introduction to bloch spaces - uma · 2016. 6. 27. · introduction to bloch spaces vicent asensio...

114
Introduction to Bloch spaces Vicent Asensio L´ opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis and Operator Theory Advisor: ´ Oscar Blasco 24 de junio de 2016 V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 1 / 30

Upload: others

Post on 31-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Introduction to Bloch spaces

Vicent Asensio LopezCarmen Molina LaluezaAntonio Zarauz Moreno

Workshop on Complex Analysis and Operator TheoryAdvisor: Oscar Blasco

24 de junio de 2016

V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 1 / 30

Page 2: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Outline

1 Bloch and little Bloch spaces

2 Hyperbolic distances

3 Bergman projection and dualityBergman projectionDuality

4 References

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 2 / 30

Page 3: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

The Bloch space

We define the set:

B = {f ∈ H(D) : sup|z|<1{(1− |z |2)|f ′(z)| <∞}}

The seminorm||f ||B = sup

|z|<1{(1− |z |2)|f ′(z)|}

And the norm||f ||Bloch = |f (0)|+ ||f ||B

The Bloch space is the set B with the norm || · ||Bloch.

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 3 / 30

Page 4: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

B is Banach

The Bloch space is Banach.

Proof Let {fn}n ⊂ B be a Cauchy sequence in B: ∀ε > 0 ∃n0 s.t. ∀n,m ≥n0, ||fn − fm||Bloch < ε. Hence,

|fn(0)− fm(0)| < ε

(1− |z |2)|f ′n(z)− f ′m(z)| < ε when |z | < 1

Then, {fn(0)}n is Cauchy on C (complete), so we can consider a0 =limn→∞|fn(0)|. In addition, {f ′n(z)}n is Cauchy on C, we call g(z) = limn→∞f ′n(z).Since

|f ′n(z)− f ′m(z)| < ε

1− |z |2

f ′n(z)→ g uniformly on compact sets of D, then g ∈ H(D).

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 4 / 30

Page 5: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

B is Banach

The Bloch space is Banach.

Proof Let {fn}n ⊂ B be a Cauchy sequence in B: ∀ε > 0 ∃n0 s.t. ∀n,m ≥n0, ||fn − fm||Bloch < ε. Hence,

|fn(0)− fm(0)| < ε

(1− |z |2)|f ′n(z)− f ′m(z)| < ε when |z | < 1

Then, {fn(0)}n is Cauchy on C (complete), so we can consider a0 =limn→∞|fn(0)|. In addition, {f ′n(z)}n is Cauchy on C, we call g(z) = limn→∞f ′n(z).Since

|f ′n(z)− f ′m(z)| < ε

1− |z |2

f ′n(z)→ g uniformly on compact sets of D, then g ∈ H(D).

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 4 / 30

Page 6: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

B is Banach

The Bloch space is Banach.

Proof Let {fn}n ⊂ B be a Cauchy sequence in B: ∀ε > 0 ∃n0 s.t. ∀n,m ≥n0, ||fn − fm||Bloch < ε. Hence,

|fn(0)− fm(0)| < ε

(1− |z |2)|f ′n(z)− f ′m(z)| < ε when |z | < 1

Then, {fn(0)}n is Cauchy on C (complete), so we can consider a0 =limn→∞|fn(0)|. In addition, {f ′n(z)}n is Cauchy on C, we call g(z) = limn→∞f ′n(z).Since

|f ′n(z)− f ′m(z)| < ε

1− |z |2

f ′n(z)→ g uniformly on compact sets of D, then g ∈ H(D).

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 4 / 30

Page 7: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

B is Banach

The Bloch space is Banach.

Proof Let {fn}n ⊂ B be a Cauchy sequence in B: ∀ε > 0 ∃n0 s.t. ∀n,m ≥n0, ||fn − fm||Bloch < ε. Hence,

|fn(0)− fm(0)| < ε

(1− |z |2)|f ′n(z)− f ′m(z)| < ε when |z | < 1

Then, {fn(0)}n is Cauchy on C (complete), so we can consider a0 =limn→∞|fn(0)|. In addition, {f ′n(z)}n is Cauchy on C, we call g(z) = limn→∞f ′n(z).Since

|f ′n(z)− f ′m(z)| < ε

1− |z |2

f ′n(z)→ g uniformly on compact sets of D, then g ∈ H(D).

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 4 / 30

Page 8: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

B is Banach

The Bloch space is Banach.

Proof Let {fn}n ⊂ B be a Cauchy sequence in B: ∀ε > 0 ∃n0 s.t. ∀n,m ≥n0, ||fn − fm||Bloch < ε. Hence,

|fn(0)− fm(0)| < ε

(1− |z |2)|f ′n(z)− f ′m(z)| < ε when |z | < 1

Then, {fn(0)}n is Cauchy on C (complete), so we can consider a0 =limn→∞|fn(0)|. In addition, {f ′n(z)}n is Cauchy on C, we call g(z) = limn→∞f ′n(z).Since

|f ′n(z)− f ′m(z)| < ε

1− |z |2

f ′n(z)→ g uniformly on compact sets of D, then g ∈ H(D).

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 4 / 30

Page 9: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Since D is simply connected there exists primitive for g. Take f such thatf ′(z) = g(z) ∀|z | < 1 and f (0) = a0.Thus, ∀ε > 0 ∃n0 s.t. ∀n,m ≥ n0, (1−|z |2)|f ′n(z)−f ′m(z)| < ε when |z | < 1.When n tends to infinity,

(1− |z |2)|f ′(z)− f ′m(z)| < ε when |z | < 1

Then, ||fn − f ||Bloch → 0.Plus,

(1− |z |2)|f ′(z)| ≤ (1− |z |2)|f ′(z)− f ′m(z)|+ (1− |z |2)|f ′n(z)| << ε+ (1− |z |2)|f ′n(z)| <∞

and taking supremes we have f ∈ B.

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 5 / 30

Page 10: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Since D is simply connected there exists primitive for g. Take f such thatf ′(z) = g(z) ∀|z | < 1 and f (0) = a0.Thus, ∀ε > 0 ∃n0 s.t. ∀n,m ≥ n0, (1−|z |2)|f ′n(z)−f ′m(z)| < ε when |z | < 1.When n tends to infinity,

(1− |z |2)|f ′(z)− f ′m(z)| < ε when |z | < 1

Then, ||fn − f ||Bloch → 0.Plus,

(1− |z |2)|f ′(z)| ≤ (1− |z |2)|f ′(z)− f ′m(z)|+ (1− |z |2)|f ′n(z)| << ε+ (1− |z |2)|f ′n(z)| <∞

and taking supremes we have f ∈ B.

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 5 / 30

Page 11: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Since D is simply connected there exists primitive for g. Take f such thatf ′(z) = g(z) ∀|z | < 1 and f (0) = a0.Thus, ∀ε > 0 ∃n0 s.t. ∀n,m ≥ n0, (1−|z |2)|f ′n(z)−f ′m(z)| < ε when |z | < 1.When n tends to infinity,

(1− |z |2)|f ′(z)− f ′m(z)| < ε when |z | < 1

Then, ||fn − f ||Bloch → 0.Plus,

(1− |z |2)|f ′(z)| ≤ (1− |z |2)|f ′(z)− f ′m(z)|+ (1− |z |2)|f ′n(z)| << ε+ (1− |z |2)|f ′n(z)| <∞

and taking supremes we have f ∈ B.

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 5 / 30

Page 12: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

The little Bloch space

The little Bloch space, denoted by B0, is the closed subspace of Bconsisting of functions f ∈ B with

lim|z|→1(1− |z |2)|f ′(z)| = 0

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 6 / 30

Page 13: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Examples:

The set of polynomials P is contained in B0. (the derivate is boundedin D)

H∞ ⊂ B. We use the Poisson Kernel Pw (e it) = 1−|w |2(1−we it)2 with

|w | < 1, we have∫ 2π

0 Pw (e it) dt2π = 1. Thus, for f ∈ H∞

|f ′(z)| =1

∣∣∣∣ ∫Γr

f (w)

(w − z)2dw

∣∣∣∣ ≤≤ ||f ||∞

r(1− |z|2

r2 )

∫ 2π

0

(1− |z|2

r2 )

|1− zr e

it |2dt

2π=

r ||f ||∞r2 − |z |2

Taking r → 1,

|f ′(z)| ≤ ||f ||∞1− |z |2

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 7 / 30

Page 14: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

f (z) = Log(1− z) ∈ B − B0.

(1−|z |2)|f ′(z)| = (1−|z |2)1

|1− z |≤ (1−|z |2)

1

(1− |z |)= 1+ |z | ≤ 2

So f ∈ B, but, taking the limit, for example, in the positive real axis,

lim|z|→1(1− |z |2)|f ′(z)| = 2

Then, f 6∈ B0.

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 8 / 30

Page 15: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

The following are equivalent:

1. f ∈ B0

2. limr→1− ||fr − f ||B = 0 where r ∈ (0, 1) and fr (z) = f (rz).

3. limn→∞||f − pn||Bloch = 0 with pn ∈ P

To prove this theorem, we will use the following result:

Given f ∈ H(D), we denote by fr the function fr (z) = f (rz). Then,fr → f uniformly on compact sets of D, when r → 1−.

Then, we also have f ′r → f ′ uniformly on compact sets, when r → 1−.

