321xxxxxx

1311

1627 ,1

31

31

169

21

xxxxxx

31

311

169 ,1

311

1627

43 xxxxxx

Page 49: Introduction to Finite Element Methods

Quadratic Formulation for Bar Element

2

1

1

1

nd , , 1, 2, 32

x

i i ix

la f f dx f d i j x

2

1

1

1

2 x

j ji iij ji

x

d dd dwhere K EA dx EA d Kdx dx d d l

xx x

3

2

1

332313

232212

131211

3

2

1

3

2

1

uuu

KKKKKKKKK

fff

PPP

x=-1 x=0 x=1

31 2

Page 50: Introduction to Finite Element Methods

Quadratic Formulation for Bar Elementu1 u3u2f(x)

P3P1

P2

x=-1 x=0 x=11x 2x 3x

21u11u

21u)(u)(u)(u)(u 321332211

xxxxxxxxxx

21 ,11 ,

21

321xxxxxx

1 1 2 2 3 32 2 1 2 4 2 2 1, , d d d d d ddx l d l dx l d l dx l d l x x x

x x x

1 2

2/ 2

x xx

lx

2

l d dxx 2d

dx lx

Page 51: Introduction to Finite Element Methods

Exercises – Quadratic Element

Example 2:

E = 100 GPa, A1 = 1 cm2; A1 = 2 cm2

Page 52: Introduction to Finite Element Methods

Some Issues

Non-constant cross section:

Interior load point:

Mixed boundary condition:k

Page 53: Introduction to Finite Element Methods

Finite Element Analysis (F.E.A.) of I-D Problems – Applications

Page 54: Introduction to Finite Element Methods

Plane Truss Problems

Example 1: Find forces inside each member. All members have the same length.

F

Page 55: Introduction to Finite Element Methods

UNIT II

Page 56: Introduction to Finite Element Methods

Arbitrarily Oriented 1-D Bar Element on 2-D Plane

Q2 , v2

11 u ,P

q

22 u ,PP2 , u2

Q1 , v1

P1 , u1

Page 57: Introduction to Finite Element Methods

Relationship Between Local Coordinates and Global Coordinates

2

2

1

1

2

2

1

1

cossin00sincos00

00cossin00sincos

0

0

vuvu

vu

vu

qqqq

qqqq

Page 58: Introduction to Finite Element Methods

Relationship Between Local Coordinates and Global Coordinates

2

2

1

1

2

1

cossin00sincos00

00cossin00sincos

0

0

QPQP

P

P

qqqq

qqqq

Page 59: Introduction to Finite Element Methods

Stiffness Matrix of 1-D Bar Element on 2-D Plane

2

2

1

1

2

2

1

1

cossin00sincos00

00cossin00sincos

cossin00sincos0000cossin00sincos

vuvu

K

QPQP

ij

qqqq

qqqq

qqqq

qqqq

0000010100000101

LAEK ij

Q2 , v2

11 , uP

q

22 u ,PP2 , u2

Q1 , v1

P1 , u1

2

2

1

1

22

22

22

22

2

2

1

1

sincossinsincossincossincoscossincos

sincossinsincossincossincoscossincos

vuvu

LAE

QPQP

qqqqqqqqqqqqqqqqqqqqqqqq

Page 60: Introduction to Finite Element Methods

Arbitrarily Oriented 1-D Bar Element in 3-D Space

2

2

2

1

1

1

zzz

yyy

xxx

zzz

yyy

xxx

2

2

2

1

1

1

wvuwvu

000000000

000000000

0w0v

u0w0v

u

x, x, x are the Direction Cosines of the bar in the x-y-z coordinate system

- - -

11 u ,Px

22 u ,P

x

xx

y

z2

1

--

-

2

2

2

1

1

1

2

2

2

1

1

1

000000000

000000000

00

00

RQPRQP

RQ

PRQ

P

zzz

yyy

xxx

zzz

yyy

xxx

Page 61: Introduction to Finite Element Methods

Stiffness Matrix of 1-D Bar Element in 3-D Space

2

2

2

1

1

1

22

22

22

22

22

22

2

2

2

1

1

1

wvuwvu

LAE

RQPRQP

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

11 u ,Px

22 u ,P

x

xx

y

z2

1

--

-

0w0v

u0w0v

u

000000000000001001000000000000001001

LAE

0R0Q

P0R0Q

P

2

2

2

1

1

1

2

2

2

1

1

1

Page 62: Introduction to Finite Element Methods

Matrix Assembly of Multiple Bar Elements

2

2

1

1

2

2

1

1

0000010100000101

vuvu

LAE

QPQP

Element I

Element II

Element II I

3

3

2

2

3

3

2

2

33333131

33333131

4vuvu

LAE

QPQP

3

3

1

1

3

3

1

1

3333313133333131

4vuvu

LAE

QPQP

Page 63: Introduction to Finite Element Methods

Matrix Assembly of Multiple Bar Elements

3

3

2

2

1

1

3

3

2

2

1

1

000000000000000000000404000000000404

4

vuvuvu

LAE

QPQPQP

Element I

3

3

2

2

1

1

3

3

2

2

1

1

333300313100

333300313100

000000000000

4

vuvuvu

LAE

QPQPQP

3

3

2

2

1

1

3

3

2

2

1

1

330033310031

000000000000330033310031

4

vuvuvu

LAE

QPQPQP

Element II

Element II I

Page 64: Introduction to Finite Element Methods

Matrix Assembly of Multiple Bar Elements

3

3

2

2

1

1

3

3

2

2

1

1

vuvuvu

3333333333113131

33303000313014043300303031043014

L4AE

SRSRSR

0v0u0v?u?v0u

603333023131333300313504330033310435

L4AE

?S?R?SFR0S?R

3

3

2

2

1

1

3

3

2

2

1

1

Apply known boundary conditions

Page 65: Introduction to Finite Element Methods

Solution Procedures

0v0u0v?u?v0u

603333023131333300310435

330033313504

L4AE

?S?R?S?R0SFR

3

3

2

2

1

1

3

3

2

1

1

2

u2= 4FL/5AE, v1= 0

0v0u0vAE5FL4u

0v0u

603333023131333300310435

330033313504

L4AE

?S?R?S?R0SFR

3

3

2

2

1

1

3

3

2

1

1

2

Page 66: Introduction to Finite Element Methods

Recovery of Axial Forces

05

40

54

054

00

0000010100000101

2

2

1

1

2

2

1

1

F

vAEFLu

vu

LAE

QPQP

Element I

Element II

Element II I

53

51

535

1

000

54

33333131

33333131

4

3

3

2

2

3

3

2

2

F

vuv

AEFLu

LAE

QPQP

0000

0000

3333313133333131

4

3

3

1

1

3

3

1

1

vuvu

LAE

QPQP

Page 67: Introduction to Finite Element Methods

Stresses inside members

Element I

Element II

Element II I

AF

54

54

1FP

54

2FP

FP51

2

FQ53

2

FQ53

3 FP

51

3

Page 68: Introduction to Finite Element Methods

Lecture 5

FEM of 1-D Problems: Applications

Page 69: Introduction to Finite Element Methods

Torsional Shaft

Review

Assumption: Circular cross section

Shear stress:

Deformation:

Shear strain:

TrJ

TrGJ

GJTL

q

Page 70: Introduction to Finite Element Methods

Finite Element Equation for Torsional Shaft

2

1

2

1

2

1

1111

qq

LGJ

TT

ff

Page 71: Introduction to Finite Element Methods

Bending Beam

Review

Normal strain:

Pure bending problems:

Normal stress:

Normal stress with bending moment:

Moment-curvature relationship:

Flexure formula:

x

y

y

x

Ey

x

M M

MydAx

EIM

1

IMy

x dAyI 2

2

21dx

ydEIEIM

Page 72: Introduction to Finite Element Methods

Bending Beam

Review

Deflection:

Sign convention:

Relationship between shear force, bending moment and transverse load:

q(x)

x

y

qdxdV

Vdx

dM

qdx

ydEI 4

4

+ -M M M

+ -V V V

Page 73: Introduction to Finite Element Methods

Governing Equation and Boundary Condition

• Governing Equation

• Boundary Conditions -----

0at , ? &? &? & ? 2

2

2

2

x

dxvdEI

dxd

dxvdEI

dxdvv

Essential BCs – if v or is specified at the boundary.

Natural BCs – if or is specified at the boundary.

dxdv

{Lx

dxvdEI

dxd

dxvdEI

dxdvv

at , ? &? &? & ? 2

2

2

2

2

2

dxvdEI

2

2

dxvdEI

dxd

,0)()(2

2

2

2

xq

dxxvdEI

dxd 0<x<L

Page 74: Introduction to Finite Element Methods

Weak Formulation for Beam Element • Governing Equation

,0)()(2

2

2

2

xq

dxxvdEI

dxd

• Weighted-Integral Formulation for one element

2

1

)()()(0 2

2

2

2x

x

dxxqdx

xvdEIdxdxw

• Weak Form from Integration-by-Parts ----- (1st time)2

1

2

1

2

2

2

2

0x

x

x

x dxvdEI

dxdwdxwq

dxvdEI

dxd

dxdw

21 xxx

Page 75: Introduction to Finite Element Methods

Weak Formulation• Weak Form from Integration-by-Parts ----- (2nd time)

2

1

2

1

2

1

2

2

2

2

2

2

2

2

0x

x

x

x

x

x dxvdEI

dxdw

dxvdEI

dxdwdxwq

dxvdEI

dxwd

V(x2)

x = x1

M(x2)

q(x)y

x x = x2

V(x1)

M(x1)L = x2-x1

2

1

2

1

2

2

2

2

0x

x

x

x

MdxdwwVdxwq

dxvdEI

dxwd

Page 76: Introduction to Finite Element Methods

Weak Formulation• Weak Form

24231211 , , , xMQxVQxMQxVQ

42

21

32112

2

2

2

)()(2

1

QdxdwQ

dxdwQxwQxwdxwq

dxvdEI

dxwdx

x

2

1

2

1

2

2

2

2

0x

x

x

x

MdxdwwVdxwq

dxvdEI

dxwd

Q3

x = x1

Q4

q(x)y(v)

x x = x2

Q1

Q2

L = x2-x1

Page 77: Introduction to Finite Element Methods

Ritz Method for Approximation

n

jjj nxuxvLet

1

4 and )()(

42

21

32112

24

12

2

)()(2

1

QdxdwQ

dxdwQxwQxwdxwq

dxd

uEIdx

wdx

x

j

jj

Let w(x)= i (x), i = 1, 2, 3, 4

42

21

32112

24

12

2

)()(2

1

QdxdQ

dxdQxQxdxq

dxd

uEIdxd ii

ii

x

xi

j

jj

i

Q3

x = x1

Q4

q(x)y(v)

x x = x2

Q1

Q2

L = x2-x1

where ; ; ; ;21

423211xxxx dx

dvuxvudxdvuxvu

Page 78: Introduction to Finite Element Methods

Ritz Method for Approximation

ij

jijx

ixi

x

ixi quKQ

dxdQQ

dxdQ

4

14321

22

11

2

1

2

1

and where 2

2

2

2 x

xii

x

x

jiij qdxqdx

dxd

dxdEIK

Q3

x = x1

y(v)

x x = x2

Q1

Q2

L = x2-x1

Q4

Page 79: Introduction to Finite Element Methods

Ritz Method for Approximation

4

3

2

1

4

3

2

1

44434241

34333231

24232221

14131211

4

3

2

1

44

44

33

33

22

22

11

11

22

11

22

11

22

11

22

11

qqqq

uuuu

KKKKKKKKKKKKKKKK

QQQQ

dxd

dxd

dxd

dxd

dxd

dxd

dxd

dxd

xx

xx

xx

xx

xx

xx

xx

xx

jiij KK where

Q3

x = x1

y(v)

x x = x2

Q1

Q2

L = x2-x1

Q4

Page 80: Introduction to Finite Element Methods

Selection of Shape Function

1000010000100001

22

11

22

11

22

11

22

11

44

44

33

33

22

22

11

11

xx

xx

xx

xx

xx

xx

xx

xx

dxd

dxd

dxd

dxd

dxd

dxd

dxd

dxd

4

3

2

1

4

3

2

1

44342414

34332313

24232212

14131211

4

3

2

1

qqqq

uuuu

KKKKKKKKKKKKKKKK

QQQQ

The best situation is -----

Interpolation Properties

Page 81: Introduction to Finite Element Methods

Derivation of Shape Function for Beam Element – Local Coordinates

1 1 2 2 3 3 4 4( )v u u u ux

How to select i???

1 2 3 41 2 3 4

( )dv d d d du u u ud d d d dx x x x x x

and

where 1 21 1 2 3 2 4 dv dvu v u u v u

d dx x

Let 32 xxx iiiii dcba

Find coefficients to satisfy the interpolation properties.

