introduction to anomalies in qft - usaldiarium.usal.es/vazquez/files/2015/03/uam_slides7.pdf ·...

62
Introduction to Anomalies in QFT Miguel Á.Vázquez-Mozo Universidad de Salamanca Universidad Autónoma de Madrid, PhD Course.

Upload: truongliem

Post on 26-May-2018

232 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

Introduction to Anomalies in QFT

Miguel Á. Vázquez-Mozo Universidad de Salamanca

Universidad Autónoma de Madrid, PhD Course.

Page 2: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

The connection with topology

Page 3: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

From our previous discussion, we know that the axial anomaly is given by (taking β(x) = constant)

Instead of a basis of plane waves, to compute the right-hand side we can use a basis of eigenfunctions of the Dirac operator

But the Dirac operator anticommutes with the chirality matrix γ5

Z

d

4x @µhJµ

A(x)iA = �2i lim✏!0

Trn

�5e�✏[D/ (A )]2

o

D/ (A ) n(x) = �n n(x)

D/ (A )�5 = ��5D/ (A )

D/ (A )�5 n(x) = ��5D/ (A ) n(x) = ��n�5 n(x)

Page 4: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

For each eigenstate with λn > 0 there is another eigenstate of opposite eigenvalue −λn < 0

All nonzero eigenvectors of the Dirac operators are paired!

Moreover, since they have different (nonzero) eigenvalues, and are orthogonal (the Dirac operator is self-adjoint)

n(x) �5 n(x)

Zd

4x n(x)�5 n(x) = 0 (�n 6= 0)

D/ (A ) n(x) = �n n(x) D/ (A )�5 n(x) = ��n�5 n(x)

Page 5: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

In the limit the sum over nonzero eigenvalues tends to zero (due to orthogonality)

�2iX

�n=0

Zd

4x n(x)�5 n(x)

✏ �! 0

Thus, the anomaly is only determined by the zero modes of the Dirac operator

Zd

4x @µhJµ

A(x)iA = �2iX

�n=0

Zd

4x n(x)�5 n(x)

�2iTrn

�5e�✏[D/ (A )]2

o

= �2iX

�n 6=0

Z

d

4x e

�✏�2n n(x)�5 n(x)

Page 6: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Zd

4x @µhJµ

A(x)iA = �2iX

�n=0

Zd

4x n(x)�5 n(x)

The zero modes of the Dirac operator can be classified into positive and negative chirality:

�5 (±)n (x) = ± (±)

n (x) (�n = 0)

Then, the sum over zero modes can be written as

X

�n=0

Zd

4x n(x)�5 n(x) =

X

�n=0,+

Zd

4x

(+)n (x) (+)

n (x)�X

�n=0,�

Zd

4x

(�)n (x) (�)

n (x)

and since the states are normalized

X

�n=0

Zd

4x n(x)�5 n(x)

= (# of +’ve chirality zero modes)� (# of �’ve chirality zero modes)

Page 7: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Zd

4x @µhJµ

A(x)iA = �2iX

�n=0

Zd

4x n(x)�5 n(x)

The zero modes of the Dirac operator can be classified into positive and negative chirality:

�5 (±)n (x) = ± (±)

n (x) (�n = 0)

Then, the sum over zero modes can be written as

X

�n=0

Zd

4x n(x)�5 n(x) =

X

�n=0,+

Zd

4x

(+)n (x) (+)

n (x)�X

�n=0,�

Zd

4x

(�)n (x) (�)

n (x)

and since the states are normalized

= 1= 1

X

�n=0

Zd

4x n(x)�5 n(x)

= (# of +’ve chirality zero modes)� (# of �’ve chirality zero modes)

Page 8: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Thus, the integrated axial anomaly is given by the difference between the number of zero modes of the Dirac operator with positive and negative chirality:

Zd

4x @µhJµ

A(x)iA = �2i⇣n+ � n�

In fact, we can define the operators

where P± =1

2

⇣I± �5

Using and self-adjointness of the Dirac operator,

we can write

n+ = dimkerD+ n� = dimkerD�

D� = D†+ n� = dimkerD†

+

D± ⌘ D/ (A )P±

D/ (A )P± = P⌥D/ (A )

Page 9: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

With all this we have arrived at the result

Zd

4x @µhJµ

A(x)iA = �2i⇣dimkerD+ � dimkerD†

+)

The term inside the bracket on the right-hand side is known in Mathematics as the index of the operator D+

This index only depends on topological properties of the manifold on which the operator is defined and the external gauge field .