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 9 / 30

Page 16: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

The following are equivalent:

1. f ∈ B0

2. limr→1− ||fr − f ||B = 0 where r ∈ (0, 1) and fr (z) = f (rz).

3. limn→∞||f − pn||Bloch = 0 with pn ∈ P

To prove this theorem, we will use the following result:

Given f ∈ H(D), we denote by fr the function fr (z) = f (rz). Then,fr → f uniformly on compact sets of D, when r → 1−.

Then, we also have f ′r → f ′ uniformly on compact sets, when r → 1−.

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 9 / 30

Page 17: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Proof (1)⇒(2). Assume f ∈ B0. For any ε > 0 there exists δ ∈ (0, 1) s.t.

(1− |z |2)|f ′(z)| < ε, δ2 < |z | < 1

Consider

||fr − f ||B = sup{(1− |z |2)|rf ′(rz)− f ′(z)| : |z | < 1} ≤≤ sup{(1− |z |2)|rf ′(rz)− f ′(z)| : δ < |z | < 1}+

+ sup{(1− |z |2)|rf ′(rz)− f ′(z)| : |z | ≤ δ}

By the previous lemma, rf ′(rz) = f ′r (z)→ f ′(z) when |z | ≤ δ ⇒ the secondsupreme is zero.If δ < r < 1, and δ < |z | < 1, then δ2 < r |z | < 1. Thus,

(1− |z |2)|rf (rz)| ≤ (1− r2|z |2)|f ′(rz)| < ε

Hencesup{(1− |z |2)|rf ′(rz)− f ′(z)| : δ < |z | < 1} ≤ 2ε

for δ < r < 1, and we have for any ε > 0

limr→1− ||fr − f ||B ≤ 2ε

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 10 / 30

Page 18: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Proof (1)⇒(2). Assume f ∈ B0. For any ε > 0 there exists δ ∈ (0, 1) s.t.

(1− |z |2)|f ′(z)| < ε, δ2 < |z | < 1

Consider

||fr − f ||B = sup{(1− |z |2)|rf ′(rz)− f ′(z)| : |z | < 1} ≤≤ sup{(1− |z |2)|rf ′(rz)− f ′(z)| : δ < |z | < 1}+

+ sup{(1− |z |2)|rf ′(rz)− f ′(z)| : |z | ≤ δ}

By the previous lemma, rf ′(rz) = f ′r (z)→ f ′(z) when |z | ≤ δ ⇒ the secondsupreme is zero.If δ < r < 1, and δ < |z | < 1, then δ2 < r |z | < 1. Thus,

(1− |z |2)|rf (rz)| ≤ (1− r2|z |2)|f ′(rz)| < ε

Hencesup{(1− |z |2)|rf ′(rz)− f ′(z)| : δ < |z | < 1} ≤ 2ε

for δ < r < 1, and we have for any ε > 0

limr→1− ||fr − f ||B ≤ 2ε

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 10 / 30

Page 19: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Proof (1)⇒(2). Assume f ∈ B0. For any ε > 0 there exists δ ∈ (0, 1) s.t.

(1− |z |2)|f ′(z)| < ε, δ2 < |z | < 1

Consider

||fr − f ||B = sup{(1− |z |2)|rf ′(rz)− f ′(z)| : |z | < 1} ≤≤ sup{(1− |z |2)|rf ′(rz)− f ′(z)| : δ < |z | < 1}+

+ sup{(1− |z |2)|rf ′(rz)− f ′(z)| : |z | ≤ δ}

By the previous lemma, rf ′(rz) = f ′r (z)→ f ′(z) when |z | ≤ δ ⇒ the secondsupreme is zero.If δ < r < 1, and δ < |z | < 1, then δ2 < r |z | < 1. Thus,

(1− |z |2)|rf (rz)| ≤ (1− r2|z |2)|f ′(rz)| < ε

Hencesup{(1− |z |2)|rf ′(rz)− f ′(z)| : δ < |z | < 1} ≤ 2ε

for δ < r < 1, and we have for any ε > 0

limr→1− ||fr − f ||B ≤ 2ε

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 10 / 30

Page 20: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Proof (1)⇒(2). Assume f ∈ B0. For any ε > 0 there exists δ ∈ (0, 1) s.t.

(1− |z |2)|f ′(z)| < ε, δ2 < |z | < 1

Consider

||fr − f ||B = sup{(1− |z |2)|rf ′(rz)− f ′(z)| : |z | < 1} ≤≤ sup{(1− |z |2)|rf ′(rz)− f ′(z)| : δ < |z | < 1}+

+ sup{(1− |z |2)|rf ′(rz)− f ′(z)| : |z | ≤ δ}

By the previous lemma, rf ′(rz) = f ′r (z)→ f ′(z) when |z | ≤ δ ⇒ the secondsupreme is zero.If δ < r < 1, and δ < |z | < 1, then δ2 < r |z | < 1. Thus,

(1− |z |2)|rf (rz)| ≤ (1− r2|z |2)|f ′(rz)| < ε

Hencesup{(1− |z |2)|rf ′(rz)− f ′(z)| : δ < |z | < 1} ≤ 2ε

for δ < r < 1, and we have for any ε > 0

limr→1− ||fr − f ||B ≤ 2ε

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 10 / 30

Page 21: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Proof (1)⇒(2). Assume f ∈ B0. For any ε > 0 there exists δ ∈ (0, 1) s.t.

(1− |z |2)|f ′(z)| < ε, δ2 < |z | < 1

Consider

||fr − f ||B = sup{(1− |z |2)|rf ′(rz)− f ′(z)| : |z | < 1} ≤≤ sup{(1− |z |2)|rf ′(rz)− f ′(z)| : δ < |z | < 1}+

+ sup{(1− |z |2)|rf ′(rz)− f ′(z)| : |z | ≤ δ}

By the previous lemma, rf ′(rz) = f ′r (z)→ f ′(z) when |z | ≤ δ ⇒ the secondsupreme is zero.If δ < r < 1, and δ < |z | < 1, then δ2 < r |z | < 1. Thus,

(1− |z |2)|rf (rz)| ≤ (1− r2|z |2)|f ′(rz)| < ε

Hencesup{(1− |z |2)|rf ′(rz)− f ′(z)| : δ < |z | < 1} ≤ 2ε

for δ < r < 1, and we have for any ε > 0

limr→1− ||fr − f ||B ≤ 2ε

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 10 / 30

Page 22: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

(2)⇒(3) Since fr can be approximated by polynomials in H∞ and || ||B ≤|| ||H∞ , we may approximate by polynomials in B. Thus, for any fr and forany ε > 0, ∃{pn} ∈ P and n0 ≥ 0 s.t. ∀n ≥ n0,

||fr − pn||B < ε

Then, using (2), ∃δ > 0 s.t. ∀δ < r < 1

||f − pn||B ≤ ||f − fr ||B + ||fr − pn||B < 2ε

Without loss of generality, we take pn(0) = f (0). Then,

limn→∞||f − pn||Bloch = 0

(3)⇒(1) Straightforward because P ⊂ B0 and B0 is closed.

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 11 / 30

Page 23: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

(2)⇒(3) Since fr can be approximated by polynomials in H∞ and || ||B ≤|| ||H∞ , we may approximate by polynomials in B. Thus, for any fr and forany ε > 0, ∃{pn} ∈ P and n0 ≥ 0 s.t. ∀n ≥ n0,

||fr − pn||B < ε

Then, using (2), ∃δ > 0 s.t. ∀δ < r < 1

||f − pn||B ≤ ||f − fr ||B + ||fr − pn||B < 2ε

Without loss of generality, we take pn(0) = f (0). Then,

limn→∞||f − pn||Bloch = 0

(3)⇒(1) Straightforward because P ⊂ B0 and B0 is closed.

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 11 / 30

Page 24: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

(2)⇒(3) Since fr can be approximated by polynomials in H∞ and || ||B ≤|| ||H∞ , we may approximate by polynomials in B. Thus, for any fr and forany ε > 0, ∃{pn} ∈ P and n0 ≥ 0 s.t. ∀n ≥ n0,

||fr − pn||B < ε

Then, using (2), ∃δ > 0 s.t. ∀δ < r < 1

||f − pn||B ≤ ||f − fr ||B + ||fr − pn||B < 2ε

Without loss of generality, we take pn(0) = f (0). Then,

limn→∞||f − pn||Bloch = 0

(3)⇒(1) Straightforward because P ⊂ B0 and B0 is closed.

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 11 / 30

Page 25: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

(2)⇒(3) Since fr can be approximated by polynomials in H∞ and || ||B ≤|| ||H∞ , we may approximate by polynomials in B. Thus, for any fr and forany ε > 0, ∃{pn} ∈ P and n0 ≥ 0 s.t. ∀n ≥ n0,

||fr − pn||B < ε

Then, using (2), ∃δ > 0 s.t. ∀δ < r < 1

||f − pn||B ≤ ||f − fr ||B + ||fr − pn||B < 2ε

Without loss of generality, we take pn(0) = f (0). Then,

limn→∞||f − pn||Bloch = 0

(3)⇒(1) Straightforward because P ⊂ B0 and B0 is closed.