Page 82: Introduction to Finite Element Methods

Derivation of Shape Function for Beam Element

How to select i???

e.g. Let 31

21111 xxx dcba

xx 2141 2

1

Similarly

1141

2141

1141

22

23

22

xx

xx

xx

Page 83: Introduction to Finite Element Methods

Derivation of Shape Function for Beam Element

In the global coordinates:

)(2

)()(2

)()( 42

3221

11 xdxdvlxvx

dxdvlxvxv

12

1

2

12

11

3

12

1

2

12

1

2

12

11

3

12

1

2

12

1

4

3

2

1

2

23

12

231

xxxx

xxxxxx

l

xxxx

xxxx

xxxxxx

l

xxxx

xxxx

Page 84: Introduction to Finite Element Methods

Element Equations of 4th Order 1-D Modelu3

x = x1

u4

q(x)y(v)

xx = x2

u1

u2

L = x2-x1

4

3

2

1

44342414

34332313

24232212

14131211

4

3

2

1

4

3

2

1

uuuu

KKKKKKKKKKKKKKKK

qqqq

QQQQ

2

1

2

1

2

2

2

2 x

xii

x

xji

jiij qdxqandKdx

dxd

dxdEIKwhere

x=x2 x=x1

1 1 1

3 2

4

Page 85: Introduction to Finite Element Methods

Element Equations of 4th Order 1-D Modelu3

x = x1

u4

q(x)y(v)

x x = x2

u1

u2

L = x2-x1

2

1

x

xii qdxqwhere

24

23

12

11

22

22

3

4

3

2

1

4

3

2

1

2333636

3233636

2

q

q

uvu

uvu

LLLLLL

LLLLLL

LEI

qqqq

QQQQ

Page 86: Introduction to Finite Element Methods

Finite Element Analysis of 1-D Problems - Applications

F

LLL

Example 1.

Governing equation:

Lxxqdx

vdEIdxd

0 0)(2

2

2

2

Weak form for one element

04322112

2

2

2

21

2

1

Q

dxdwQxwQ

dxdwQxwdxwq

dxvd

dxwdEI

xx

x

x

where )( 11 xVQ )( 12 xMQ )( 23 xVQ )( 24 xMQ

Page 87: Introduction to Finite Element Methods

Finite Element Analysis of 1-D Problems Example 1.Approximation function:

3 2

1 4

x=x1

x=x2

12

1

2

12

11

3

12

1

2

12

1

2

12

11

3

12

1

2

12

1

4

3

2

1

2

23

12

231

xxxx

xxxxxx

l

xxxx

xxxx

xxxxxx

l

xxxx

xxxx

)(2

)()(2

)()( 42

3221

11 xdxdvlxvx

dxdvlxvxv

Page 88: Introduction to Finite Element Methods

Finite Element Analysis of 1-D Problems Example 1.

Finite element model:

2

2

1

1

22

22

3

4

3

2

1

2333636

3233636

2

q

qv

v

LLLLLL

LLLLLL

LEI

QQQQ

P1 , v1 P2 , v2 P3 , v3 P4 , v4

M1 , q1 M2 , q2 M3 , q3 M4 , q4

I II III

Discretization:

Page 89: Introduction to Finite Element Methods

Matrix Assembly of Multiple Beam Elements

Element I

Element II

112 2

12

232 2

243

3

3

4

4

6 3 6 3 0 0 0 03 2 3 0 0 0 0

6 3 6 3 0 0 0 03 3 2 0 0 0 020 0 0 0 0 0 0 000 0 0 0 0 0 0 000 0 0 0 0 0 0 000 0 0 0 0 0 0 00

I

I

I

I

vL LQL L L LQ

vL LQL L L LQ EI

vL

v

q

q

q

q

1

1

212 2

223

332 2

34

4

4

0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 6 3 6 3 0 00 0 3 2 3 0 020 0 6 3 6 3 0 00 0 3 3 2 0 0

0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

II

II

II

II

v

vQ L LQ L L L LEI

vQ L LLQ L L L L

v

q

q

q

q

Page 90: Introduction to Finite Element Methods

Matrix Assembly of Multiple Beam Elements

Element II I

1

1

2

23

1 32 2

2 3

3 42 2

4 4

0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 02

0 0 0 0 6 3 6 30 0 0 0 3 2 30 0 0 0 6 3 6 30 0 0 0 3 3 2

III

III

III

III

v

v

EIQ vL LLQ L L L LQ vL LQ L L L L

q

q

q

q

4

4

3

3

2

2

1

1

22

2222

2222

22

3

4

4

3

3

2

2

1

1

233000036360000

322333003633663600003223330036336636000032300003636

2

q

q

q

q

v

v

v

v

LLLLLL

LLLLLLLLLLLL

LLLLLLLLLLLL

LLLLLL

LEI

MPMP

MPMP

Page 91: Introduction to Finite Element Methods

Solution Procedures

???0?000

233000036360000

340300360123600003403003601236000032300003636

2

0

0?0???

4

4

3

3

2

2

1

1

22

222

222

22

3

4

4

3

3

2

2

1

1

q

q

q

q

v

v

v

v

LLLLLL

LLLLLLL

LLLLLLL

LLLLLL

LEI

MFP

MP

MPMP

Apply known boundary conditions

???0?000

360123600003601236000032300003636

233000036360000

340300003403

2

????0

00

4

4

3

3

2

2

1

1

22

22

222

222

3

3

2

1

1

4

4

3

2

q

q

q

q

v

v

v

v

LLLL

LLLLLL

LLLLLL

LLLLLLLLLL

LEI

PPMP

MFP

MM

Page 92: Introduction to Finite Element Methods

Solution Procedures

????

2303630

34004

2

0

00

4

4

3

2

22

222

22

3

4

4

3

2

q

qq

vLLLLL

LLLLLL

LEI

MFP

MM

4

4

3

22

3

3

2

1

1

360300300000003

2

????