Zd

4x @µhJµ

A(x)iA = �2i (indD+)

Aµ(x)

In fact, the analysis is valid not on in D = 4 but for any dimension D = 2n

Zd

2nx @µhJµ

A(x)iA = �2i (indD+)

Page 10: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

A short (non-sophisticated) excursion into Mathematics

!

Page 11: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Let us consider a nonabelian gauge theory defined on a Euclidean closed even-dimensional manifold M.

The gauge connection defines a one-form field taking values in the Lie algebra

A = Aµdxµ

The field strength is a two-form given by

F = dA + A ^ A F =1

2Fµ⌫dx

µ ^ dx

⌫with

Aµ = A aµ T awhere

we should keep in mind that

A ^ A = T aT bA a ^ A b =1

2[T a, T b]A a ^ A b =

i

2fabcA a ^ A bT c

Page 12: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Finally, computing

dF = dA ^ A � A ^ dAdA = F � A ^ A dF = F ^ A � A ^ A ^ A

�A ^ F + A ^ A ^ A

we get the Bianchi identity

dF � F ^ A + A ^ F = 0

Under gauge transformations, the connection transforms as

A �! g�1dg + g�1A g

while the field strength two-form transforms in the adjoint representation of the gauge group

F �! g�1Fg

Page 13: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

We want to investigate the properties of invariant polynomials of the form ( )

• The polynomial is gauge invariant:

TrFn �! Tr⇣gFng�1

⌘= TrFn

Fn ⌘ F^ n. . . ^F

• It is closed:

P (gFg�1) = P (F )

using the Bianchi identity dF � F ^ A + A ^ F = 0

dP (F ) = 0

dTrFn = nTr⇣FA Fn�1

⌘� nTr

⇣A Fn

⌘= 0

dTrFn = Tr⇣dF ^ . . . ^ F

⌘+ . . .+Tr

⇣F ^ . . . ^ dF

⌘= nTr

⇣dFFn�1

dimM = 2m

cn,j 2 CP (F ) =

X

n+jm

cn,j⇣TrFn

⌘j

Page 14: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

• is invariant under deformations of the connection

Let us consider a continuous family of connections joining and A1 A2

At = (1� t)A1 + tA2 (0 t 1)

At �! g�1dg + g�1Atg

Defining we computeFt = dAt + At ^ At

Now we can use to write

@

@tTrFn

t = nTr⇣FtF

n�1t

Ft = d ˙At + ˙At ^ At + At ^ ˙At

@

@tTrFn

t = nTr⇣d ˙AtF

n�1t

⌘+ nTr

⇣˙AtAtF

n�1t

⌘+ nTr

⇣˙AtF

n�1t At

Z

M2n

TrFn

Page 15: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

@

@tTrFn

t = nTr⇣d ˙AtF

n�1t

⌘+ nTr

⇣˙AtAtF

n�1t

⌘+ nTr

⇣˙AtF

n�1t At

Applying the Bianchi identity recursively, one can easily prove

@

@tTrFn

t = ndTr⇣

˙AtFn�1t

Integrating over the parameter t shows that

Thus, given any closed 2n-dimensional surface submanifold M 2n ⊂ M

TrFn2 � TrFn

1 = nd

Z 1

0dtTr

⇣˙AtF

n�1t

⌘⌘ d

Z 1

0dtQ0

2n�1(At,Ft)

Z

M2n

TrFn1 =

Z

M2n

TrFn2

and the result of the integral is independent of the connection.

Page 16: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

• is invariant under deformations of the submanifoldZ

M2n

TrFn

Let be a deformation of and let M 02n M2n

@B2n+1 = M 02n �M2n

Then, using dTrFn = 0

Z

M 02n

TrFn �Z

M2n

TrFn =

Z

@B2n+1

TrFn =

Z

B2n+1

dTrFn = 0

and we conclude that the integral does not change under deformations of the submanifold

Z

M 02n

TrFn =

Z

M2n

TrFn

M2n

M 02n

M2n

B2n+1n0

�n

Page 17: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

We have seen how using invariant polynomials we can construct topological invariants both with respect to deformation of the gauge field and of the manifold.