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 11 / 30

Page 26: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

(2)⇒(3) Since fr can be approximated by polynomials in H∞ and || ||B ≤|| ||H∞ , we may approximate by polynomials in B. Thus, for any fr and forany ε > 0, ∃{pn} ∈ P and n0 ≥ 0 s.t. ∀n ≥ n0,

||fr − pn||B < ε

Then, using (2), ∃δ > 0 s.t. ∀δ < r < 1

||f − pn||B ≤ ||f − fr ||B + ||fr − pn||B < 2ε

Without loss of generality, we take pn(0) = f (0). Then,

limn→∞||f − pn||Bloch = 0

(3)⇒(1) Straightforward because P ⊂ B0 and B0 is closed.

Bloch and little Bloch spaces V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 11 / 30

Page 27: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Outline

1 Bloch and little Bloch spaces

2 Hyperbolic distances

3 Bergman projection and dualityBergman projectionDuality

4 References

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 12 / 30

Page 28: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

We remind that the Mobius transformation is ϕa(z) = a−z1−az . Then the

pseudo-hyperbolic distance in D is defined to be

ρ(z , ω) = |ϕz(ω)| ∀z , ω ∈ D.

Note that ρ(z , 0) = |z |.We show that is indeed a distance. Clearly ρ(z , ω) ≥ 0 and ρ(z , ω) = 0 iffz = ω. To see the symmetric property, we note that

ρ(z , ω) =

∣∣∣∣ z − ω1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− ωz

∣∣∣∣ = ρ(ω, z).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 13 / 30

Page 29: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

We remind that the Mobius transformation is ϕa(z) = a−z1−az . Then the

pseudo-hyperbolic distance in D is defined to be

ρ(z , ω) = |ϕz(ω)| ∀z , ω ∈ D.

Note that ρ(z , 0) = |z |.We show that is indeed a distance. Clearly ρ(z , ω) ≥ 0 and ρ(z , ω) = 0 iffz = ω. To see the symmetric property, we note that

ρ(z , ω) =

∣∣∣∣ z − ω1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− ωz

∣∣∣∣ = ρ(ω, z).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 13 / 30

Page 30: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

We remind that the Mobius transformation is ϕa(z) = a−z1−az . Then the

pseudo-hyperbolic distance in D is defined to be

ρ(z , ω) = |ϕz(ω)| ∀z , ω ∈ D.

Note that ρ(z , 0) = |z |.We show that is indeed a distance. Clearly ρ(z , ω) ≥ 0 and ρ(z , ω) = 0 iffz = ω. To see the symmetric property, we note that

ρ(z , ω) =

∣∣∣∣ z − ω1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− ωz

∣∣∣∣ = ρ(ω, z).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 13 / 30

Page 31: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

We remind that the Mobius transformation is ϕa(z) = a−z1−az . Then the

pseudo-hyperbolic distance in D is defined to be

ρ(z , ω) = |ϕz(ω)| ∀z , ω ∈ D.

Note that ρ(z , 0) = |z |.We show that is indeed a distance. Clearly ρ(z , ω) ≥ 0 and ρ(z , ω) = 0 iffz = ω. To see the symmetric property, we note that

ρ(z , ω) =

∣∣∣∣ z − ω1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− ωz

∣∣∣∣ = ρ(ω, z).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 13 / 30

Page 32: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

We remind that the Mobius transformation is ϕa(z) = a−z1−az . Then the

pseudo-hyperbolic distance in D is defined to be

ρ(z , ω) = |ϕz(ω)| ∀z , ω ∈ D.

Note that ρ(z , 0) = |z |.We show that is indeed a distance. Clearly ρ(z , ω) ≥ 0 and ρ(z , ω) = 0 iffz = ω. To see the symmetric property, we note that

ρ(z , ω) =

∣∣∣∣ z − ω1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− ωz

∣∣∣∣ = ρ(ω, z).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 13 / 30

Page 33: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

We remind that the Mobius transformation is ϕa(z) = a−z1−az . Then the

pseudo-hyperbolic distance in D is defined to be

ρ(z , ω) = |ϕz(ω)| ∀z , ω ∈ D.

Note that ρ(z , 0) = |z |.We show that is indeed a distance. Clearly ρ(z , ω) ≥ 0 and ρ(z , ω) = 0 iffz = ω. To see the symmetric property, we note that

ρ(z , ω) =

∣∣∣∣ z − ω1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− ωz

∣∣∣∣ = ρ(ω, z).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 13 / 30

Page 34: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

We remind that the Mobius transformation is ϕa(z) = a−z1−az . Then the

pseudo-hyperbolic distance in D is defined to be

ρ(z , ω) = |ϕz(ω)| ∀z , ω ∈ D.

Note that ρ(z , 0) = |z |.We show that is indeed a distance. Clearly ρ(z , ω) ≥ 0 and ρ(z , ω) = 0 iffz = ω. To see the symmetric property, we note that

ρ(z , ω) =

∣∣∣∣ z − ω1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− ωz

∣∣∣∣ = ρ(ω, z).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 13 / 30

Page 35: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

We remind that the Mobius transformation is ϕa(z) = a−z1−az . Then the

pseudo-hyperbolic distance in D is defined to be

ρ(z , ω) = |ϕz(ω)| ∀z , ω ∈ D.

Note that ρ(z , 0) = |z |.We show that is indeed a distance. Clearly ρ(z , ω) ≥ 0 and ρ(z , ω) = 0 iffz = ω. To see the symmetric property, we note that

ρ(z , ω) =

∣∣∣∣ z − ω1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− zω

∣∣∣∣ =

∣∣∣∣ ω − z

1− ωz

∣∣∣∣ = ρ(ω, z).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 13 / 30

Page 36: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

For the triangle inequality, we first prove that ρ(z , ω) ≤ ρ(z , 0) + ρ(0, ω).

That is,∣∣∣ z−ω1−zω

∣∣∣ ≤ |z |+ |ω|. Let |z | = a, |ω| = b and θ be the angle between

z and ω. Therefore

a2 + b2 − 2ab cos θ

1 + a2b2 − 2ab cos θ≤ (a + b)2.

Estimating the first factor, we have

a2 + b2 − 2ab cos θ

1 + a2b2 − 2ab cos θ= 1− 1− a2 − b2 + a2b2

1 + a2b2 − 2ab cos θ

≤ 1− (1− a2)(1− b2)

1 + a2b2 + 2ab

=(a + b)2

(1 + ab)2.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 14 / 30

Page 37: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

For the triangle inequality, we first prove that ρ(z , ω) ≤ ρ(z , 0) + ρ(0, ω).

That is,∣∣∣ z−ω1−zω

∣∣∣ ≤ |z |+ |ω|. Let |z | = a, |ω| = b and θ be the angle between

z and ω. Therefore

a2 + b2 − 2ab cos θ

1 + a2b2 − 2ab cos θ≤ (a + b)2.

Estimating the first factor, we have

a2 + b2 − 2ab cos θ

1 + a2b2 − 2ab cos θ= 1− 1− a2 − b2 + a2b2

1 + a2b2 − 2ab cos θ

≤ 1− (1− a2)(1− b2)

1 + a2b2 + 2ab

=(a + b)2

(1 + ab)2.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 14 / 30

Page 38: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

For the triangle inequality, we first prove that ρ(z , ω) ≤ ρ(z , 0) + ρ(0, ω).

That is,∣∣∣ z−ω1−zω

∣∣∣ ≤ |z |+ |ω|. Let |z | = a, |ω| = b and θ be the angle between

z and ω. Therefore

a2 + b2 − 2ab cos θ

1 + a2b2 − 2ab cos θ≤ (a + b)2.

Estimating the first factor, we have

a2 + b2 − 2ab cos θ

1 + a2b2 − 2ab cos θ= 1− 1− a2 − b2 + a2b2

1 + a2b2 − 2ab cos θ

≤ 1− (1− a2)(1− b2)

1 + a2b2 + 2ab

=(a + b)2

(1 + ab)2.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 14 / 30

Page 39: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

For the triangle inequality, we first prove that ρ(z , ω) ≤ ρ(z , 0) + ρ(0, ω).

That is,∣∣∣ z−ω1−zω

∣∣∣ ≤ |z |+ |ω|. Let |z | = a, |ω| = b and θ be the angle between

z and ω. Therefore

a2 + b2 − 2ab cos θ

1 + a2b2 − 2ab cos θ≤ (a + b)2.

Estimating the first factor, we have

a2 + b2 − 2ab cos θ

1 + a2b2 − 2ab cos θ= 1− 1− a2 − b2 + a2b2

1 + a2b2 − 2ab cos θ

≤ 1− (1− a2)(1− b2)

1 + a2b2 + 2ab

=(a + b)2

(1 + ab)2.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 14 / 30

Page 40: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

For the triangle inequality, we first prove that ρ(z , ω) ≤ ρ(z , 0) + ρ(0, ω).

That is,∣∣∣ z−ω1−zω

∣∣∣ ≤ |z |+ |ω|. Let |z | = a, |ω| = b and θ be the angle between

z and ω. Therefore

a2 + b2 − 2ab cos θ

1 + a2b2 − 2ab cos θ≤ (a + b)2.

Estimating the first factor, we have

a2 + b2 − 2ab cos θ

1 + a2b2 − 2ab cos θ= 1− 1− a2 − b2 + a2b2

1 + a2b2 − 2ab cos θ

≤ 1− (1− a2)(1− b2)

1 + a2b2 + 2ab

=(a + b)2

(1 + ab)2.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 14 / 30

Page 41: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

For the triangle inequality, we first prove that ρ(z , ω) ≤ ρ(z , 0) + ρ(0, ω).

