introduction to bioinformatics - vrije universiteit · introduction to bioinformatics 2008 lecture...

79
Multiple Sequence Alignment Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and Phylogeny E G R A T I V E O R M A T I C S V U

Upload: others

Post on 25-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Multiple Sequence Alignment

Introduction to bioinformatics 2008

Lecture 11

CENTR

FORINTE

BIOINFO

E

benchmarking, pattern recognition and Phylogeny

EGRATIVE

ORMATICSVU

Page 2: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Evaluating multiple alignmentsEvaluating multiple alignments• There are reference databases based on structural

information: e.g. BAliBASE and HOMSTRAD

• Conflicting standards of truth– evolution

– structure

– function– function

• With orphan sequences no additional information

• Benchmarks depending on reference alignments

• Quality issue of available reference alignment databases

• Different ways to quantify agreement with reference alignment (sum-of-pairs, column score)

• “Charlie Chaplin” problem

Page 3: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Evaluating multiple alignmentsEvaluating multiple alignments• As a standard of truth, often a reference alignment

based on structural superpositioning is taken

���������������� ������������������ ��������������������������������������������������������������������������������� ������������������������������� ����� !�"α ������� ����������������������� ������������������

Page 4: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

BAliBASE benchmark alignmentsBAliBASE benchmark alignmentsThompson et al. (1999) NAR 27, 2682.Thompson et al. (1999) NAR 27, 2682.

88 categories:categories:•• cat. 1 cat. 1 -- equidistantequidistant

•• cat. 2 cat. 2 -- orphan sequenceorphan sequence

•• cat. 3 cat. 3 -- 2 distant groups2 distant groups•• cat. 3 cat. 3 -- 2 distant groups2 distant groups

•• cat. 4 cat. 4 –– long overhangslong overhangs

•• cat. 5 cat. 5 -- long insertions/deletionslong insertions/deletions

•• cat. 6 cat. 6 –– repeatsrepeats

•• cat. 7 cat. 7 –– transmembrane proteinstransmembrane proteins

•• cat. 8 cat. 8 –– circular permutationscircular permutations

Page 5: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

BAliBASE

BB11001 1aab_ref1 Ref1 V1 SHORT high mobility group protein BB11002 1aboA_ref1 Ref1 V1 SHORT SH3 BB11003 1ad3_ref1 Ref1 V1 LONG aldehyde dehydrogenase BB11004 1adj_ref1 Ref1 V1 LONG histidyl-trna synthetase BB11005 1ajsA_ref1 Ref1 V1 LONG aminotransferase BB11006 1bbt3_ref1 Ref1 V1 MEDIUM foot-and-mouth disease virus BB11006 1bbt3_ref1 Ref1 V1 MEDIUM foot-and-mouth disease virus BB11007 1cpt_ref1 Ref1 V1 LONG cytochrome p450 BB11008 1csy_ref1 Ref1 V1 SHORT SH2 BB11009 1dox_ref1 Ref1 V1 SHORT ferredoxin [2fe-2s]

Page 6: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

TT--Coffee: correctly aligned Kinase nucleotide binding Coffee: correctly aligned Kinase nucleotide binding sitessites

Page 7: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Scoring a single MSA with the Sum-of-pairs (SP) score

#���� ��������������������� ���$�����!��������������%� ��������������������������� ������ ��������������� �����������

������������ ��

� �������������� ����������������������� ���

� ���������������� ����������� �������������������

� �������������� ������������������� �� �

����� �����������

Page 8: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Evaluation measures����� ���������

�������� ���������� ��

������������ ��

What fraction of the MSA columns in the reference alignment is reproduced by the computed alignment

What fraction of the matched amino acid pairs in the reference alignment is reproduced by the computed alignment

Page 9: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Evaluating multiple alignmentsEvaluating multiple alignments

Page 10: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Evaluating multiple alignmentsEvaluating multiple alignmentsCharlie Chaplin problemCharlie Chaplin problem

