introduction to composite materials & structures

Upload: ricky-luzny

Post on 02-Jun-2018

235 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Introduction to Composite Materials & Structures

    1/14

    MaterialsandStructures

    IndianInstituteofTechnologyKanpur

  • 8/9/2019 Introduction to Composite Materials & Structures

    2/14

    Lecture17

    BehaviorofUnidirectionalComposites

  • 8/9/2019 Introduction to Composite Materials & Structures

    3/14

    re c vemo e s or ransverses ness

    ShearmodulusandPoissonsratio

    Estimatesfortransversestrength

    Predictivemodelsforcoefficientofthermal

    expansion

    Thermalconductivity

  • 8/9/2019 Introduction to Composite Materials & Structures

    4/14

    PredictingTransverseModulusofUnidirectionalLamina

    Figure17.1showsasimplemodelforpredictingtransversemodulusof

    unidirectionallamina.Here,themodelconstitutesoftwoslabsof

    , , f m, .

    overallthicknessofcompositeslabistc,whichissumoftfandtm.Itmay

    benotedherethatthesethicknessesoffiberandmatrixaredirectlypropor ona o e rrespec vevo ume rac ons.

    Fig.17.1:ASlabLike

    ModelforPredicting

    TransversePropertiesof

    nsuc asys em,ex erna y mpose s resson ecompos e c s

    assumedtobesameasthatseenbyfiber(f)andalsobymatrix(m).

    Thisisincontrasttothemodeldevelopedforpredictinglongitudinal

    modulus,wherewehadassumedthatstrains,andnotstresses,incomposite,fiberandmatrixareequal.

  • 8/9/2019 Introduction to Composite Materials & Structures

    5/14

    PredictingTransverseModulusofUnidirectionalLamina

    Further,insuchamodel,whichisakintospringsinseries,theoverall

    dis lacementincom osite intransversedirectionduetoexternalload

    isasumofdisplacementinfiber(f)anddisplacementinmatrix(m).

    c=f+m

    Further,recognizingtherelationbetweenstrainsineachconstituent,and

    theirthicknesses,aboveequationcanberewrittenas:

    t = t + t

    Dividingaboveequationbythicknessofcomposite(tc),andrealizingthat

    tf tc,an tm tcequa Vfan Vm,respective y,weget:

    c=mVm+fVf

    Inlinearelasticrange,strainisaratioofstressandthemodulus.Hence,

    aboveequationcanbefurtherrewrittenas:

    (c

    /Ec

    )=(m

    /Em

    )Vm

    +(f

    /Ef

    )Vf

  • 8/9/2019 Introduction to Composite Materials & Structures

    6/14

    PredictingTransverseModulusofUnidirectionalLamina

    However,wehadearlierassumedthatexternallyappliedstressonthe

    composite(c)issameasthatseenbyfiber(f)andalsobymatrix(m).

    ,

    1/Ec=Vm/Em+Vf/Ef (Eq.17.1a)

    Oralternatively,

    Ec =(EfEm)/([(1Vf)Ef+VfEm] (Eq.17.1b)

    Equation17.1givesusanestimatefortransversemodulusof

    .

    fibervolumefractionisrequiredtoraiseoveralltransversemodulusin

    moderateamounts.Thisisinstarkcontrastwithlongitudinalmodulus,.

    Equation17.1,eventhoughbasedonasimplemodel,isnotborneout

    wellbeexperimentaldata.TOaddressthisinconsistency,severalalternativemodelshavebeendeveloped.

  • 8/9/2019 Introduction to Composite Materials & Structures

    7/14

    PredictingTransverseModulusofUnidirectionalLamina

    However,inthislecturewewillusesimpleandgeneralizedexpressionsfor

    transversemodulusasdevelo edb Hal in andTsai.Thesearerelativel

    simplerelations,andhenceeasytouseindesignpractice.Theresults

    fromHalpin andTsaiarealsoquiteaccurateespeciallyiffibervolume.

    AsperHalpin andTsai,transversemodulus(ET)canbewrittenas:

    ET/Em=(1+Vf)/(1 Vf) (Eq.17.2)where,

    = Ef Em 1 Ef Em +

    , ,

    loadingcondition.Itsvaluesaregivenbelowfordifferentfibergeometries.

    =2forfiberswithsquareandroundcrosssections.

    = a o e sw ec angu a c osssec on. e ea s ec osssec ona mens on

    offiberindirectionofloading,whilebistheotherdimensionoffiberscrosssection.