That is,∣∣∣ z−ω1−zω

∣∣∣ ≤ |z |+ |ω|. Let |z | = a, |ω| = b and θ be the angle between

z and ω. Therefore

a2 + b2 − 2ab cos θ

1 + a2b2 − 2ab cos θ≤ (a + b)2.

Estimating the first factor, we have

a2 + b2 − 2ab cos θ

1 + a2b2 − 2ab cos θ= 1− 1− a2 − b2 + a2b2

1 + a2b2 − 2ab cos θ

≤ 1− (1− a2)(1− b2)

1 + a2b2 + 2ab

=(a + b)2

(1 + ab)2.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 14 / 30

Page 42: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

For the triangle inequality, we first prove that ρ(z , ω) ≤ ρ(z , 0) + ρ(0, ω).

That is,∣∣∣ z−ω1−zω

∣∣∣ ≤ |z |+ |ω|. Let |z | = a, |ω| = b and θ be the angle between

z and ω. Therefore

a2 + b2 − 2ab cos θ

1 + a2b2 − 2ab cos θ≤ (a + b)2.

Estimating the first factor, we have

a2 + b2 − 2ab cos θ

1 + a2b2 − 2ab cos θ= 1− 1− a2 − b2 + a2b2

1 + a2b2 − 2ab cos θ

≤ 1− (1− a2)(1− b2)

1 + a2b2 + 2ab

=(a + b)2

(1 + ab)2.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 14 / 30

Page 43: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

To extend the previous argument, we now claim that for any f ∈ H(D),

ρ(f (z), f (ω)) ≤ ρ(z , ω) ∀z , ω ∈ D.

We select the holomorphic function ϕf (z) ◦ f ◦ ϕz , which fixes 0:

ϕz(0) = z

f (ϕz(0)) = f (z)

ϕf (z)(f (ϕz(0))) = ϕf (z)(f (z)) = 0

so by Schwarz’s Lemma we get that

|ϕf (z) ◦ f ◦ ϕz(ω)| ≤ |ω|.

Denoting ω′ = ϕz(ω) and using the fact that ϕ−1z = ϕz , we obtain

|ϕf (z)(f (ω′))| ≤ |ϕz(ω′)|.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 15 / 30

Page 44: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

To extend the previous argument, we now claim that for any f ∈ H(D),

ρ(f (z), f (ω)) ≤ ρ(z , ω) ∀z , ω ∈ D.

We select the holomorphic function ϕf (z) ◦ f ◦ ϕz , which fixes 0:

ϕz(0) = z

f (ϕz(0)) = f (z)

ϕf (z)(f (ϕz(0))) = ϕf (z)(f (z)) = 0

so by Schwarz’s Lemma we get that

|ϕf (z) ◦ f ◦ ϕz(ω)| ≤ |ω|.

Denoting ω′ = ϕz(ω) and using the fact that ϕ−1z = ϕz , we obtain

|ϕf (z)(f (ω′))| ≤ |ϕz(ω′)|.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 15 / 30

Page 45: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

To extend the previous argument, we now claim that for any f ∈ H(D),

ρ(f (z), f (ω)) ≤ ρ(z , ω) ∀z , ω ∈ D.

We select the holomorphic function ϕf (z) ◦ f ◦ ϕz , which fixes 0:

ϕz(0) = z

f (ϕz(0)) = f (z)

ϕf (z)(f (ϕz(0))) = ϕf (z)(f (z)) = 0

so by Schwarz’s Lemma we get that

|ϕf (z) ◦ f ◦ ϕz(ω)| ≤ |ω|.

Denoting ω′ = ϕz(ω) and using the fact that ϕ−1z = ϕz , we obtain

|ϕf (z)(f (ω′))| ≤ |ϕz(ω′)|.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 15 / 30

Page 46: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

To extend the previous argument, we now claim that for any f ∈ H(D),

ρ(f (z), f (ω)) ≤ ρ(z , ω) ∀z , ω ∈ D.

We select the holomorphic function ϕf (z) ◦ f ◦ ϕz , which fixes 0:

ϕz(0) = z

f (ϕz(0)) = f (z)

ϕf (z)(f (ϕz(0))) = ϕf (z)(f (z)) = 0

so by Schwarz’s Lemma we get that

|ϕf (z) ◦ f ◦ ϕz(ω)| ≤ |ω|.

Denoting ω′ = ϕz(ω) and using the fact that ϕ−1z = ϕz , we obtain

|ϕf (z)(f (ω′))| ≤ |ϕz(ω′)|.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 15 / 30

Page 47: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

To extend the previous argument, we now claim that for any f ∈ H(D),

ρ(f (z), f (ω)) ≤ ρ(z , ω) ∀z , ω ∈ D.

We select the holomorphic function ϕf (z) ◦ f ◦ ϕz , which fixes 0:

ϕz(0) = z

f (ϕz(0)) = f (z)

ϕf (z)(f (ϕz(0))) = ϕf (z)(f (z)) = 0

so by Schwarz’s Lemma we get that

|ϕf (z) ◦ f ◦ ϕz(ω)| ≤ |ω|.

Denoting ω′ = ϕz(ω) and using the fact that ϕ−1z = ϕz , we obtain

|ϕf (z)(f (ω′))| ≤ |ϕz(ω′)|.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 15 / 30

Page 48: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

To extend the previous argument, we now claim that for any f ∈ H(D),

ρ(f (z), f (ω)) ≤ ρ(z , ω) ∀z , ω ∈ D.

We select the holomorphic function ϕf (z) ◦ f ◦ ϕz , which fixes 0:

ϕz(0) = z

f (ϕz(0)) = f (z)

ϕf (z)(f (ϕz(0))) = ϕf (z)(f (z)) = 0

so by Schwarz’s Lemma we get that

|ϕf (z) ◦ f ◦ ϕz(ω)| ≤ |ω|.

Denoting ω′ = ϕz(ω) and using the fact that ϕ−1z = ϕz , we obtain

|ϕf (z)(f (ω′))| ≤ |ϕz(ω′)|.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 15 / 30

Page 49: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Pseudo-hyperbolic distance

To extend the previous argument, we now claim that for any f ∈ H(D),

ρ(f (z), f (ω)) ≤ ρ(z , ω) ∀z , ω ∈ D.

We select the holomorphic function ϕf (z) ◦ f ◦ ϕz , which fixes 0:

ϕz(0) = z

f (ϕz(0)) = f (z)

ϕf (z)(f (ϕz(0))) = ϕf (z)(f (z)) = 0

so by Schwarz’s Lemma we get that

|ϕf (z) ◦ f ◦ ϕz(ω)| ≤ |ω|.

Denoting ω′ = ϕz(ω) and using the fact that ϕ−1z = ϕz , we obtain

|ϕf (z)(f (ω′))| ≤ |ϕz(ω′)|.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 15 / 30

Page 50: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Hyperbolic distance

β(z , ω) =1

2log

1 + ρ(z , ω)

1− ρ(z , ω)

is the hyperbolic distance. It can also be seen as∫ ρ(z,ω)

0

dt

1− t2=

∣∣∣∣∣∫

[0,ϕz (ω)]

1− |ξ|2

∣∣∣∣∣ =

∫γa,b

1− |η|2

where we are given a Mobius transformation ϕa, and we used the change ofvariables ξ = ϕa(η), for an arbitrary a. Note that such measure is invariant.From these reformulation, it can be proved that the triangle inequality issatisfied. The other ones follow from the fact that ρ is already a distance.Moreover, β is invariant under Mobius transformations because ρ so is.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 16 / 30

Page 51: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Hyperbolic distance

β(z , ω) =1

2log

1 + ρ(z , ω)

1− ρ(z , ω)

is the hyperbolic distance. It can also be seen as∫ ρ(z,ω)

0

dt

1− t2=

∣∣∣∣∣∫

[0,ϕz (ω)]

1− |ξ|2

∣∣∣∣∣ =

∫γa,b

1− |η|2

where we are given a Mobius transformation ϕa, and we used the change ofvariables ξ = ϕa(η), for an arbitrary a. Note that such measure is invariant.From these reformulation, it can be proved that the triangle inequality issatisfied. The other ones follow from the fact that ρ is already a distance.Moreover, β is invariant under Mobius transformations because ρ so is.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 16 / 30

Page 52: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Hyperbolic distance

β(z , ω) =1

2log

1 + ρ(z , ω)

1− ρ(z , ω)

is the hyperbolic distance. It can also be seen as∫ ρ(z,ω)

0

dt

1− t2=

∣∣∣∣∣∫

[0,ϕz (ω)]

1− |ξ|2

∣∣∣∣∣ =

∫γa,b

1− |η|2

where we are given a Mobius transformation ϕa, and we used the change ofvariables ξ = ϕa(η), for an arbitrary a. Note that such measure is invariant.From these reformulation, it can be proved that the triangle inequality issatisfied. The other ones follow from the fact that ρ is already a distance.Moreover, β is invariant under Mobius transformations because ρ so is.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 16 / 30

Page 53: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Hyperbolic distance

β(z , ω) =1

2log

1 + ρ(z , ω)

1− ρ(z , ω)

is the hyperbolic distance. It can also be seen as∫ ρ(z,ω)

0

dt

1− t2=

∣∣∣∣∣∫

[0,ϕz (ω)]