At this point we introduce two examples:

• Chern classes: given a U(n) gauge bundle, the total Chern class is defined as

c(F ) = det

✓1 +

i

2⇡F

to write it in terms of invariant polynomials, we notice that since is Hermitian [it lives in the algebra of U(n)], we can diagonalize it

F

i

2⇡F =

0

B@x1

. . .xn

1

CA

Page 18: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

c(F ) = det

✓1 +

i

2⇡F

◆i

2⇡F =

0

B@x1

. . .xn

1

CA

The total Chern class is written then as

c(F ) =nY

i=1

(1 + xi) = 1 +nX

i=1

xi +nX

i<j

xixj + . . .+nY

i=1

xi

so we can identify the i-th Chern class

c2(F ) =nX

i<j

xixj =1

2

2

4

nX

i=1

xi

!2

�nX

i=1

x

2i

3

5 =1

2

✓i

2⇡

◆2 h(TrF )2 � TrF 2

i

c1(F ) =nX

i=1

xi =i

2⇡TrF

cn(F ) = det

✓i

2⇡F

◆…

Page 19: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

• Chern character: given again a U(n) gauge bundle, we define

ch(F ) = Tr exp

✓i

2⇡F

Formally expanding the exponential, we find the i-th Chern character

Tr exp

✓i

2⇡F

◆=

mX

k=0

1

k!

✓i

2⇡F

◆k

chj(F ) =1

j!

✓i

2⇡

◆j

TrF j 2 2j dimM

ch0(F ) = r

Page 20: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Isadore Singer (b. 1924)

Sir Michael Atiyah (b. 1929)

Atiyah-Singer index theorem

Let be a vector bundle defined on an even-dimensional flat manifold without boundary M.

The index of the Weyl operator is given by

indD+

=

Z

M[ch(F )]

vol

ch(F ) = Tr exp

✓i

2⇡F

◆where

In particular, if dimM = 2m

indD+ =

Z

Mchm(F ) =

1

m!

✓i

2⇡

◆m Z

MTrFm

(first version)

D± ⌘ D/ (A )P±

Page 21: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Using the Atiyah-Singer index theorem, the axial anomaly in D = 2n is given by

indD+ =

Z

Mchm(F ) =

1

m!

✓i

2⇡

◆m Z

MTrFm

Zd

2nx @µhJµ

A(x)iA = �2i (indD+)

To rewrite the right-hand side, we use F =1

2Fµ⌫dx

µ ^ dx

=1

2n✏

µ1⌫1...µn⌫nFµ1⌫1 . . .Fµn⌫nd2nx

Fn =1

2nFµ1⌫n . . .Fµn⌫ndx

µ1 ^ dx

⌫1 ^ . . . ^ dx

µn ^ dx

⌫n

Zd

2nx @µhJµ

A(x)iA = �2i

n!

✓i

2⇡

◆n Z

MTrFn

Zd

2nx @µhJµ

A(x)iA = �2i

n!

✓i

4⇡

◆n Zd

2nx ✏

µ1⌫1...µn⌫nTr⇣Fµ1⌫1 . . .Fµn⌫n

Page 22: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

The axial anomaly in D = 2n has the following properties:

@µhJµA(x)iA = �2i

n!

✓i

4⇡

◆n

µ1⌫1...µn⌫nTr⇣Fµ1⌫1 . . .Fµn⌫n

• It is determined by the one-loop, (n +1)-gon diagram with one axial-vector current and n vector currents

44 2 The Axial Anomaly

The right-hand side of this anomaly equation is in fact a total derivative, that canbe written as

µ

A x A1

4p

2 e

µnsl

µ

An s

Al

23A

n

As

Al

. (2.133)

The term inside the bracket is the Chern-Simons form. The important thing is thatwe see that the right-hand side contains terms with two and three gauge fields. Thismeans that, diagrammatically, the computation of the anomalous divergences of thesingle axial-vector current requires not only the evaluation of the triangle diagram(associated with the term with two gauge fields), but also the square diagram withone axial-vector and three vector current insertions

permutations (2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-tion of the square diagram does not mean much extra work. Its contribution is fixedby the triangle diagram since the coefficient of the cubic term in the Chern-Simonsform is fully determined by gauge invariance.