∆�

!"��!"�#�������������$���

Page 11: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Evaluating multiple alignmentsEvaluating multiple alignmentsCharlie Chaplin problemCharlie Chaplin problem

Page 12: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

T-coffeeglobal, local or both

Page 13: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Comparing T-coffeewith other methods

Page 14: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

BAliBASE benchmark alignments

Page 15: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Summary

• Individual alignments can be scored with the SP score. – Better alignments should have better SP scores– However, there is the Charlie Chaplin problem– However, there is the Charlie Chaplin problem

• A test and a reference multiple alignment can be scored using the SP score or the column score (now for pairs of alignments)

• Evaluations show that there is no MSA method that always wins over others in terms of alignment quality

Page 16: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Introduction to bioinformatics 2008

$���������� ���

Page 17: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

$������������������ ���������

��& '���� ���������

& "�� �������

& $����������������& $����������������

& "������������

& ����

������������������� ��� ������������������������������������ �� ��������������������

��������� �������������������

Page 18: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

()���������� ����������*��������������

& ��� ��� ������������� ��������������������������������������� ��������

+ ������� � �����)���������������� ��

+ �������������� ����� ����� ������������� !�������,����������!���������������������!������������!��������

+ � �������%�� ������������� �����)��������������������������������������������)���

+ �� � ������������������� ������������������-����� ������������� �����

+ ��������������������

+ ���������������������������

+ ��������������� ������������������������������

+ .����������� �������

+ ������

Page 19: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

�����"������� �$������

& "������� *����������������������������������������������������������������������/�����0����������������������������������/�������0

& "���������������� �� ����� � ����������%���� ������� �������������������������������� �����

Page 20: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

1��������()������

& �� ����� ����� ��������������*�"�$��"1$������ ����

& �%�� ������������� ��l #�����)������������

���� ��

�������������������������������������������� !"���"�� ���

Page 21: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

��������������������+ "����������� ��

�������������������������

��������"����� �����������

� ����� � ����

&���������������������

&2�,��������������%������������������������������������������

&.����%� ���� ������������

Page 22: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

��������������������+ "����������� ��

�������������������������

��������

"����� ������������ ����

%���� ����

�� ��� ���������������&

'('

�����������������

��������������

Page 23: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Comparing sequences - Similarity Score -

Many properties can be used:

• Nucleotide or amino acid composition

• Isoelectric point• Isoelectric point

• Molecular weight

• Morphological characters

• But: molecular evolution through sequence alignment

Page 24: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Multivariate statistics – Cluster analysisNow for sequences

�� ���

����������

)������������������������

*+,-'

�����������������

�� �����������

���������������&

'('