1− |ξ|2

∣∣∣∣∣ =

∫γa,b

1− |η|2

where we are given a Mobius transformation ϕa, and we used the change ofvariables ξ = ϕa(η), for an arbitrary a. Note that such measure is invariant.From these reformulation, it can be proved that the triangle inequality issatisfied. The other ones follow from the fact that ρ is already a distance.Moreover, β is invariant under Mobius transformations because ρ so is.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 16 / 30

Page 54: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Hyperbolic distance

β(z , ω) =1

2log

1 + ρ(z , ω)

1− ρ(z , ω)

is the hyperbolic distance. It can also be seen as∫ ρ(z,ω)

0

dt

1− t2=

∣∣∣∣∣∫

[0,ϕz (ω)]

1− |ξ|2

∣∣∣∣∣ =

∫γa,b

1− |η|2

where we are given a Mobius transformation ϕa, and we used the change ofvariables ξ = ϕa(η), for an arbitrary a. Note that such measure is invariant.From these reformulation, it can be proved that the triangle inequality issatisfied. The other ones follow from the fact that ρ is already a distance.Moreover, β is invariant under Mobius transformations because ρ so is.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 16 / 30

Page 55: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Hyperbolic distance

β(z , ω) =1

2log

1 + ρ(z , ω)

1− ρ(z , ω)

is the hyperbolic distance. It can also be seen as∫ ρ(z,ω)

0

dt

1− t2=

∣∣∣∣∣∫

[0,ϕz (ω)]

1− |ξ|2

∣∣∣∣∣ =

∫γa,b

1− |η|2

where we are given a Mobius transformation ϕa, and we used the change ofvariables ξ = ϕa(η), for an arbitrary a. Note that such measure is invariant.From these reformulation, it can be proved that the triangle inequality issatisfied. The other ones follow from the fact that ρ is already a distance.Moreover, β is invariant under Mobius transformations because ρ so is.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 16 / 30

Page 56: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Hyperbolic distance

β(z , ω) =1

2log

1 + ρ(z , ω)

1− ρ(z , ω)

is the hyperbolic distance. It can also be seen as∫ ρ(z,ω)

0

dt

1− t2=

∣∣∣∣∣∫

[0,ϕz (ω)]

1− |ξ|2

∣∣∣∣∣ =

∫γa,b

1− |η|2

where we are given a Mobius transformation ϕa, and we used the change ofvariables ξ = ϕa(η), for an arbitrary a. Note that such measure is invariant.From these reformulation, it can be proved that the triangle inequality issatisfied. The other ones follow from the fact that ρ is already a distance.Moreover, β is invariant under Mobius transformations because ρ so is.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 16 / 30

Page 57: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Hyperbolic distance

β(z , ω) =1

2log

1 + ρ(z , ω)

1− ρ(z , ω)

is the hyperbolic distance. It can also be seen as∫ ρ(z,ω)

0

dt

1− t2=

∣∣∣∣∣∫

[0,ϕz (ω)]

1− |ξ|2

∣∣∣∣∣ =

∫γa,b

1− |η|2

where we are given a Mobius transformation ϕa, and we used the change ofvariables ξ = ϕa(η), for an arbitrary a. Note that such measure is invariant.From these reformulation, it can be proved that the triangle inequality issatisfied. The other ones follow from the fact that ρ is already a distance.Moreover, β is invariant under Mobius transformations because ρ so is.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 16 / 30

Page 58: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

For any Bloch function f , |f (z)− f (ω)| ≤ ‖f ‖Bβ(z , ω).

‖·‖B is invariant under Mobius transformations.

We shall rewrite ‖f ‖B by sup|z|<1

{|(f ◦ ϕz)′(0)|

}because

(f ◦ ϕz)′(0) = f ′(ϕz(0))ϕ′z(0) = f ′(z)ϕ′z(0) = f ′(z)(1− |z |2),

where ϕ′z(ω) = 1−|z|2(1−zω)2 , and the result follows from

ϕa ◦ ϕb(0) = ϕϕa(b)(0).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 17 / 30

Page 59: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

For any Bloch function f , |f (z)− f (ω)| ≤ ‖f ‖Bβ(z , ω).

‖·‖B is invariant under Mobius transformations.

We shall rewrite ‖f ‖B by sup|z|<1

{|(f ◦ ϕz)′(0)|

}because

(f ◦ ϕz)′(0) = f ′(ϕz(0))ϕ′z(0) = f ′(z)ϕ′z(0) = f ′(z)(1− |z |2),

where ϕ′z(ω) = 1−|z|2(1−zω)2 , and the result follows from

ϕa ◦ ϕb(0) = ϕϕa(b)(0).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 17 / 30

Page 60: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

For any Bloch function f , |f (z)− f (ω)| ≤ ‖f ‖Bβ(z , ω).

‖·‖B is invariant under Mobius transformations.

We shall rewrite ‖f ‖B by sup|z|<1

{|(f ◦ ϕz)′(0)|

}because

(f ◦ ϕz)′(0) = f ′(ϕz(0))ϕ′z(0) = f ′(z)ϕ′z(0) = f ′(z)(1− |z |2),

where ϕ′z(ω) = 1−|z|2(1−zω)2 , and the result follows from

ϕa ◦ ϕb(0) = ϕϕa(b)(0).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 17 / 30

Page 61: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

For any Bloch function f , |f (z)− f (ω)| ≤ ‖f ‖Bβ(z , ω).

‖·‖B is invariant under Mobius transformations.

We shall rewrite ‖f ‖B by sup|z|<1

{|(f ◦ ϕz)′(0)|

}because

(f ◦ ϕz)′(0) = f ′(ϕz(0))ϕ′z(0) = f ′(z)ϕ′z(0) = f ′(z)(1− |z |2),

where ϕ′z(ω) = 1−|z|2(1−zω)2 , and the result follows from

ϕa ◦ ϕb(0) = ϕϕa(b)(0).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 17 / 30

Page 62: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

For any Bloch function f , |f (z)− f (ω)| ≤ ‖f ‖Bβ(z , ω).

‖·‖B is invariant under Mobius transformations.

We shall rewrite ‖f ‖B by sup|z|<1

{|(f ◦ ϕz)′(0)|

}because

(f ◦ ϕz)′(0) = f ′(ϕz(0))ϕ′z(0) = f ′(z)ϕ′z(0) = f ′(z)(1− |z |2),

where ϕ′z(ω) = 1−|z|2(1−zω)2 , and the result follows from

ϕa ◦ ϕb(0) = ϕϕa(b)(0).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 17 / 30

Page 63: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

For any Bloch function f , |f (z)− f (ω)| ≤ ‖f ‖Bβ(z , ω).

‖·‖B is invariant under Mobius transformations.

We shall rewrite ‖f ‖B by sup|z|<1

{|(f ◦ ϕz)′(0)|

}because

(f ◦ ϕz)′(0) = f ′(ϕz(0))ϕ′z(0) = f ′(z)ϕ′z(0) = f ′(z)(1− |z |2),

where ϕ′z(ω) = 1−|z|2(1−zω)2 , and the result follows from

ϕa ◦ ϕb(0) = ϕϕa(b)(0).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 17 / 30

Page 64: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

For any Bloch function f , |f (z)− f (ω)| ≤ ‖f ‖Bβ(z , ω).

‖·‖B is invariant under Mobius transformations.

We shall rewrite ‖f ‖B by sup|z|<1

{|(f ◦ ϕz)′(0)|

}because

(f ◦ ϕz)′(0) = f ′(ϕz(0))ϕ′z(0) = f ′(z)ϕ′z(0) = f ′(z)(1− |z |2),

where ϕ′z(ω) = 1−|z|2(1−zω)2 , and the result follows from

ϕa ◦ ϕb(0) = ϕϕa(b)(0).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 17 / 30

Page 65: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Indeed, we are going to demonstrate that

‖f ‖B = sup

{|f (z)− f (ω)|β(z , ω)

, z , ω ∈ D, z 6= ω

}.

It is enough to take ω = 0. Since f ∈ H(D), by the fundamental theoremof algebra,

f (z)− f (0) =

∫[0,z]

f ′(ξ)dξ = z

∫ 1

0f ′(zt)dt.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 18 / 30

Page 66: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Indeed, we are going to demonstrate that

‖f ‖B = sup

{|f (z)− f (ω)|β(z , ω)

, z , ω ∈ D, z 6= ω

}.

It is enough to take ω = 0. Since f ∈ H(D), by the fundamental theoremof algebra,

f (z)− f (0) =

∫[0,z]

f ′(ξ)dξ = z

∫ 1

0f ′(zt)dt.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 18 / 30

Page 67: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Indeed, we are going to demonstrate that

‖f ‖B = sup

{|f (z)− f (ω)|β(z , ω)

, z , ω ∈ D, z 6= ω

}.

It is enough to take ω = 0. Since f ∈ H(D), by the fundamental theoremof algebra,

f (z)− f (0) =

∫[0,z]

f ′(ξ)dξ = z

∫ 1

0f ′(zt)dt.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 18 / 30

Page 68: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

According to f is Bloch, we then estimate

|f (z)− f (0)| ≤ |z |‖f ‖B∫ 1

0

dt

1− |z |2t2

= ‖f ‖B∫ |z|

0

ds

1− s2

=1

2‖f ‖B

∫ |z|0

1

1− s+

1

1 + sds

=1

2‖f ‖B (− log(1− |z |) + log(1 + |z |))

= ‖f ‖B1

2log

(1 + |z |1− |z |

)= ‖f ‖Bβ(z , 0).