q

qq

vLL

LLL

LEI

PPMP

????0000

360312600003061236000032300030636

230300036306000

340300004303

2

????0

00

4

4

3

2

3

2

1

1

22

22

222

222

3

3

2

1

1

4

4

3

2

q

qq

q

v

vv

v

LLLL

LLLLLL

LLLLLL

LLLLLLLLLL

LEI

PPMP

MFP

MM

Page 93: Introduction to Finite Element Methods

Shear Resultant & Bending Moment Diagram

FL72

FL71

FL

F79

F73

2P

F

Page 94: Introduction to Finite Element Methods

Plane Flame

Frame: combination of bar and beam

E, A, I, LQ1 , v1 Q3 , v2

Q2 , q1

P1 , u1

Q4 , q2

P2 , u2

2

2

2

1

1

1

22

2323

22

2323

4

3

2

2

1

1

460260

61206120

0000

260460

61206120

0000

q

q

vu

vu

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LAE

LAE

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LAE

LAE

QQPQQP

Page 95: Introduction to Finite Element Methods

Finite Element Model of an Arbitrarily Oriented Frame

q x

y

q x

y

Page 96: Introduction to Finite Element Methods

Finite Element Model of an Arbitrarily Oriented Frame

2

2

2

1

1

1

22

2323

22

2323

4

3

2

2

1

1

406206

0000

60126012

206406

0000

60126012

q

q

vu

vu

LEI

LEI

LEI

LEI

LAE

LAE

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LAE

LAE

LEI

LEI

LEI

LEI

QQPQQP

local

global

Page 97: Introduction to Finite Element Methods

Plane Frame Analysis - Example

Rigid Joint Hinge Joint

Beam II

Beam I Beam

Bar

F F F F

Page 98: Introduction to Finite Element Methods

Plane Frame Analysis

2

2

2

1

1

1

22

2323

22

2323

4

3

2

2

1

1

406206

0000

60126012

206406

0000

60126012

q

q

vu

vu

LEI

LEI

LEI

LEI

LAE

LAE

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LAE

LAE

LEI

LEI

LEI

LEI

QQPQQP

I

I

P1 , u1

P2 , u2

Q2 , q1

Q4 , q2

Q1 , v1

Q3 , v2

Page 99: Introduction to Finite Element Methods

Plane Frame Analysis

P1 , u2

Q3 , v3

Q2 , q2Q4 , q3

Q1 , v2

P2 , u3

4

3

3

2

2

2

22

2323

22

2323

4

3

2

2

2

1

460260

61206120

0000

260460

61206120

0000

q

q

vu

vu

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LAE

LAE

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LAE

LAE

QQPQQP II

Page 100: Introduction to Finite Element Methods

Plane Frame Analysis

2

2

2

1

1

1

22

2323

22

2323

4

3

2

2

1

1

406206

0000

60126012

206406

0000

60126012

q

q

vu

vu

LEI

LEI

LEI

LEI

LAE

LAE

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LAE

LAE

LEI

LEI

LEI

LEI

QQPQQP

I

I

4

3

3

2

2

2

22

2323

22

2323

4

3

2

2

2

1

460260

61206120

0000

260460

61206120

0000

q

q

vu

vu

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LAE

LAE

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LEI

LAE

LAE

QQPQQP II

Page 101: Introduction to Finite Element Methods

Plane Frame Analysis

FL81

F21

F21

FL83

Page 102: Introduction to Finite Element Methods

Finite Element Analysis (F.E.A.) of 1-D Problems – Heat Conduction

UNIT IV

Page 103: Introduction to Finite Element Methods

Heat Transfer Mechanisms Conduction – heat transfer by molecular

agitation within a material without any motion of the material as a whole.

Convection – heat transfer by motion of a fluid.

Radiation – the exchange of thermal radiation between two or more bodies. Thermal radiation is the energy emitted from hot surfaces as electromagnetic waves.

Page 104: Introduction to Finite Element Methods

Heat Conduction in 1-DHeat flux q: heat transferred per unit area per unit time (W/m2)

dTq kdx

T TA AQ CAx x t

Q: heat generated per unit volume per unit time C: mass heat capacity

Governing equation:

Steady state equation:

0d dTA AQdx dx

: thermal conductivity

Page 105: Introduction to Finite Element Methods

Thermal Convection

( )sq h T T

Newton’s Law of Cooling

2: convective heat transfer coefficient ( )oh W m C

Page 106: Introduction to Finite Element Methods

Thermal Conduction in 1-D

Dirichlet BC:

Boundary conditions:

Natural BC:

Mixed BC:

Page 107: Introduction to Finite Element Methods

Weak Formulation of 1-D Heat Conduction(Steady State Analysis)

• Governing Equation of 1-D Heat Conduction -----

( )( ) ( ) ( ) 0d dT xx A x AQ xdx dx

0<x<L

• Weighted Integral Formulation -----

• Weak Form from Integration-by-Parts -----

0

( )0 ( ) ( ) ( ) ( )L d dT xw x x A x AQ x dx

dx dx

0 0

0LL dw dT dTA wAQ dx w A

dx dx dx

Page 108: Introduction to Finite Element Methods

Formulation for 1-D Linear Element

Let 1 1 2 2(x) (x) (x)T T T

f2

x1 x2

1 2

T1

x

T2

f1

2 11 2( ) , ( )x x x xx x

l l

x2 x1

1T1

2T2

22

11 )( ,)(

xTAxf

xTAxf

Page 109: Introduction to Finite Element Methods

Formulation for 1-D Linear Element

Let w(x)= i (x), i = 1, 2

2 2

1 1

2

2 2 1 11

0 ( ) ( )x x

jij i i i

j x x

ddT A dx AQ dx x f x fdx dx

1122

2

1

)()( fxfxQTK iiij

jij

2

1

2212

1211

2

1

2

1

TT

KKKK

QQ

ff

2 2

1 21 1

1 2 , Q , f , fx x

jiij i i

x xx x

dd dT dTwhere K A dx AQ dx A Adx dx dx dx

Page 110: Introduction to Finite Element Methods

Element Equations of 1-D Linear Element

2

1

2

1

2

1

1111

TT

LA

QQ

ff

2

1 21

1 2 Q , f , fx

i ix x x xx

dT dTwhere AQ dx A Adx dx

f2

x1 x2

1 2

T1

x

T2

f1

Page 111: Introduction to Finite Element Methods

1-D Heat Conduction - Example

A composite wall consists of three materials, as shown in the figure below. The inside wall temperature is 200oC and the outside air temperature is 50oCwith a convection coefficient of h = 10 W(m2.K). Find the temperature alongthe composite wall.

t1 t2 t3

0 200oT C 50oT C

x

1 2 3

1 2 3

1 2 3

70 , 40 , 20

2 , 2.5 , 4

W m K W m K W m K

t cm t cm t cm

Page 112: Introduction to Finite Element Methods

Thermal Conduction and Convection- Fin

Objective: to enhance heat transfer

dx

t

x

w 2 ( )2 ( ) 2 ( )

lossc c

h T T w th T T dx w h T T dx tQA dx A

Governing equation for 1-D heat transfer in thin fin

0c cd dTA A Qdx dx

0c cd dTA Ph T T A Qdx dx

2P w t where

Page 113: Introduction to Finite Element Methods

Fin - Weak Formulation(Steady State Analysis)

• Governing Equation of 1-D Heat Conduction -----

( )( ) ( ) 0d dT xx A x Ph T T AQdx dx

0<x<L

• Weighted Integral Formulation -----

• Weak Form from Integration-by-Parts -----

0

( )0 ( ) ( ) ( ) ( ) ( )L d dT xw x x A x Ph T T AQ x dx

dx dx

0 0

0 ( )LL dw dT dTA wPh T T wAQ dx w A

dx dx dx

Page 114: Introduction to Finite Element Methods

Formulation for 1-D Linear Element

Let w(x)= i (x), i = 1, 2

2 2

1 1

2

1

2 2 1 1

0

( ) ( )

x xji

j i j ij x x

i i

ddT A Ph dx AQ PhT dxdx dx

x f x f

1122

2

1

)()( fxfxQTK iiij

jij

2

1

2212

1211

2

1

2

1

TT

KKKK

QQ

ff

2 2

1 1

1 2

1 2

, Q ,

,

x xji

ij i j i ix x

x x x x

ddwhere K A Ph dx AQ PhT dxdx dx

dT dTf A f Adx dx

Page 115: Introduction to Finite Element Methods

Element Equations of 1-D Linear Element

1 1 1

2 2 2

1 1 2 11 1 1 26

f Q TA Phlf Q TL

f2

x=0 x=L1 2

T1

x

T2

f1

2

1 21

1 2 Q , , x

i ix x x xx

dT dTwhere AQ PhT dx f A f Adx dx

Page 116: Introduction to Finite Element Methods

Lecture 7

Finite Element Analysis of 2-D Problems

Page 117: Introduction to Finite Element Methods

2-D Discretization

Common 2-D elements:

Page 118: Introduction to Finite Element Methods

2-D Model Problem with Scalar Function- Heat Conduction

• Governing Equation

0),(),(),(

yxQ

yyxT

yxyxT

x in W

• Boundary Conditions

Dirichlet BC:

Natural BC:

Mixed BC:

Page 119: Introduction to Finite Element Methods

Weak Formulation of 2-D Model Problem

• Weighted - Integral of 2-D Problem -----

• Weak Form from Integration-by-Parts -----

0 ( , )w T w T wQ x y dxdyx x y y

W

T Tw dxdy w dxdyx x y y

W W

( , ) ( , ) ( , ) 0T x y T x yw Q x y dAx x y y

W

Page 120: Introduction to Finite Element Methods

Weak Formulation of 2-D Model Problem• Green-Gauss Theorem -----

where nx and ny are the components of a unit vector, which is normal to the boundary G.

xT Tw dxdy w n ds

x x x

W G

sinjcosijninn yx

yT Tw dxdy w n ds

y y y

W G

Page 121: Introduction to Finite Element Methods

Weak Formulation of 2-D Model Problem

• Weak Form of 2-D Model Problem -----

0 ( , )w T w T wQ x y dxdyx x y y

W

x yT Tw n n dsx y

G

EBC: Specify T(x,y) on G

NBC: Specify on Gx yT Tn nx y

where is the normal

outward flux on the boundary G at the segment ds.

( )n x yT Tq s i j n i n jx y

Page 122: Introduction to Finite Element Methods

FEM Implementation of 2-D Heat Conduction – Shape Functions

Step 1: Discretization – linear triangular element

T1

T2

T3

332211 TTTT

Derivation of linear triangular shape functions:

Let ycxcc 2101

Interpolation properties

1 at node0 at other nodes

i

i

ith

0 1 1 2 1

0 1 2 2 2

0 1 3 2 3

100

c c x c yc c x c yc c x c y

10 1 1

1 2 2

2 3 3

1 11 01 0

c x yc x yc x y

1

1 1 2 3 3 2

1 2 2 2 3

3 3 3 2

1 11

1 1 02

1 0 e

x y x y x yx y

x y x y y yA

x y x x

Same 3 1 1 3

2 3 1

1 3

12 e

x y x yx y

y yA

x x

1 2 2 1

3 1 2

2 1

12 e

x y x yx y

y yA

x x

Page 123: Introduction to Finite Element Methods

FEM Implementation of 2-D Heat Conduction – Shape Functions

linear triangular element – area coordinates

T1

T2

T3

2 3 3 21

1 2 3

3 2

12 e e

x y x yx y Ay yA A

x x

3 1 1 32

2 3 1

1 3

12 e e

x y x yx y Ay yA A

x x

1 2 2 13

3 1 2

2 1

12 e e

x y x yx y Ay yA A

x x

A3

A1

A2

12

3

Page 124: Introduction to Finite Element Methods

Interpolation Function - Requirements

• Interpolation condition• Take a unit value at node i, and is zero at all other nodes

• Local support condition• i is zero at an edge that doesn’t contain node i.

• Interelement compatibility condition• Satisfies continuity condition between adjacent elements

over any element boundary that includes node i

• Completeness condition• The interpolation is able to represent exactly any

displacement field which is polynomial in x and y with the order of the interpolation function

Page 125: Introduction to Finite Element Methods

Formulation of 2-D 4-Node Rectangular Element – Bi-linear Element

1 1 2 2 3 3 4 4( , )u u u u ux

ba1

ba

b1

ab1

a1

43

21

xx

xx

1 2 3

4

Note: The local node numbers should be arranged in a counter-clockwise sense. Otherwise, the area Of the element would be negative and the stiffness matrix can not be formed.

Let

Page 126: Introduction to Finite Element Methods

• Weak Form of 2-D Model Problem -----

Assume approximation:

and let w(x,y)=i(x,y) as before, then1

( , ) ( , )n

j jj

u x y u x y

1 1

0e

n ni i

j j j j i i nj j

T T Q dxdy q dsx x y y

W G

0 ( , )e e

nw T w T wQ x y dxdy wq dsx x y y

W G

1e e

n

ij j i i nj

K T Qdxdy q ds W G

e

j ji iijK dxdy

x x y y

W

where

FEM Implementation of 2-D Heat Conduction – Element Equation

Page 127: Introduction to Finite Element Methods

1e e

n

ij j i i nj

K T Qdxdy q ds W G

223 23 31 23 12

223 31 31 31 12

223 12 31 12 12

4 e

l l l l l

K l l l l lA

l l l l l

FEM Implementation of 2-D Heat Conduction – Element Equation

1 1

2 2

3 3

Q qF Q q

Q q

e

e

i i

i i n

Q Qdxdy

q q ds

W

G

Page 128: Introduction to Finite Element Methods

Assembly of Stiffness Matrices

)2(35

)2(24

)2(4

)1(33

)2(1

)1(22

)1(11 uU,uU,uuU,uuU,uU

( ) ( )

( ) ( ) ( )

1

e

e e

ne e e

i i i n ij jj

F Q dxdy q ds K u W G

Page 129: Introduction to Finite Element Methods

Imposing Boundary Conditions

The meaning of qi:

(1) (1) (1)1 12 23 31

(1) (1)12 23

(1) (1) (1) (1) (1) (1) (1) (1) (1)2 2 2 2 2

(1) (1) (1) (1)2 2

n n n nh h h

n nh h

q q ds q ds q ds q ds

q ds q ds

G

(1) (1) (1)1 12 23 31

(1) (1)23 31

(1) (1) (1) (1) (1) (1) (1) (1) (1)3 3 3 3 3

(1) (1) (1) (1)3 3

n n n nh h h

n nh h

q q ds q ds q ds q ds

q ds q ds

G

(1) (1) (1)1 12 23 31

(1) (1)12 31

(1) (1) (1) (1) (1) (1) (1) (1) (1)1 1 1 1 1

(1) (1) (1) (1)1 1

n n n nh h h

n nh h

q q ds q ds q ds q ds

q ds q ds

G

1

2

3

112

3

1

2

3

112

3

Page 130: Introduction to Finite Element Methods

Imposing Boundary Conditions

(1) ( 2)23 41

(1) (2)n nh h

q qEquilibrium of flux:

(1) ( 2) (1) ( 2)23 41 23 41

(1) (1) (2) (2) (1) (1) (2) (2)2 1 3 4; n n n n

h h h h

q ds q ds q ds q ds

FEM implementation:

(1) (2)2 2 1q q q

(1) (1)12 23

(1) (1) (1) (1) (1)2 2 2n n

h h

q q ds q ds

Consider

( 2) ( 2)12 41

(2) (2) (2) (2) (2)1 1 1n n

h h

q q ds q ds

(1) ( 2 )12 12

(1) (1) (2) (2)2 2 1n n

h h

q q ds q ds (1) ( 2)31 34

(1) (1) (2) (2)3 3 4n n

h h

q q ds q ds

(1) (2)3 3 4q q q

(1) (1)23 31

(1) (1) (1) (1) (1)3 3 3n n

h h

q q ds q ds ( 2) ( 2)34 41

(2) (2) (2) (2) (2)4 4 4n n

h h

q q ds q ds

Page 131: Introduction to Finite Element Methods

Calculating the q Vector

Example:

293T K0nq

1nq

Page 132: Introduction to Finite Element Methods

2-D Steady-State Heat Conduction - Example

0nq

0.6 m

0.4 m

A

B C

DAB and BC:

CD: convection CmWh o

250 CT o25

DA: CT o180

x

y

Page 133: Introduction to Finite Element Methods

Finite Element Analysis of Plane Elasticity

Page 134: Introduction to Finite Element Methods

Review of Linear ElasticityLinear Elasticity: A theory to predict mechanical response of an elastic body under a general loading condition.

Stress: measurement of force intensity

zzzyzx

yzyyyx

xzxyxx

zxxz

zyyz

yxxy

with

xx xy

yx yy

2-D

Page 135: Introduction to Finite Element Methods

Review of Linear ElasticityTraction (surface force) :

Equilibrium – Newton’s Law

0

0

Static

xyxxx

yx yyy

fx y

fx y

0F

x xx x xy y

y xy x yy y

t n n

t n n

t

Dynamic

xyxxx x

yx yyy y

f ux y

f ux y

Page 136: Introduction to Finite Element Methods

Review of Linear Elasticity

Strain: measurement of intensity of deformation

1 1 2 2

y yx xxx xy xy yy

u uu ux y x y

Generalized Hooke’s Law

yyxx zzxx

yyxx zzyy

yyxx zzzz

E E E

E E E

E E E

zxzxyzyzxyxy GGG

12EG

zzyyxx

zzzz

yyyy

xxxx

eGe

GeGe

2

22

1 1 2E

Page 137: Introduction to Finite Element Methods

Plane Stress and Plane Strain

Plane Stress - Thin Plate:

xy

y

x

22

22

xy

y

x

12E00

01

E1

E

01

E1

E

xy

y

x

33

2212

1211

xy

y

x

C000CC0CC

Page 138: Introduction to Finite Element Methods

Plane Stress and Plane Strain

Plane Strain - Thick Plate:

xy

y

x

xy

y

x

12E00

0211

E1211

E

0211

E211

E1

xy

y

x

33

2212

1211

xy

y

x

C000CC0CC

Plane Stress: Plane Strain:

Replace E by and by21 E

1

Page 139: Introduction to Finite Element Methods

Equations of Plane ElasticityGoverning Equations(Static Equilibrium)

Constitutive Relation (Linear Elasticity)

Strain-Deformation(Small Deformation)

xy

y

x

33

2212

1211

xy

y

x

C000CC0CC

0yxxyx

0yx

yxy

xu

x

yv

y

yu

xv

xy

0yvC

xuC

yxvC

yuC

x

0xvC

yuC

yyvC

xuC

x

22123333

33331211

Page 140: Introduction to Finite Element Methods

Specification of Boundary Conditions

EBC: Specify u(x,y) and/or v(x,y) on G

NBC: Specify tx and/or ty on G

where

is the traction on the boundary G at the segment ds.

yyyxyxyyxyxxxxyx nntnntjtitsT ; ;)(

Page 141: Introduction to Finite Element Methods

UNIT V

Page 142: Introduction to Finite Element Methods

Weak Formulation for Plane Elasticity

dxdyyvC

xuC

yxvC

yuC

xw0

dxdyxvC

yuC

yyvC

xuC

xw0

221233332

333312111

W

W

GW

GW

dstwdxdyyvC

xuC

yw

xv

yuC

xw0

dstwdxdyxv

yuC

yw

yvC

xuC

xw0

y222122

332

x1331

12111

where

y2212x33y

y33x1211x

nyvC

xuCn

xv

yuCt

nxv

yuCn

yvC

xuCt

are components of traction on the boundary G

Page 143: Introduction to Finite Element Methods

Finite Element Formulation for Plane Elasticity

n

1jj

22ij

n

1jj

21ij

2i

n

1jj

12ij

n

1jj

11ij

1i

vKuKF

vKuKF Let

n

1jjj

n

1jjj

v)y,x()y,x(v

u)y,x()y,x(u

dxdyyy

Cxx

CK

Kdxdyxy

Cyx

CK

dxdyyy

Cxx

CK

ji22

ji33

22ij

21ji

ji33

ji12

12ij

ji33

ji11

11ij

W

W

W

G W

G W

dxdyfdstF

dxdyfdstF

yiyi2

i

xixi1

i

where

and

Page 144: Introduction to Finite Element Methods

Constant-Strain Triangular (CST) Element for Plane Stress Analysis

Let1 2 3 1 1 2 2 3 3

5 6 7 1 1 2 2 3 3

( , )( , )

u x y c c x c y u u uv x y c c x c y v v v

1 1, xu F

1 1, yv F

2 2, xu F

3 3, xu F

2 2, yv F

3 3, yv F

2 3 3 2

1 2 3

3 2

12 e

x y x yx y

y yA

x x

3 1 1 3

2 3 1

1 3

12 e

x y x yx y

y yA

x x

1 2 2 1

3 1 2

2 1

12 e

x y x yx y

y yA

x x

Page 145: Introduction to Finite Element Methods

Constant-Strain Triangular (CST) Element for Plane Stress Analysis

111 12 13 14 15 16 1

121 22 23 24 25 26 1

231 32 33 34 35 36 2

2241 42 43 44 45 46

3351 52 53 54 55 56

3361 62 63 64 65 66

14

x

y

x

ye

x

y

Fk k k k k k uFk k k k k k vFk k k k k k uFvk k k k k kAFuk k k k k kFvk k k k k k

2 2 2 2 211 11 2 3 33 3 2 21 12 2 3 3 2 33 2 3 22 22 3 2 33 2 3

2 231 11 3 1 2 3 33 1 3 3 2 32 12 3 1 3 2 33 1 3 3 2 33 11 3 1 33 1 3

41 12 2 3 33 1 3

; ;