������� �������

Page 25: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Human - KI TVVGVGAVGMACAI SI LMKDLADELALVDVI EDKLKGEMMDLQHGSLFLRTPKI VSGKDYNVTANSKLVI I TAGARQ Chi cken - KI SVVGVGAVGMACAI SI LMKDLADELTLVDVVEDKLKGEMMDLQHGSLFLKTPKI TSGKDYSVTAHSKLVI VTAGARQ Dogf i sh –KI TVVGVGAVGMACAI SI LMKDLADEVALVDVMEDKLKGEMMDLQHGSLFLHTAKI VSGKDYSVSAGSKLVVI TAGARQLampr ey SKVTI VGVGQVGMAAAI SVLLRDLADELALVDVVEDRLKGEMMDLLHGSLFLKTAKI VADKDYSVTAGSRLVVVTAGARQ Bar l ey TKI SVI GAGNVGMAI AQTI LTQNLADEI ALVDALPDKLRGEALDLQHAAAFLPRVRI - SGTDAAVTKNSDLVI VTAGARQ Mai zey casei - KVI LVGDGAVGSSYAYAMVLQGI AQEI GI VDI FKDKTKGDAI DLSNALPFTSPKKI YSA- EYSDAKDADLVVI TAGAPQ Baci l l us TKVSVI GAGNVGMAI AQTI LTRDLADEI ALVDAVPDKLRGEMLDLQHAAAFLPRTRLVSGTDMSVTRGSDLVI VTAGARQ Lact o__st e - RVVVI GAGFVGASYVFALMNQGI ADEI VLI DANESKAI GDAMDFNHGKVFAPKPVDI WHGDYDDCRDADLVVI CAGANQ Lact o_pl ant QKVVLVGDGAVGSSYAFAMAQQGI AEEFVI VDVVKDRTKGDALDLEDAQAFTAPKKI YSG- EYSDCKDADLVVI TAGAPQ Ther ma_mar i MKI GI VGLGRVGSSTAFALLMKGFAREMVLI DVDKKRAEGDALDLI HGTPFTRRANI YAG- DYADLKGSDVVI VAAGVPQ Bi f i do - KLAVI GAGAVGSTLAFAAAQRGI AREI VLEDI AKERVEAEVLDMQHGSSFYPTVSI DGSDDPEI CRDADMVVI TAGPRQ Ther mus_aqua MKVGI VGSGFVGSATAYALVLQGVAREVVLVDLDRKLAQAHAEDI LHATPFAHPVWVRSGW- YEDLEGARVVI VAAGVAQ Mycopl asma - KI ALI GAGNVGNSFLYAAMNQGLASEYGI I DI NPDFADGNAFDFEDASASLPFPI SVSRYEYKDLKDADFI VI TAGRPQ

3���������� �� ���������������� �����

������������)1 2 3 4 5 6 7 8 9 10 11 12 13

1 Human 0. 000 0. 112 0. 128 0. 202 0. 378 0. 346 0. 530 0. 551 0. 512 0. 524 0. 528 0. 635 0. 637 2 Chi cken 0. 112 0. 000 0. 155 0. 214 0. 382 0. 348 0. 538 0. 569 0. 516 0. 524 0. 524 0. 631 0. 651 3 Dogf i sh 0. 128 0. 155 0. 000 0. 196 0. 389 0. 337 0. 522 0. 567 0. 516 0. 512 0. 524 0. 600 0. 655 4 Lampr ey 0. 202 0. 214 0. 196 0. 000 0. 426 0. 356 0. 553 0. 589 0. 544 0. 503 0. 544 0. 616 0. 669 5 Bar l ey 0. 378 0. 382 0. 389 0. 426 0. 000 0. 171 0. 536 0. 565 0. 526 0. 547 0. 516 0. 629 0. 575 6 Mai zey 0. 346 0. 348 0. 337 0. 356 0. 171 0. 000 0. 557 0. 563 0. 538 0. 555 0. 518 0. 643 0. 587 7 Lact o_casei 0. 530 0. 538 0. 522 0. 553 0. 536 0. 557 0. 000 0. 518 0. 208 0. 445 0. 561 0. 526 0. 501 8 Baci l l us_st ea 0. 551 0. 569 0. 567 0. 589 0. 565 0. 563 0. 518 0. 000 0. 477 0. 536 0. 536 0. 598 0. 495 9 Lact o_pl ant 0. 512 0. 516 0. 516 0. 544 0. 526 0. 538 0. 208 0. 477 0. 000 0. 433 0. 489 0. 563 0. 485 10 Ther ma_mar i 0. 524 0. 524 0. 512 0. 503 0. 547 0. 555 0. 445 0. 536 0. 433 0. 000 0. 532 0. 405 0. 598 11 Bi f i do 0. 528 0. 524 0. 524 0. 544 0. 516 0. 518 0. 561 0. 536 0. 489 0. 532 0. 000 0. 604 0. 614 12 Ther mus_aqua 0. 635 0. 631 0. 600 0. 616 0. 629 0. 643 0. 526 0. 598 0. 563 0. 405 0. 604 0. 000 0. 641 13 Mycopl asma 0. 637 0. 651 0. 655 0. 669 0. 575 0. 587 0. 501 0. 495 0. 485 0. 598 0. 614 0. 641 0. 000