By a Mobius transformation, we may extend the argument for every ω.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 19 / 30

Page 69: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

According to f is Bloch, we then estimate

|f (z)− f (0)| ≤ |z |‖f ‖B∫ 1

0

dt

1− |z |2t2

= ‖f ‖B∫ |z|

0

ds

1− s2

=1

2‖f ‖B

∫ |z|0

1

1− s+

1

1 + sds

=1

2‖f ‖B (− log(1− |z |) + log(1 + |z |))

= ‖f ‖B1

2log

(1 + |z |1− |z |

)= ‖f ‖Bβ(z , 0).

By a Mobius transformation, we may extend the argument for every ω.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 19 / 30

Page 70: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

According to f is Bloch, we then estimate

|f (z)− f (0)| ≤ |z |‖f ‖B∫ 1

0

dt

1− |z |2t2

= ‖f ‖B∫ |z|

0

ds

1− s2

=1

2‖f ‖B

∫ |z|0

1

1− s+

1

1 + sds

=1

2‖f ‖B (− log(1− |z |) + log(1 + |z |))

= ‖f ‖B1

2log

(1 + |z |1− |z |

)= ‖f ‖Bβ(z , 0).

By a Mobius transformation, we may extend the argument for every ω.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 19 / 30

Page 71: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

According to f is Bloch, we then estimate

|f (z)− f (0)| ≤ |z |‖f ‖B∫ 1

0

dt

1− |z |2t2

= ‖f ‖B∫ |z|

0

ds

1− s2

=1

2‖f ‖B

∫ |z|0

1

1− s+

1

1 + sds

=1

2‖f ‖B (− log(1− |z |) + log(1 + |z |))

= ‖f ‖B1

2log

(1 + |z |1− |z |

)= ‖f ‖Bβ(z , 0).

By a Mobius transformation, we may extend the argument for every ω.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 19 / 30

Page 72: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

According to f is Bloch, we then estimate

|f (z)− f (0)| ≤ |z |‖f ‖B∫ 1

0

dt

1− |z |2t2

= ‖f ‖B∫ |z|

0

ds

1− s2

=1

2‖f ‖B

∫ |z|0

1

1− s+

1

1 + sds

=1

2‖f ‖B (− log(1− |z |) + log(1 + |z |))

= ‖f ‖B1

2log

(1 + |z |1− |z |

)= ‖f ‖Bβ(z , 0).

By a Mobius transformation, we may extend the argument for every ω.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 19 / 30

Page 73: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

According to f is Bloch, we then estimate

|f (z)− f (0)| ≤ |z |‖f ‖B∫ 1

0

dt

1− |z |2t2

= ‖f ‖B∫ |z|

0

ds

1− s2

=1

2‖f ‖B

∫ |z|0

1

1− s+

1

1 + sds

=1

2‖f ‖B (− log(1− |z |) + log(1 + |z |))

= ‖f ‖B1

2log

(1 + |z |1− |z |

)= ‖f ‖Bβ(z , 0).

By a Mobius transformation, we may extend the argument for every ω.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 19 / 30

Page 74: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

According to f is Bloch, we then estimate

|f (z)− f (0)| ≤ |z |‖f ‖B∫ 1

0

dt

1− |z |2t2

= ‖f ‖B∫ |z|

0

ds

1− s2

=1

2‖f ‖B

∫ |z|0

1

1− s+

1

1 + sds

=1

2‖f ‖B (− log(1− |z |) + log(1 + |z |))

= ‖f ‖B1

2log

(1 + |z |1− |z |

)= ‖f ‖Bβ(z , 0).

By a Mobius transformation, we may extend the argument for every ω.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 19 / 30

Page 75: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

To see the other inequality, we compute lımω→z

|f (ω)− f (z)|β(ω, z)

.

lımω→z

|f (ω)− f (z)||ω − z |

|ω − z |β(ω, z)

The first term goes to |f ′(z)| since modulus is a continuous function, so it

suffices to show that lımω→z

|ω − z |β(ω, z)

= (1− |z |2).

Note that β(z , ω) can be rewritten by1

2log

(|1− ωz |+ |ω − z ||1− ωz | − |ω − z |

).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 20 / 30

Page 76: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

To see the other inequality, we compute lımω→z

|f (ω)− f (z)|β(ω, z)

.

lımω→z

|f (ω)− f (z)||ω − z |

|ω − z |β(ω, z)

The first term goes to |f ′(z)| since modulus is a continuous function, so it

suffices to show that lımω→z

|ω − z |β(ω, z)

= (1− |z |2).

Note that β(z , ω) can be rewritten by1

2log

(|1− ωz |+ |ω − z ||1− ωz | − |ω − z |

).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 20 / 30

Page 77: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

To see the other inequality, we compute lımω→z

|f (ω)− f (z)|β(ω, z)

.

lımω→z

|f (ω)− f (z)||ω − z |

|ω − z |β(ω, z)

The first term goes to |f ′(z)| since modulus is a continuous function, so it

suffices to show that lımω→z

|ω − z |β(ω, z)

= (1− |z |2).

Note that β(z , ω) can be rewritten by1

2log

(|1− ωz |+ |ω − z ||1− ωz | − |ω − z |

).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 20 / 30

Page 78: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

To see the other inequality, we compute lımω→z

|f (ω)− f (z)|β(ω, z)

.

lımω→z

|f (ω)− f (z)||ω − z |

|ω − z |β(ω, z)

The first term goes to |f ′(z)| since modulus is a continuous function, so it

suffices to show that lımω→z

|ω − z |β(ω, z)

= (1− |z |2).

Note that β(z , ω) can be rewritten by1

2log

(|1− ωz |+ |ω − z ||1− ωz | − |ω − z |

).

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 20 / 30

Page 79: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

In real analysis, for a = a(x) > 0,

lımx→0

12 log a(x)+x

a(x)−x

x= lım

x→0

12

(a(x)+xa(x)−x − 1

)x

= lımx→0

1

2x

a(x) + x − (a(x)− x)

a(x)− x

= lımx→0

1

a(x)− x.

So for our case, lımω→z

1

|1− ωz | − |ω − z |=

1

1− |z |2and hence

|f ′(z)|(1− |z |2) ≤ sup

{|f (z)− f (ω)|β(z , ω)

, z , ω ∈ D, z 6= ω

}as wanted.

Any analytic function f is Bloch iff there exists C > 0 such that

|f (z)− f (ω)| ≤ Cβ(z , ω) ∀z , ω ∈ D.Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 21 / 30

Page 80: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

In real analysis, for a = a(x) > 0,

lımx→0

12 log a(x)+x

a(x)−x

x= lım

x→0

12

(a(x)+xa(x)−x − 1

)x

= lımx→0

1

2x

a(x) + x − (a(x)− x)

a(x)− x

= lımx→0

1

a(x)− x.

So for our case, lımω→z

1

|1− ωz | − |ω − z |=

1

1− |z |2and hence

|f ′(z)|(1− |z |2) ≤ sup

{|f (z)− f (ω)|β(z , ω)

, z , ω ∈ D, z 6= ω

}as wanted.

Any analytic function f is Bloch iff there exists C > 0 such that

|f (z)− f (ω)| ≤ Cβ(z , ω) ∀z , ω ∈ D.Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 21 / 30

Page 81: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

In real analysis, for a = a(x) > 0,

lımx→0

12 log a(x)+x

a(x)−x

x= lım

x→0

12

(a(x)+xa(x)−x − 1

)x

= lımx→0

1

2x

a(x) + x − (a(x)− x)

a(x)− x

= lımx→0

1

a(x)− x.

So for our case, lımω→z

1

|1− ωz | − |ω − z |=

1

1− |z |2and hence

|f ′(z)|(1− |z |2) ≤ sup

{|f (z)− f (ω)|β(z , ω)

, z , ω ∈ D, z 6= ω

}as wanted.

Any analytic function f is Bloch iff there exists C > 0 such that

|f (z)− f (ω)| ≤ Cβ(z , ω) ∀z , ω ∈ D.Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 21 / 30

Page 82: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

In real analysis, for a = a(x) > 0,

lımx→0

12 log a(x)+x

a(x)−x

x= lım

x→0

12

(a(x)+xa(x)−x − 1

)x

= lımx→0

1

2x

a(x) + x − (a(x)− x)

a(x)− x

= lımx→0

1

a(x)− x.

So for our case, lımω→z

1

|1− ωz | − |ω − z |=

1

1− |z |2and hence

|f ′(z)|(1− |z |2) ≤ sup

{|f (z)− f (ω)|β(z , ω)

, z , ω ∈ D, z 6= ω

}as wanted.

Any analytic function f is Bloch iff there exists C > 0 such that

|f (z)− f (ω)| ≤ Cβ(z , ω) ∀z , ω ∈ D.Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 21 / 30

Page 83: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

In real analysis, for a = a(x) > 0,

lımx→0

12 log a(x)+x

a(x)−x

x= lım

x→0

12

(a(x)+xa(x)−x − 1

)x

= lımx→0

1

2x

a(x) + x − (a(x)− x)

a(x)− x

= lımx→0

1

a(x)− x.