  • 8/9/2019 Introduction to Composite Materials & Structures

    8/14

    ShearModulusandPoissonsRatio

    Aperfectlyisotropicmaterialhastwofundamentalelasticconstants,Eand

    .Itsshearmodulusandbulkmoduluscanbeex ressedintermsofthese

    twoelasticconstants.

    Likewise,atransverselyisotropiccompositeplyhasfourelasticconstants.

    Theseare:

    EL,i.e.elasticmodulusinlongitudinaldirection.

    ETi.e.elasticmodulusintransversedirection. GLTi.e.longitudinalshearmodulus.

    LTi.e.Poissonsratio

    Adetaileddiscussiononthemathematicallogicunderlyingexistenceof

    .

    Tillsofar,wehavedevelopedrelationsforEL,andET.Nowwewilllearn

    aboutsimilarrelationshipsforGLT

    andLT

    .

  • 8/9/2019 Introduction to Composite Materials & Structures

    9/14

    ShearModulusandPoissonsRatio

    Halpin andTsaihavedevelopedrelationssimilartoEq.17.2whichcanbe

    usedto redictlon itudinalshearmodulus G .Thisisshownbelow.

    GLT/Gm=(1+Vf)/(1 Vf) (Eq.17.3)

    where,

    =[(Gf/Gm)1]/[(Gf/Gm)+1]

    ForpredictingPoissonsratioLT,weexploitthefactthatalongitudinal

    tensilestraininfiberdirection,willgeneratePoissoncontractionin

    transversedirectioninboth,matrixandfibermaterials.

    Inthiscontext,wealsousethefactthatrelativestrainvaluesforsucha

    fraction.Thus,overallPoissonsratioLT forthecompositecanbewritten

    as:

    LT =fVf+fVm (Eq.17.4)

  • 8/9/2019 Introduction to Composite Materials & Structures

    10/14

  • 8/9/2019 Introduction to Composite Materials & Structures

    11/14

    TransverseStrength

    Suchaconstraintonmatrixdeformation,tendstoincreaseplystransversemodulus,thoughonlymarginally(unlessfibervolumefractionishigh).

    However,thestoryisevenmorestarklydifferentincaseoftransversestrength.

    Thedeformationconstraintsimposedonmatrixbyfiberstendtogeneratestrain

    andstressconcentrationsinmatrixmaterial.

    Thesestressandstrainconcentrationscausethematrixtofailatmuchlesser

    values of stress and strain than a sam le of matrix material which has no fibers at

    all.Thus,unlikelongitudinalstrength,transversestrengthtendstogetreducedforcompositesduetopresenceoffibers.

    Thisreductionintransversestrengthofaunidirectionalplyischaracterizedbya

    factor,S,thestrengthreductionfactor. Theexactvalueofthisfactorcanbe

    numericalsolutiontechniques.

    es reng o un rec ona p y n ransverse rec on,uT,can ewr enas:

    uT=uf/S (Eq.17.5)

  • 8/9/2019 Introduction to Composite Materials & Structures

    12/14

    SomeOtherPropertiesofUnidirectionalPlies

    Usingapproachesasdescribedearlier,thermalconductivityinL(kL)

    directioncanbewrittenas:

    kL=Vfkf +Vmkm (Eq.17.6)

    Similarly,transverseconductivity,kT,canbewrittenas:

    kT/km=(1+Vf)/(1 Vf) (Eq.17.7)

    w ere,

    =[(kf/km)1]/[(kf/km)+], where, log=1.732log(a/b)

    Finally,longitudinalandtransversethermalexpansioncoefficientshave

    beenshowninengineeringliteraturetobe:

    L= EfVf f +EmVmm EL Eq.17.8

    = m m m . .

  • 8/9/2019 Introduction to Composite Materials & Structures

    13/14

    re c vemo e s or ransverses ness

    ShearmodulusandPoissonsratio

    Estimatesfortransversestrength

    Predictivemodelsforcoefficientofthermal

    expansion

    Thermalconductivity

  • 8/9/2019 Introduction to Composite Materials & Structures

    14/14

    e erences

    1. Analysis and Performance of Fiber Composites, Agarwal,. . an rou man, . ., o n ey ons.

    . ec an cs o ompos te ater a s, ones, . ., c raw

    Hill.

    3. Engineering Mechanics of Composite Materials, Daniel, I.

    . , ., .