; ;

k c y y c x x k c y y x x c y y k c x x c y y

k c y y y y c x x x x k c y y x x c x x x x k c y y c x x

k c y y c x x x

23 2 42 22 1 3 3 2 33 2 3 3 1 43 12 1 3 3 1 33 1 3

2 244 22 1 3 33 3 1 51 11 1 2 2 3 33 2 1 3 2 52 12 1 2 33 2 1 3 2

53 11 1 2 3 1 33 2 1 1 3 54

; ;

; ;

;

x k c x x x x c y y y y k c x x y y c x x

k c x x c y y k c y y y y c x x x x k c y y c x x x x

k c y y y y c x x x x k c

2 212 1 2 1 3 33 2 1 1 3 55 11 1 2 33 2 1

61 12 2 3 33 2 1 3 2 62 22 2 1 3 2 33 1 2 2 3 63 12 3 1 33 2 1 1 3

64 22 1 3 2 1 33 1 2 3 1 65 12 1 2 2 1

;

y y x x c x x x x k c y y c x x

k c y y c x x x x k c x x x x c y y y y k c y y c x x x x

k c x x x x c y y y y k c y y x x c

2 2 233 2 1 66 22 2 1 33 1 2 x x k c x x c y y

Page 146: Introduction to Finite Element Methods

4-Node Rectangular Element for Plane Stress Analysis

Let

443322118765

443322114321

vvvvxycycxcc)y,x(vuuuuxycycxcc)y,x(u

by

ax1

by

ax

by1

ax

by1

ax1

43

21

Page 147: Introduction to Finite Element Methods

4-Node Rectangular Element for Plane Stress Analysis

For Plane Strain Analysis:21

EE

1

and

Page 148: Introduction to Finite Element Methods

Loading Conditions for Plane Stress Analysis

n

1jj

22ij

n

1jj

21ij

2i

n

1jj

12ij

n

1jj

11ij

1i

vKuKF

vKuKF

G W

G W

dxdyfdstF

dxdyfdstF

yiyi2

i

xixi1

i

Page 149: Introduction to Finite Element Methods

Evaluation of Applied Nodal Forces

G

dstF xi1

i

tdy16y1

by1

axdstFF

b

0

2

ox2)A(1

2)A(

x2

G

3.383dy168y

16y

8y1100dy1.0

16y11000

8y1

88F

8

0 2

3

2

28

0

2)A(

x2

tdy16y1

by

axdstFF

b

0

2

ox3)A(1

3)A(

x3

G

350dy168y

8y100dy1.0

16y11000

8y

88F

8

0 2

38

0

2)A(

x3

Page 150: Introduction to Finite Element Methods

Evaluation of Applied Nodal Forces

tdy16

8y1by1

axdstFF

b

0

2

ox2)B(1

2)B(

x2

G

7.216dy168y

16y

32y5

43100dy1.0

168y11000

8y1

88F

8

0 2

3

2

28

0

2)B(

x2

tdy16

8y1by

axdstFF

b

0

2

ox3)B(1

3)B(

x3

G

7.116dy168y

16y2

32y3100dy1.0

168y11000

8y

88F

8

0 2

3

2

28

0

2)B(

x3

Page 151: Introduction to Finite Element Methods

Element Assembly for Plane Elasticity

4

4

3

3

2

2

1

1)A()A(

y

x

y

x

y

x

y

x

vuvuvuvu

FFFFFFFF

3

3

4

4

2

2

1

1

��������A

B

1 2

3 4

3 4

65

6

6

5

5

4

4

3

3)B()B(

y

x

y

x

y

x

y

x

vuvuvuvu

FFFFFFFF

3

3

4

4

2

2

1

1

��������

Page 152: Introduction to Finite Element Methods

Element Assembly for Plane Elasticity

1 2

3 4

65

A

B

6

6

5

5

4

4

3

3

2

2

1

1

)B(y

)B(x

)B(y

)B(x

)B(y

)A(y

)B(x

)A(x

)B(y

)A(y

)B(x

)A(x

)A(y

)A(x

)A(y

)A(x

vuvuvuvuvuvu

0000000000000000

0000000000000000

FFFF

FFFFFFFF

FFFF

3

3

4

4

23

23

14

14

2

2

1

1

Page 153: Introduction to Finite Element Methods

Comparison of Applied Nodal Forces

Page 154: Introduction to Finite Element Methods

Discussion on Boundary Conditions

• Must have sufficient EBCs to suppress rigid body translation and rotation• For higher order elements, the mid side nodes cannot be skipped while applying EBCs/NBCs

Page 155: Introduction to Finite Element Methods

Plane Stress – Example 2

Page 156: Introduction to Finite Element Methods

Plane Stress – Example 3

Page 157: Introduction to Finite Element Methods

Evaluation of Strains

44332211

44332211

vvvv)y,x(vuuuu)y,x(u

by

ax1

by

ax

by1

ax

by1

ax1

43

21

4

1jj

jj

j

4

1jj

j

4

1jj

j

xy

y

x

vx

uy

vy

ux

xv

yu

yvxu

Page 158: Introduction to Finite Element Methods

Evaluation of Stresses

4

4

3

3

2

2

1

1

xy

y

x

vuvuvuvu

aby

ax1

b1

aby

abx

by1

a1

abx

by1

a1

ax1

b1

ax1

b10

abx0

abx0

ax1

b10

0aby0

aby0

by1

a10

by1

a1

Plane Stress Analysis Plane Strain Analysis

xy

y

x

22

22

xy

y

x

12E00

01

E1

E

01

E1

E

xy

y

x

xy

y

x

12E00

0211

E1211

E

0211

E211

E1

Page 159: Introduction to Finite Element Methods

Finite Element Analysis of 2-D Problems – Axi-symmetric Problems

Page 160: Introduction to Finite Element Methods

Axi-symmetric ProblemsDefinition:

A problem in which geometry, loadings, boundaryconditions and materials are symmetric about one axis.