So for our case, lımω→z

1

|1− ωz | − |ω − z |=

1

1− |z |2and hence

|f ′(z)|(1− |z |2) ≤ sup

{|f (z)− f (ω)|β(z , ω)

, z , ω ∈ D, z 6= ω

}as wanted.

Any analytic function f is Bloch iff there exists C > 0 such that

|f (z)− f (ω)| ≤ Cβ(z , ω) ∀z , ω ∈ D.Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 21 / 30

Page 84: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

In real analysis, for a = a(x) > 0,

lımx→0

12 log a(x)+x

a(x)−x

x= lım

x→0

12

(a(x)+xa(x)−x − 1

)x

= lımx→0

1

2x

a(x) + x − (a(x)− x)

a(x)− x

= lımx→0

1

a(x)− x.

So for our case, lımω→z

1

|1− ωz | − |ω − z |=

1

1− |z |2and hence

|f ′(z)|(1− |z |2) ≤ sup

{|f (z)− f (ω)|β(z , ω)

, z , ω ∈ D, z 6= ω

}as wanted.

Any analytic function f is Bloch iff there exists C > 0 such that

|f (z)− f (ω)| ≤ Cβ(z , ω) ∀z , ω ∈ D.Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 21 / 30

Page 85: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

In real analysis, for a = a(x) > 0,

lımx→0

12 log a(x)+x

a(x)−x

x= lım

x→0

12

(a(x)+xa(x)−x − 1

)x

= lımx→0

1

2x

a(x) + x − (a(x)− x)

a(x)− x

= lımx→0

1

a(x)− x.

So for our case, lımω→z

1

|1− ωz | − |ω − z |=

1

1− |z |2and hence

|f ′(z)|(1− |z |2) ≤ sup

{|f (z)− f (ω)|β(z , ω)

, z , ω ∈ D, z 6= ω

}as wanted.

Any analytic function f is Bloch iff there exists C > 0 such that

|f (z)− f (ω)| ≤ Cβ(z , ω) ∀z , ω ∈ D.Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 21 / 30

Page 86: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

β(z , ω) = sup {|f (z)− f (ω)| : ‖f ‖B ≤ 1}.

We have to prove that β(z , 0) = sup{|f (z)− f (0)| : ‖f ‖B ≤ 1} since β and‖·‖B are Mobius invariant.We already know that |f (z)− f (0)| ≤ ‖f ‖Bβ(z , 0).Thus, sup{|f (z)− f (0)| : ‖f ‖B ≤ 1} ≤ β(z , 0).For the other inequality, we are going to construct a function g whose normis 1 and satisfies that |g(z) − g(0)| = β(z , 0). For z 6= 0, z = |z |e−iθ, wethen define

g(ω) =1

2log

1 + ωe iθ

1− ωe iθ, ω ∈ D.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 22 / 30

Page 87: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

β(z , ω) = sup {|f (z)− f (ω)| : ‖f ‖B ≤ 1}.

We have to prove that β(z , 0) = sup{|f (z)− f (0)| : ‖f ‖B ≤ 1} since β and‖·‖B are Mobius invariant.We already know that |f (z)− f (0)| ≤ ‖f ‖Bβ(z , 0).Thus, sup{|f (z)− f (0)| : ‖f ‖B ≤ 1} ≤ β(z , 0).For the other inequality, we are going to construct a function g whose normis 1 and satisfies that |g(z) − g(0)| = β(z , 0). For z 6= 0, z = |z |e−iθ, wethen define

g(ω) =1

2log

1 + ωe iθ

1− ωe iθ, ω ∈ D.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 22 / 30

Page 88: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

β(z , ω) = sup {|f (z)− f (ω)| : ‖f ‖B ≤ 1}.

We have to prove that β(z , 0) = sup{|f (z)− f (0)| : ‖f ‖B ≤ 1} since β and‖·‖B are Mobius invariant.We already know that |f (z)− f (0)| ≤ ‖f ‖Bβ(z , 0).Thus, sup{|f (z)− f (0)| : ‖f ‖B ≤ 1} ≤ β(z , 0).For the other inequality, we are going to construct a function g whose normis 1 and satisfies that |g(z) − g(0)| = β(z , 0). For z 6= 0, z = |z |e−iθ, wethen define

g(ω) =1

2log

1 + ωe iθ

1− ωe iθ, ω ∈ D.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 22 / 30

Page 89: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

β(z , ω) = sup {|f (z)− f (ω)| : ‖f ‖B ≤ 1}.

We have to prove that β(z , 0) = sup{|f (z)− f (0)| : ‖f ‖B ≤ 1} since β and‖·‖B are Mobius invariant.We already know that |f (z)− f (0)| ≤ ‖f ‖Bβ(z , 0).Thus, sup{|f (z)− f (0)| : ‖f ‖B ≤ 1} ≤ β(z , 0).For the other inequality, we are going to construct a function g whose normis 1 and satisfies that |g(z) − g(0)| = β(z , 0). For z 6= 0, z = |z |e−iθ, wethen define

g(ω) =1

2log

1 + ωe iθ

1− ωe iθ, ω ∈ D.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 22 / 30

Page 90: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

β(z , ω) = sup {|f (z)− f (ω)| : ‖f ‖B ≤ 1}.

We have to prove that β(z , 0) = sup{|f (z)− f (0)| : ‖f ‖B ≤ 1} since β and‖·‖B are Mobius invariant.We already know that |f (z)− f (0)| ≤ ‖f ‖Bβ(z , 0).Thus, sup{|f (z)− f (0)| : ‖f ‖B ≤ 1} ≤ β(z , 0).For the other inequality, we are going to construct a function g whose normis 1 and satisfies that |g(z) − g(0)| = β(z , 0). For z 6= 0, z = |z |e−iθ, wethen define

g(ω) =1

2log

1 + ωe iθ

1− ωe iθ, ω ∈ D.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 22 / 30

Page 91: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

β(z , ω) = sup {|f (z)− f (ω)| : ‖f ‖B ≤ 1}.

We have to prove that β(z , 0) = sup{|f (z)− f (0)| : ‖f ‖B ≤ 1} since β and‖·‖B are Mobius invariant.We already know that |f (z)− f (0)| ≤ ‖f ‖Bβ(z , 0).Thus, sup{|f (z)− f (0)| : ‖f ‖B ≤ 1} ≤ β(z , 0).For the other inequality, we are going to construct a function g whose normis 1 and satisfies that |g(z) − g(0)| = β(z , 0). For z 6= 0, z = |z |e−iθ, wethen define

g(ω) =1

2log

1 + ωe iθ

1− ωe iθ, ω ∈ D.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 22 / 30

Page 92: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Since g ′(ω) =e iθ

1− e2iθω2,

‖g‖B = sup

{1− |ω|2 1

|1− e2iθω2|: ω ∈ D

}≥ 1− |z |2

|1− e2iθz2|= 1.

On the other hand, |1− e2iθω2| ≥ 1− |ω|2, then

‖g‖B = sup

{1− |ω|2 1

|1− e i2θω2|: ω ∈ D

}≤ 1.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 23 / 30

Page 93: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Since g ′(ω) =e iθ

1− e2iθω2,

‖g‖B = sup

{1− |ω|2 1

|1− e2iθω2|: ω ∈ D

}≥ 1− |z |2

|1− e2iθz2|= 1.

On the other hand, |1− e2iθω2| ≥ 1− |ω|2, then

‖g‖B = sup

{1− |ω|2 1

|1− e i2θω2|: ω ∈ D

}≤ 1.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 23 / 30

Page 94: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Since g ′(ω) =e iθ

1− e2iθω2,

‖g‖B = sup

{1− |ω|2 1

|1− e2iθω2|: ω ∈ D

}≥ 1− |z |2

|1− e2iθz2|= 1.

On the other hand, |1− e2iθω2| ≥ 1− |ω|2, then

‖g‖B = sup

{1− |ω|2 1

|1− e i2θω2|: ω ∈ D

}≤ 1.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 23 / 30

Page 95: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Since g ′(ω) =e iθ

1− e2iθω2,

‖g‖B = sup

{1− |ω|2 1

|1− e2iθω2|: ω ∈ D

}≥ 1− |z |2

|1− e2iθz2|= 1.

On the other hand, |1− e2iθω2| ≥ 1− |ω|2, then

‖g‖B = sup

{1− |ω|2 1

|1− e i2θω2|: ω ∈ D

}≤ 1.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 23 / 30

Page 96: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Since g ′(ω) =e iθ

1− e2iθω2,

‖g‖B = sup

{1− |ω|2 1

|1− e2iθω2|: ω ∈ D

}≥ 1− |z |2

|1− e2iθz2|= 1.

On the other hand, |1− e2iθω2| ≥ 1− |ω|2, then

‖g‖B = sup

{1− |ω|2 1

|1− e i2θω2|: ω ∈ D

}≤ 1.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 23 / 30

Page 97: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Since g ′(ω) =e iθ

1− e2iθω2,

‖g‖B = sup

{1− |ω|2 1

|1− e2iθω2|: ω ∈ D

}≥ 1− |z |2

|1− e2iθz2|= 1.

On the other hand, |1− e2iθω2| ≥ 1− |ω|2, then

‖g‖B = sup

{1− |ω|2 1

|1− e i2θω2|: ω ∈ D

}≤ 1.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 23 / 30

Page 98: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Since g ′(ω) =e iθ

1− e2iθω2,

‖g‖B = sup

{1− |ω|2 1

|1− e2iθω2|: ω ∈ D

}≥ 1− |z |2

|1− e2iθz2|= 1.