References

1. S. L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177 (1969) 2426.2. J. S. Bell and R. Jackiw, A PCAC puzzle: p

0gg in the sigma model, Nuovo Cim. A60

(1969) 47.3. S. L. Adler and W. A. Bardeen, Absence of higher order corrections in the anomalous axial

vector divergence equation, Phys. Rev. 182 (1969) 1517.4. A. Zee, Axial Vector Anomalies And The Scaling Property Of Field Theory, Phys. Rev. Lett.

29 (1972) 1198.K. Higashijima, K. Nishijima and M. Okawa, The Adler-bardeen Theorem In Quantum Elec-trodynamics, Prog. Theor. Phys. 67 (1982) 668.

5. K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett.42 (1979) 1195.K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D21 (1980) 2848[Erratum-ibid. D22 (1980) 1499].

6. L. Alvarez-Gaume and M. A. Vazquez-Mozo, An Invitation to Quantum Field Theory,Springer Verlag 2012.

44 2 The Axial Anomaly

The right-hand side of this anomaly equation is in fact a total derivative, that canbe written as

µ

A x A1

4p

2 e

µnsl

µ

An s

Al

23A

n

As

Al

. (2.133)

The term inside the bracket is the Chern-Simons form. The important thing is thatwe see that the right-hand side contains terms with two and three gauge fields. Thismeans that, diagrammatically, the computation of the anomalous divergences of thesingle axial-vector current requires not only the evaluation of the triangle diagram(associated with the term with two gauge fields), but also the square diagram withone axial-vector and three vector current insertions

permutations (2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-tion of the square diagram does not mean much extra work. Its contribution is fixedby the triangle diagram since the coefficient of the cubic term in the Chern-Simonsform is fully determined by gauge invariance.

References

1. S. L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177 (1969) 2426.2. J. S. Bell and R. Jackiw, A PCAC puzzle: p

0gg in the sigma model, Nuovo Cim. A60

(1969) 47.3. S. L. Adler and W. A. Bardeen, Absence of higher order corrections in the anomalous axial

vector divergence equation, Phys. Rev. 182 (1969) 1517.4. A. Zee, Axial Vector Anomalies And The Scaling Property Of Field Theory, Phys. Rev. Lett.

29 (1972) 1198.K. Higashijima, K. Nishijima and M. Okawa, The Adler-bardeen Theorem In Quantum Elec-trodynamics, Prog. Theor. Phys. 67 (1982) 668.

5. K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett.42 (1979) 1195.K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D21 (1980) 2848[Erratum-ibid. D22 (1980) 1499].

6. L. Alvarez-Gaume and M. A. Vazquez-Mozo, An Invitation to Quantum Field Theory,Springer Verlag 2012.

44 2 The Axial Anomaly

The right-hand side of this anomaly equation is in fact a total derivative, that canbe written as

µ

A x A1

4p

2 e

µnsl

µ

An s

Al

23A

n

As

Al

. (2.133)

The term inside the bracket is the Chern-Simons form. The important thing is thatwe see that the right-hand side contains terms with two and three gauge fields. Thismeans that, diagrammatically, the computation of the anomalous divergences of thesingle axial-vector current requires not only the evaluation of the triangle diagram(associated with the term with two gauge fields), but also the square diagram withone axial-vector and three vector current insertions

permutations (2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-tion of the square diagram does not mean much extra work. Its contribution is fixedby the triangle diagram since the coefficient of the cubic term in the Chern-Simonsform is fully determined by gauge invariance.

References

1. S. L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177 (1969) 2426.2. J. S. Bell and R. Jackiw, A PCAC puzzle: p

0gg in the sigma model, Nuovo Cim. A60

(1969) 47.3. S. L. Adler and W. A. Bardeen, Absence of higher order corrections in the anomalous axial

vector divergence equation, Phys. Rev. 182 (1969) 1517.4. A. Zee, Axial Vector Anomalies And The Scaling Property Of Field Theory, Phys. Rev. Lett.

29 (1972) 1198.K. Higashijima, K. Nishijima and M. Okawa, The Adler-bardeen Theorem In Quantum Elec-trodynamics, Prog. Theor. Phys. 67 (1982) 668.