Examples:

Page 161: Introduction to Finite Element Methods

Axi-symmetric AnalysisCylindrical coordinates:

zzryrx ;sin ;cos qq

zr , , q

• quantities depend on r and z only• 3-D problem 2-D problem

Page 162: Introduction to Finite Element Methods

Axi-symmetric Analysis

Page 163: Introduction to Finite Element Methods

Axi-symmetric Analysis – Single-Variable Problem

0),(),(),(1002211

zrfuaz

zruazr

zrurarr

Weak form:

dswq

rdrdzzrwfwuazua

zw

rua

rw

e

e

n

G

W

),(0 002211

where zrn nz

zruanr

zruaq

),(),(

2211

Page 164: Introduction to Finite Element Methods

Finite Element Model – Single-Variable Problem

j jj

u u

Ritz method:

ei

ei

ej

n

j

eij QfuK

1

where ( , ) ( , )j jr z x y

iw

Weak form

11 22 00

e

j je i iij i jK a a a rdrdz

r r z z

W

where

e

ei if frdrdz

W

e

ei i nQ q ds

G

Page 165: Introduction to Finite Element Methods

Single-Variable Problem – Heat Transfer

Heat Transfer:

Weak form

1 ( , ) ( , ) ( , ) 0T r z T r zrk k f r zr r r z z

0 ( , )

e

e

n

w T w Tk k wf r z rdrdzr r z z

wq ds

W

G

( , ) ( , )n r z

T r z T r zq k n k nr z

where

Page 166: Introduction to Finite Element Methods

3-Node Axi-symmetric Element

1 1 2 2 3 3( , )T r z T T T

1

2

3

2 3 3 2

1 2 3

3 2

12 e

r z r zr z

z zA

r r

3 1 1 3

2 3 1

1 3

12 e

r z r zr z

z zA

r r

1 2 2 1

3 1 2

2 1

12 e

r z r zr z

z zA

r r

Page 167: Introduction to Finite Element Methods

4-Node Axi-symmetric Element

1 1 2 2 3 3 4 4( , )T r z T T T T

1 2

34

a

b

x

r

z1 2

3 4

1 1 1

1

a b a b

a b a b

x x

x x

Page 168: Introduction to Finite Element Methods

Single-Variable Problem – Example

Step 1: Discretization

Step 2: Element equation

e

j je i iijK rdrdz

r r z z

W

e

ei if frdrdz

W

e

ei i nQ q ds

G

Page 169: Introduction to Finite Element Methods

Time-Dependent Problems

Page 170: Introduction to Finite Element Methods

Time-Dependent Problems

In general,

Key question: How to choose approximate functions?

Two approaches:

txutxu jj ,,

txu ,

xtutxu jj ,

Page 171: Introduction to Finite Element Methods

Model Problem I – Transient Heat Conduction

Weak form:

txfxua

xtuc ,

)()(0 2211

2

1

xwQxwQdxwftucw

xu

xwa

x

x

;21

21xx dx

duaQdxduaQ

Page 172: Introduction to Finite Element Methods

Transient Heat Conduction

let:

)()(0 2211

2

1

xwQxwQdxwftucw

xu

xwa

x

x

n

jjj xtutxu

1

, and xw i

FuMuK

2

1

x

x

jiij dx

xxaK

2

1

x

xjiij dxcM

i

x

xii QfdxF

2

1

ODE!

Page 173: Introduction to Finite Element Methods

Time Approximation – First Order ODE

tfbudtdua Tt 0 00 uu

Forward difference approximation - explicit

Backward difference approximation - implicit

1k k k ktu u f bu

a

1k k k ktu u f bu

a b t

Page 174: Introduction to Finite Element Methods

Time Approximation – First Order ODE

tfbudtdua Tt 0 00 uu

- family formula:

1 11k k k ku u t u u

Equation

11

1 1k k kk

a tbu t f fu

a tb

Page 175: Introduction to Finite Element Methods

Time Approximation – First Order ODE

tfbudtdua Tt 0 00 uu

Finite Element Approximation

11

223 3 3 3

k kk k

f ftb tba u a u t

Page 176: Introduction to Finite Element Methods

Stability of – Family Approximation

Stability

Example

11 1

a tbA

a tb

Page 177: Introduction to Finite Element Methods

FEA of Transient Heat Conduction

FuMuK

- family formula for vector:

1 11k k k ku u t u u

1

1 11 1k k k ku M K t M K t u t f t f

Page 178: Introduction to Finite Element Methods

Stability Requirment

max212

critt

QuMK where

Note: One must use the same discretization for solvingthe eigenvalue problem.

Page 179: Introduction to Finite Element Methods

Transient Heat Conduction - Example

02

2

xu

tu 10 x

0,0 tu 0,1 t

tu

0.10, xu

0t

Page 180: Introduction to Finite Element Methods

Transient Heat Conduction - Example

Page 181: Introduction to Finite Element Methods

Transient Heat Conduction - Example

Page 182: Introduction to Finite Element Methods

Transient Heat Conduction - Example

Page 183: Introduction to Finite Element Methods

Transient Heat Conduction - Example

Page 184: Introduction to Finite Element Methods

Transient Heat Conduction - Example

Page 185: Introduction to Finite Element Methods

Transient Heat Conduction - Example

Page 186: Introduction to Finite Element Methods

Model Problem II – Transverse Motion of Euler-Bernoulli Beam

Weak form:

txftuA

xuEI

x,2

2

2

2

2

2

21

2

1

423211

2

2

2

2

2

2

)()(

0

xx

x

x

xwQxwQ

xwQxwQ

dxwftuAw

xu

xwEI

22

11

2

2

42

2

3

2

2

22

2

1

xx

xx

xuEIQ

xuEI

xQ

xuEIQ

xuEI

xQ

Where:

Page 187: Introduction to Finite Element Methods

Transverse Motion of Euler-Bernoulli Beam

let:

n

jjj xtutxu

1

, and xw i

FuMuK

21

2

1

423211

2

2

2

2

2

2

)()(

0

xx

x

x

xwQxwQ

xwQxwQ

dxwftuAw

xu

xwEI

Page 188: Introduction to Finite Element Methods

Transverse Motion of Euler-Bernoulli Beam

FuMuK

2

1

2

2

2

2x

x

jiij dx

xxEIK

2

1

x

xjiij dxAM

i

x

xii QfdxF

2

1

Page 189: Introduction to Finite Element Methods

ODE Solver – Newmark’s Scheme

tuuu

ututuu

sss

ssss

1

21 2

1

11 sss uuu qqqwhere

Stability requirement:

21

2max2

1

critt

FuMK 2where

Page 190: Introduction to Finite Element Methods

ODE Solver – Newmark’s Scheme

212 ,

21

Constant-average acceleration method (stable)

312 ,

21

02 ,21

582 ,

23

22 ,23

Linear acceleration method (conditional stable)

Central difference method (conditional stable)

Galerkin method (stable)

Backward difference method (stable)

Page 191: Introduction to Finite Element Methods

Fully Discretized Finite Element Equations

Page 192: Introduction to Finite Element Methods

Transverse Motion of Euler-Bernoulli Beam

04

4

2

2

xw

tw 10 x

0,0 tw 0,1 t

tw

xxxxw 1sin0,

0,1 tw 0,0 t

tw

00, x

tw

Page 193: Introduction to Finite Element Methods

Transverse Motion of Euler-Bernoulli Beam

Page 194: Introduction to Finite Element Methods

Transverse Motion of Euler-Bernoulli Beam

Page 195: Introduction to Finite Element Methods

Transverse Motion of Euler-Bernoulli Beam