���������������������������������������� ���

Page 26: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and
Page 27: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Multivariate statistics – Cluster analysis

�� ���

�������������������������

%��������

�����������������

%���� ����.����

�� ��� ���������������&

'('

��������������

Page 28: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

��������������������+ "����������� ��

4� ����5& 6��� ��������� ��

& ���������

& $��������������� ����& $��������������� ����

& 7 ������������

& ������)������

& ������������

& 7 ������� �������

�������������� ������������������������������������������ ������

Page 29: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Cluster analysis – data normalisation/weighting�

�������������������������

��������

������������ �������

�������������������������

/ ��������

�����

Column normalisation x/max

Column range normalise (x-min)/(max-min)

Page 30: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Cluster analysis – (dis)similarity matrix

�� ���

�������������������������

��������

����������������� �� ��� ����������

�����&'('

Di,j = (Σk | xik – xjk|r)1/r Minkowski metrics

r = 2 Euclidean distancer = 1 City block distance

Page 31: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

(dis)similarity matrix

Di,j = (Σk | xik – xjk|r)1/r Minkowski metrics

r = 2 Euclidean distancer = 1 City block distance

EXAMPLE:

length height width

Cow1 11 7 3

Cow 2 7 4 5

Euclidean dist. = sqrt(42 + 32 + -22) = sqrt(29) = 5.39

City Block dist. = |4|+|3|+|-2| = 9

8 9 �:

Page 32: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Cluster analysis – Clustering criteria

%���� ����0����1

�� ��� ���������������&

'('

��������������

Single linkage - Nearest neighbour

Complete linkage – Furthest neighbour

Group averaging – UPGMA

Neighbour joining – global measure, used to make a Phylogenetic Tree

Page 33: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

"����������� ���+ "������� �������

%���� ����0����1

�� ��� ���������������&

'('

��������������

6�������������������� �������*

�� ������� ��� .��������� ����

"����������� ��+ 6���������� ����

#��������� � �+ ;$#�1

.� �����,�� �� �������������

����#��������������������� ����� �����������������<�������� ��������� ���� � ������������������������������������������������ ������������ ������ ���������

Page 34: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Cluster analysis – Clustering criteria

1. Start with N clusters of 1 object each

2. Apply clustering distance criterion iteratively until you have 1 cluster of N objects

3. Most interesting clustering somewhere in between

%���� ����0����1

distance

N clusters1 cluster

���������� �� ���������� �������������� �������������� ����������������� ���!�""��������������������#������ ����$������������ �����

Page 35: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Single linkage clustering (nearest neighbour)

Char 2

Char 1

Page 36: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Single linkage clustering (nearest neighbour)

Char 2

Char 1

Page 37: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Single linkage clustering (nearest neighbour)

Char 2

Char 1

Page 38: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Single linkage clustering (nearest neighbour)

Char 2

Char 1

Page 39: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Single linkage clustering (nearest neighbour)

Char 2

Char 1

Page 40: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Single linkage clustering (nearest neighbour)

Char 2

Char 1

Distance from point to cluster is defined as the smallest distance between that point and any point in

the cluster

Page 41: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Single linkage clustering (nearest neighbour)

Char 2

Char 1

Distance from point to cluster is defined as the smallest distance between that point and any point in

the cluster

Page 42: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Single linkage clustering (nearest neighbour)

Char 2

Char 1

Distance from point to cluster is defined as the smallest distance between that point and any point in

the cluster

Page 43: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Single linkage clustering (nearest neighbour)

Char 2

Char 1

Distance from point to cluster is defined as the smallest distance between that point and any point in

the cluster

Page 44: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Single linkage clustering (nearest neighbour)

3���"���� ",�����%���,�����������*

�!, =������!��!�%�������∈ "�������∈ ",�

�� ������� ������� ������ ����� ���%���� ! !"������������!����������������� ����,���������������)��� ���������

Page 45: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Complete linkage clustering (furthest neighbour)

Char 2

Char 1

Page 46: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Complete linkage clustering (furthest neighbour)

Char 2

Char 1

Page 47: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Complete linkage clustering (furthest neighbour)

Char 2

Char 1

Page 48: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Complete linkage clustering (furthest neighbour)

Char 2

Char 1

Page 49: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Complete linkage clustering (furthest neighbour)

Char 2

Char 1

Page 50: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Complete linkage clustering (furthest neighbour)

Char 2

Char 1

Page 51: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Complete linkage clustering (furthest neighbour)

Char 2

Char 1

Page 52: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Complete linkage clustering (furthest neighbour)

Char 2

Char 1

Distance from point to cluster is defined as the largest distance between that point and any point in

the cluster

Page 53: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Complete linkage clustering (furthest neighbour)

Char 2

Char 1

Distance from point to cluster is defined as the largest distance between that point and any point in

the cluster

Page 54: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Complete linkage clustering (furthest neighbour)

3���"���� ",�����%���,�����������*

�!, =���)���!��!�%�������∈ "�������∈ ",�

����>����������?���������������%����� ������� ����������

Page 55: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

"������� ��� ����

@� A����������������� �����)

:� ������%������%������������������������������������������!����������������������

9� ��� ����������� ��%�B������������������� �����)���������� �����)

8� �������������:������9�

��� ������������������

��������%���� ���������������������%�������������������������������������������������������%����������������� ��

Page 56: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Average linkage clustering (Unweighted Pair Group Mean Averaging -UPGMA)

Char 2

Char 1

Distance from cluster to cluster is defined as the average distance over all within-cluster distances

Page 57: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

;$#�1

3���"���� ",�����%���,�����������*

@�!, =�CCCCCCCC Σ�Σ� ��!�!�%�������∈ "�������∈ ",

D"D�E D",D!, � � �!� � ,

D"D�E D",D

A��%���*�������������������� �������������%�������������������������

" ",

Page 58: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Multivariate statistics – Cluster analysis

�� ���

�������������������������

%��������

�����������������

�� �����������

�� ��� ���������������&

'('

��������������

Page 59: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Multivariate statistics – Cluster analysis

�� ���

��������������������������

����������������� �� ���

2(2

��������������

�� ���

'('

��������������

Make two-way ordered

table using dendrograms

Page 60: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Multivariate statistics – Two-way cluster analysis

��������������������������

Make two-way (rows, columns) ordered table using dendrograms; This shows ‘blocks’ of numbers that are similar

Page 61: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Multivariate statistics – Two-way cluster analysis

Page 62: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Multivariate statistics – Principal Component Analysis (PCA)

����������������������� ������������������ ����������� �

2(2Correlations

Calculate eigenvectors with greatest eigenvalues:

•Linear combinations

•Orthogonal

Project datapoints ontonew axes

(eigenvectors)

12

Page 63: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Multivariate statistics – Principal Component Analysis (PCA)

Page 64: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Introduction to bioinformatics 2008

(�����B$� � ��

Page 65: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

“Nothing in Biology makes sense except in the light of evolution” (Theodosius Dobzhansky (1900-1975))

Bioinformatics

Dobzhansky (1900-1975))

“Nothing in bioinformatics makes sense except in the light of Biology”

Page 66: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Evolution

• Most of bioinformatics is comparative biology

• Comparative biology is based upon • Comparative biology is based upon evolutionary relationships between compared entities

• Evolutionary relationships are normally depicted in a phylogenetic tree

Page 67: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Where can phylogeny be used

• For example, finding out about orthology versus paralogy

• Predicting secondary structure of RNA• Predicting secondary structure of RNA

• Predicting protein-protein interaction

• Studying host-parasite relationships

• Mapping cell-bound receptors onto their binding ligands

• Multiple sequence alignment (e.g. Clustal)

Page 68: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

DNA evolution• Gene nucleotide substitutions can be synonymous (i.e. not

changing the encoded amino acid) or nonsynonymous (i.e. changing the a.a.).