5. K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett.42 (1979) 1195.K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D21 (1980) 2848[Erratum-ibid. D22 (1980) 1499].

6. L. Alvarez-Gaume and M. A. Vazquez-Mozo, An Invitation to Quantum Field Theory,Springer Verlag 2012.

442

The

Axi

alA

nom

aly

The

right

-han

dsi

deof

this

anom

aly

equa

tion

isin

fact

ato

tald

eriv

ativ

e,th

atca

nbe

writ

ten

as

µ

Jµ Ax

A1 4p

2e

µn

sl

µ

An

s

Al

2 3An

As

Al

.(2

.133

)

The

term

insi

deth

ebr

acke

tis

the

Che

rn-S

imon

sfo

rm.T

heim

porta

ntth

ing

isth

atw

ese

eth

atth

erig

ht-h

and

side

cont

ains

term

sw

ithtw

oan

dth

ree

gaug

efie

lds.

This

mea

nsth

at,d

iagr

amm

atic

ally

,the

com

puta

tion

ofth

ean

omal

ousd

iver

genc

esof

the

sing

leax

ial-v

ecto

rcu

rren

treq

uire

sno

tonl

yth

eev

alua

tion

ofth

etri

angl

edi

agra

m(a

ssoc

iate

dw

ithth

ete

rmw

ithtw

oga

uge

field

s),b

utal

soth

esq

uare

diag

ram

with

one

axia

l-vec

tora

ndth

ree

vect

orcu

rren

tins

ertio

ns

perm

utat

ions

(2.1

34)

Infa

ct,i

fwe

wan

tto

com

pute

the

anom

aly

usin

gFe

ynm

andi

agra

ms,

the

intro

duc-

tion

ofth

esq

uare

diag

ram

does

notm

ean

muc

hex

traw

ork.

Itsco

ntrib

utio

nis

fixed

byth

etri

angl

edi

agra

msi

nce

the

coef

ficie

ntof

the

cubi

cte

rmin

the

Che

rn-S

imon

sfo

rmis

fully

dete

rmin

edby

gaug

ein

varia

nce.

Ref

eren

ces

1.S.

L.A

dler

,Axi

al-V

ecto

rVe

rtex

inSp

inor

Elec

trody

nam

ics,

Phys

.Rev

.177

(196

9)24

26.

2.J.

S.B

ell

and

R.J

acki

w,A

PCAC

puzz

le:

p

0gg

inth

esi

gma

mod

el,N

uovo

Cim

.A60

(196

9)47

.3.

S.L.

Adl

eran

dW

.A.B

arde

en,A

bsen

ceof

high

eror

der

corr

ectio

nsin

the

anom

alou

sax

ial

vect

ordi

verg

ence

equa

tion,

Phys

.Rev

.182

(196

9)15

17.

4.A

.Zee

,Axi

alVe

ctor

Anom

alie

sAn

dTh

eSc

alin

gPr

oper

tyO

fFie

ldTh

eory

,Phy

s.R

ev.L

ett.

29(1

972)

1198

.K

.Hig

ashi

jima,

K.N

ishi

jima

and

M.O

kaw

a,Th

eAd

ler-

bard

een

Theo

rem

InQ

uant

umEl

ec-

trody

nam

ics,

Prog

.The

or.P

hys.

67(1

982)

668.

5.K

.Fuj

ikaw

a,Pa

thIn

tegr

alM

easu

refo

rG

auge

Inva

rian

tFer

mio

nTh

eori

es,P

hys.

Rev

.Let

t.42

(197

9)11

95.

K.F

ujik

awa,

Path

Inte

gral

for

Gau

geTh

eori

esw

ithFe

rmio

ns,P

hys.

Rev

.D21

(198

0)28

48[E

rrat

um-ib

id.D

22(1

980)

1499

].6.

L.A

lvar

ez-G

aum

ean

dM

.A

.V

azqu

ez-M

ozo,

AnIn

vita

tion

toQ

uant

umFi

eld

Theo

ry,

Sprin

gerV

erla

g20

12.