On the other hand, |1− e2iθω2| ≥ 1− |ω|2, then

‖g‖B = sup

{1− |ω|2 1

|1− e i2θω2|: ω ∈ D

}≤ 1.

Hyperbolic distances V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 23 / 30

Page 99: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Outline

1 Bloch and little Bloch spaces

2 Hyperbolic distances

3 Bergman projection and dualityBergman projectionDuality

4 References

Bergman projection and duality V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 24 / 30

Page 100: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Bergman Kernel

The Bergman kernel is defined by:

K : D× D −→ L1(dA)

(z , ω) 7−→ hz(ω) = 1(1−zω)2

Bergman projection

Consider f ∈ L1(dA). The Bergman projection from L1(D) ontoL1(dA) is defined as follows

Pf (z) =

∫DK (z , ω)f (ω)dA(ω), ∀z ∈ D. (1)

Bergman projection and duality V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 25 / 30

Page 101: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Bergman Kernel

The Bergman kernel is defined by:

K : D× D −→ L1(dA)

(z , ω) 7−→ hz(ω) = 1(1−zω)2

Bergman projection

Consider f ∈ L1(dA). The Bergman projection from L1(D) ontoL1(dA) is defined as follows

Pf (z) =

∫DK (z , ω)f (ω)dA(ω), ∀z ∈ D. (1)

Bergman projection and duality V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 25 / 30

Page 102: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

P(L1(D)) ⊆ H(D)

Pf (z) =

∫Df (ω)

[+∞∑n=0

(n + 1)ωnzn

]dA(ω)

UCOC=

+∞∑n=0

(∫Df (ω)ωndA(ω)

)︸ ︷︷ ︸

An∈C

zn

By Cauchy-Hadamard theorem, the radius of convergence of theprevious power series is bounded by 1 in view of

R−1 = limn→∞

n√

(n + 1)An ≤ limn→∞

n

√(n + 1)‖f ‖L1(D) = 1⇒ R ≥ 1,

hence Pf ∈ H(D).

Bergman projection and duality V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 26 / 30

Page 103: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

P(L∞(D)) ⊆ BGiven f ∈ L∞(D), we have:

Pf ′(z) = 2

∫D

f (ω)ω

(1− ωz)3dA(ω);

|Pf ′(z)| ≤ 2‖f ‖∞∫D

|ω|dA(ω)

|1− ωz |3

= 2‖f ‖∞∫ 1

0

∫ 2π

0

r2dr

|1− re−itz |3dt

π

TIL/EF=

4‖f ‖∞π

∫ 1

0

[∫ π

0

dt

(|1− r |z |e it |2)32

]r2 dr

Bergman projection and duality V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 26 / 30

Page 104: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

P(L∞(D)) ⊆ BThe number A = |1− r |z |e it |2 lies in(

4

π2

[(1− r |z |2) + r |z |t2

], (1− r |z |2) + r |z |t2

),

hence

|Pf ′(z)| =4

π‖f ‖∞

(π2

)3∫ 1

0

[∫ π

0

dt

((1− r |z |2) + r |z |t2)32

]r2 dr

=π2

2‖f ‖∞

∫ 1

0

r2

(1− r |z |)3

∫ π

0

dt[1 +

(√r |z|

1−r |z| t

)2] 3

2

dr

Bergman projection and duality V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 26 / 30

Page 105: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

P(L∞(D)) ⊆ B

(cont) =π2

2‖f ‖∞

∫ 1

0

r2√r |z |(1− r |z |)2

∫ √r|z|

1−r|z|

0

ds

(1 + s2)32

︸ ︷︷ ︸√

r|z|1−r|z|<+∞⇒Int≤1

dr

≤ π2

2‖f ‖∞

1

|z |2

∫ 1

0

|z |2r2√r |z |(1− r |z |)2

dr

=π2

2√|z |‖f ‖∞

(1

|z |52

∫ |z|0

s32

(1− s)2ds

)≤ π2

2√|z |‖f ‖∞

1

|z |

(1

1− |z |− 1

)=

π2

2√|z |‖f ‖∞

1

1− |z |

≤ π2

2√|z |‖f ‖∞

1

1− |z |2

Bergman projection and duality V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 26 / 30

Page 106: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

P(L∞(D)) ⊆ BThus,

(1− |z |2)|Pf ′(z)| ≤ π2

2√|z |

Given ε ∈ (0, 1), by Cauchy’s formula we can fathom

‖Pf ′‖B = max

{sup|z|>ε { π2

2√|z|} , 1

(1−ε)2

}Define ϕ : [0, 1) → C, ϕ(ε) =

√ε

(1−ε)2 . It is a continuous function

satisfying [0,+∞) ⊂ Im(ϕ), hence there exists ε′ ∈ [0,+∞) such

that ϕ(ε′) = π2

2 .

Eventually, ‖P‖L∞→B ≤ π2

2 .

Bergman projection and duality V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 26 / 30

Page 107: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

P(L∞(D)) ⊇ BConversely, let g(z) = g(0) + zg ′(0) + g1(z) be a Bloch functionand

f (z) = g(0) + zg ′(0) +(1− |z |2)

zg ′1(z).

We have that f ∈ L∞(D) in light of the inequality

‖f ‖∞ ≤ |g(0)|+ |g ′(0)|+ ‖g‖B ≤ |g(0)|+ 2‖g‖B ≤ 2‖g‖Bloch

It is readily seen that Pf = g using the following result.

LemmaFor every u ∈ P,

u(z) =

∫D

(1− |ω|2)

ω

u′(ω)

(1− ωz)2dA(ω).

Bergman projection and duality V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 26 / 30

Page 108: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Duality

The main result of this section states that (A1(D))∗ = B. For thatpurpose, we require a previous lemma.

Lemma

For every f ∈ P, g ∈ H(D), the following results hold:

1.∫D f (z)g(z) dA(z) =

∫D(1− |z |2)f (z)[zg ′(z) + 2g(z)] dA(z).

2.∣∣∣∫D f (z)g(z) dA(z)

∣∣∣ ≤ C‖g‖B‖f ‖A1 .

Bergman projection and duality V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 27 / 30

Page 109: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Duality

The main result of this section states that (A1(D))∗ = B. For thatpurpose, we require a previous lemma.

Lemma

For every f ∈ P, g ∈ H(D), the following results hold:

1.∫D f (z)g(z) dA(z) =

∫D(1− |z |2)f (z)[zg ′(z) + 2g(z)] dA(z).

2.∣∣∣∫D f (z)g(z) dA(z)

∣∣∣ ≤ C‖g‖B‖f ‖A1 .

Bergman projection and duality V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 27 / 30

Page 110: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

(A1(D))∗ ⊇ BLet g ∈ B; using the dual pair we can define a linear functional inA1(D) given by

Tg f =

∫Df (z)g(z) dA(z), ∀f ∈ A1(D). (2)

This functional is uniformly bounded thanks to the previous lemma:

|Tg (f )| =

∣∣∣∣∫Df (z)g(z) dA(z)

∣∣∣∣ ≤ C‖g‖B‖f ‖A1 ;

‖Tg‖ = sup {|Tg (f )| : f ∈ P, ‖f ‖ ≤ 1} ≤ C‖g‖B.

Bergman projection and duality V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 28 / 30

Page 111: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

(A1(D))∗ ⊆ BLet Φ ∈ (A1(D))∗; Hahn-Banach theorem states that there exists acontinuous linear functional Φ : L1(D) → C satisfying ‖Φ‖A1(D) =

‖Φ‖L1(D).

L1(D)

Φ

!!A1(D)

, �

;;

Φ // C

Since (L1(D))∗ = L∞(D), we can find g ∈ L∞(D) such that:

Φ(f ) =

∫Df (z)g(z) dA(z), ∀f ∈ L1(D).

Bergman projection and duality V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 28 / 30

Page 112: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

(A1(D))∗ ⊆ BChoosing g = P(g) ∈ B, we conclude that Φ is represented by g :

Φ(f ) = Φ(Pf ) = Φ(Pf ) =

∫DPf (z)g dA(z)

=

∫Df (z)Pg dA(z) =

∫Df (z)g(z) dA(z).

In order to estimate the norm ‖g‖B in terms of ‖g‖L∞(D) and‖Φ‖L1(D), we compute:

‖Φ‖A1(D) = ‖Φ‖L1(D) = ‖g‖L∞(D)

‖g‖B = ‖Pg‖B ≤ ‖P‖L∞→B‖g‖L∞(D) ≤ π2

2 α‖g‖L∞(D)

Bergman projection and duality V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 28 / 30

Page 113: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

Outline

1 Bloch and little Bloch spaces

2 Hyperbolic distances

3 Bergman projection and dualityBergman projectionDuality

4 References

References V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 29 / 30

Page 114: Introduction to Bloch spaces - UMA · 2016. 6. 27. · Introduction to Bloch spaces Vicent Asensio L opez Carmen Molina Lalueza Antonio Zarauz Moreno Workshop on Complex Analysis

K. Zhu. Operator theory in function spaces. Springer, New York. 2ndEdition, 2007.

K. Zhu. Spaces of Holomorphic Functions in the Unit Ball. Springer,New York. 1st Edition, 2005.

References V. Asensio, C. Molina, A. Zarauz 24 de junio de 2016 30 / 30