• Rates of evolution vary tremendously among protein-coding genes. Molecular evolutionary studies have revealed an 1000-fold range of nonsynonymous revealed an 1000-fold range of nonsynonymous substitution rates (Li and Graur 1991).

• The strength of negative (purifying) selection is thought to be the most important factor in determining the rate of evolution for the protein-coding regions of agene (Kimura 1983; Ohta 1992; Li 1997).

Page 69: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

DNA evolution

• “Essential” and “nonessential” are classic moleculargenetic designations relating to organismal fitness. – A gene is considered to be essential if a knock-out results in

(conditional) lethality or infertility.

– Nonessential genes are those for which knock-outs yield viable – Nonessential genes are those for which knock-outs yield viable and fertile individuals.

• Given the role of purifying selection in determining evolutionary rates, thegreater levels of purifying selection on essential genes leads to a lower rate of evolution relative to that of nonessential genes

• This leads to the observation: “What is important is conserved” .

Page 70: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Reminder -- Orthology/paralogy

Orthologous genes are homologous (corresponding) genes in different species

Paralogous genes are homologous genes within the same species (genome)

Page 71: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Old Dogma – Recapitulation Theory (1866)

Ernst Haeckel:

“Ontogeny recapitulates phylogeny”phylogeny”

• Ontogeny is the development of the embryo of a given species;

• phylogeny is the evolutionary

history of a species

http://en.wikipedia.org/wiki/Recapitulation_theory

Haeckels drawing in support of his theory: For example, the human embryo with gill slits in the neck was believed by Haeckel to not only signify a fishlike ancestor, but it represented a total fishlike stage in development. However,gill slits are not the same as gills and are not functional.

Page 72: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Phylogenetic tree (unrooted)

�����

�������

������ �

����

���� ��������

���$

%&'�(%��� ��������������������

Page 73: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Phylogenetic tree (unrooted)

�����

������� ����

������ �

����

���� ��������

���$

%&'�(%��� ��������������������

Page 74: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Phylogenetic tree (rooted)root

edge

internal node (ancestor)

time

internal node (ancestor)

leaf

OTU – Observed taxonomic unit

Page 75: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

How to root a tree

• Outgroup – place root between distant sequence and rest group

• Midpoint – place root at

f

D

m

h D f m h

f m3

21 4

1

23• Midpoint – place root at

midpoint of longest path (sum of branches between any two OTUs)

• Gene duplication – place root between paralogous gene copies

D

h D f m h

f-αααα

h-αααα

f-ββββ

h-ββββ f-αααα h-αααα f-ββββ h-ββββ

5

21 1

31

Page 76: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Combinatoric explosion

Number of unrooted trees = ( )

( )!32

!523 −

−− n

nn

Number of rooted trees =( )

( )!22

!322 −

−− n

nn

Page 77: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Combinatoric explosion

# sequences # unrooted # rootedtrees trees

2 1 13 1 34 3 155 15 1056 105 9457 945 10,3958 10,395 135,1359 135,135 2,027,02510 2,027,025 34,459,425

Page 78: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Tree distances

human x

mouse 6 x

fugu 7 3 x

human

mouse

5

1

1

2

Evolutionary (sequence distance) = sequence dissimilarity

1fugu 7 3 x

Drosophila 14 10 9 x fugu

Drosophila

1

6

1

Note that with evolutionary methods for generating trees you get distances between objects by walking from one to the other.

Page 79: Introduction to bioinformatics - Vrije Universiteit · Introduction to bioinformatics 2008 Lecture 11 C E N T R F O R I N T E B I O I N F O E benchmarking, pattern recognition and

Phylogeny take home messages

• Orthology/paralogy• Rooted/unrooted trees, how to root trees• Combinatorial explosion in number of

possible tree topologies (not taking branch possible tree topologies (not taking branch lengths into account)