442

The

Axi

alA

nom

aly

The

right

-han

dsi

deof

this

anom

aly

equa

tion

isin

fact

ato

tald

eriv

ativ

e,th

atca

nbe

writ

ten

as

µ

Jµ Ax

A1 4p

2e

µn

sl

µ

An

s

Al

2 3An

As

Al

.(2

.133

)

The

term

insi

deth

ebr

acke

tis

the

Che

rn-S

imon

sfo

rm.T

heim

porta

ntth

ing

isth

atw

ese

eth

atth

erig

ht-h

and

side

cont

ains

term

sw

ithtw

oan

dth

ree

gaug

efie

lds.

This

mea

nsth

at,d

iagr

amm

atic

ally

,the

com

puta

tion

ofth

ean

omal

ousd

iver

genc

esof

the

sing

leax

ial-v

ecto

rcu

rren

treq

uire

sno

tonl

yth

eev

alua

tion

ofth

etri

angl

edi

agra

m(a

ssoc

iate

dw

ithth

ete

rmw

ithtw

oga

uge

field

s),b

utal

soth

esq

uare

diag

ram

with

one

axia

l-vec

tora

ndth

ree

vect

orcu

rren

tins

ertio

ns

perm

utat

ions

(2.1

34)

Infa

ct,i

fwe

wan

tto

com

pute

the

anom

aly

usin

gFe

ynm

andi

agra

ms,

the

intro

duc-

tion

ofth

esq

uare

diag

ram

does

notm

ean

muc

hex

traw

ork.

Itsco

ntrib

utio

nis

fixed

byth

etri

angl

edi

agra

msi

nce

the

coef

ficie

ntof

the

cubi

cte

rmin

the

Che

rn-S

imon

sfo

rmis

fully

dete

rmin

edby

gaug

ein

varia

nce.

Ref

eren

ces

1.S.

L.A

dler

,Axi

al-V

ecto

rVe

rtex

inSp

inor

Elec

trody

nam

ics,

Phys

.Rev

.177

(196

9)24

26.

2.J.

S.B

ell

and

R.J

acki

w,A

PCAC

puzz

le:

p

0gg

inth

esi

gma

mod

el,N

uovo

Cim

.A60

(196

9)47

.3.

S.L.

Adl

eran

dW

.A.B

arde

en,A

bsen

ceof

high

eror

der

corr

ectio

nsin

the

anom

alou

sax

ial

vect

ordi

verg

ence

equa

tion,

Phys

.Rev

.182

(196

9)15

17.

4.A

.Zee

,Axi

alVe

ctor

Anom

alie

sAn

dTh

eSc

alin

gPr

oper

tyO

fFie

ldTh

eory

,Phy

s.R

ev.L

ett.

29(1

972)

1198

.K

.Hig

ashi

jima,

K.N

ishi

jima

and

M.O

kaw

a,Th

eAd

ler-

bard

een

Theo

rem

InQ

uant

umEl

ec-

trody

nam

ics,

Prog

.The

or.P

hys.

67(1

982)

668.

5.K

.Fuj

ikaw

a,Pa

thIn

tegr

alM

easu

refo

rG

auge

Inva

rian

tFer

mio

nTh

eori

es,P

hys.

Rev

.Let

t.42

(197

9)11

95.

K.F

ujik

awa,

Path

Inte

gral

for

Gau

geTh

eori

esw

ithFe

rmio

ns,P

hys.

Rev

.D21

(198

0)28

48[E

rrat

um-ib

id.D

22(1

980)

1499

].6.

L.A

lvar

ez-G

aum

ean

dM

.A

.V

azqu

ez-M

ozo,

AnIn

vita

tion

toQ

uant

umFi

eld

Theo

ry,

Sprin

gerV

erla

g20

12.

44 2 The Axial Anomaly

The right-hand side of this anomaly equation is in fact a total derivative, that canbe written as

µ

A x A1

4p

2 e

µnsl

µ

An s

Al

23A

n

As

Al

. (2.133)

The term inside the bracket is the Chern-Simons form. The important thing is thatwe see that the right-hand side contains terms with two and three gauge fields. Thismeans that, diagrammatically, the computation of the anomalous divergences of thesingle axial-vector current requires not only the evaluation of the triangle diagram(associated with the term with two gauge fields), but also the square diagram withone axial-vector and three vector current insertions

permutations (2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-tion of the square diagram does not mean much extra work. Its contribution is fixedby the triangle diagram since the coefficient of the cubic term in the Chern-Simonsform is fully determined by gauge invariance.

References

1. S. L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177 (1969) 2426.2. J. S. Bell and R. Jackiw, A PCAC puzzle: p

0gg in the sigma model, Nuovo Cim. A60

(1969) 47.3. S. L. Adler and W. A. Bardeen, Absence of higher order corrections in the anomalous axial

vector divergence equation, Phys. Rev. 182 (1969) 1517.4. A. Zee, Axial Vector Anomalies And The Scaling Property Of Field Theory, Phys. Rev. Lett.

29 (1972) 1198.K. Higashijima, K. Nishijima and M. Okawa, The Adler-bardeen Theorem In Quantum Elec-trodynamics, Prog. Theor. Phys. 67 (1982) 668.

5. K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett.42 (1979) 1195.K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D21 (1980) 2848[Erratum-ibid. D22 (1980) 1499].

6. L. Alvarez-Gaume and M. A. Vazquez-Mozo, An Invitation to Quantum Field Theory,Springer Verlag 2012.

44

2 The Axial Anomaly

The right-hand side of this anomaly equation is in fact a total derivative, that can

be written as

µ J µ

A xA 1

4p

2 e

µ

n

s

l

µ An

s Al

23 A

n As A

l .(2.133)

The term inside the bracket is the Chern-Simons form. The important thing is that

we see that the right-hand side contains terms with two and three gauge fields. This

means that, diagrammatically, the computation of the anomalous divergences of the

single axial-vector current requires not only the evaluation of the triangle diagram

(associated with the term with two gauge fields), but also the square diagram with

one axial-vector and three vector current insertions

permutations(2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-

tion of the square diagram does not mean much extra work. Its contribution is fixed

by the triangle diagram since the coefficient of the cubic term in the Chern-Simons

form is fully determined by gauge invariance.

References1. S. L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177 (1969) 2426.

2. J. S. Bell and R. Jackiw, A PCAC puzzle:p

0g

g in the sigma model, Nuovo Cim. A60

(1969) 47.3. S. L. Adler and W. A. Bardeen, Absence of higher order corrections in the anomalous axial

vector divergence equation, Phys. Rev. 182 (1969) 1517.

4. A. Zee, Axial Vector Anomalies And The Scaling Property Of Field Theory, Phys. Rev. Lett.

29 (1972) 1198.K. Higashijima, K. Nishijima and M. Okawa, The Adler-bardeen Theorem In Quantum Elec-

trodynamics, Prog. Theor. Phys. 67 (1982) 668.

5. K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett.

42 (1979) 1195.K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D21 (1980) 2848

[Erratum-ibid. D22 (1980) 1499].

6. L. Alvarez-Gaume and M. A. Vazquez-Mozo, An Invitation to Quantum Field Theory,

Springer Verlag 2012.

44

2 The Axial Anomaly

The right-hand side of this anomaly equation is in fact a total derivative, that can

be written as

µ

Ax A

14p

2e

µ

n

s

l

µ

An

s

Al

23An

As

Al

.(2.133)

The term inside the bracket is the Chern-Simons form. The important thing is that

we see that the right-hand side contains terms with two and three gauge fields. This

means that, diagrammatically, the computation of the anomalous divergences of the

single axial-vector current requires not only the evaluation of the triangle diagram

(associated with the term with two gauge fields), but also the square diagram with

one axial-vector and three vector current insertions

permutations(2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-

tion of the square diagram does not mean much extra work. Its contribution is fixed

by the triangle diagram since the coefficient of the cubic term in the Chern-Simons

form is fully determined by gauge invariance.

References

1. S. L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177 (1969) 2426.

2. J. S. Bell and R. Jackiw, A PCAC puzzle: p

0 g

g

in the sigma model, Nuovo Cim. A60

(1969) 47.

3. S. L. Adler and W. A. Bardeen, Absence of higher order corrections in the anomalous axial

vector divergence equation, Phys. Rev. 182 (1969) 1517.

4. A. Zee, Axial Vector Anomalies And The Scaling Property Of Field Theory, Phys. Rev. Lett.

29 (1972) 1198.

K. Higashijima, K. Nishijima and M. Okawa, The Adler-bardeen Theorem In Quantum Elec-

trodynamics, Prog. Theor. Phys. 67 (1982) 668.

5. K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett.

42 (1979) 1195.

K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D21 (1980) 2848

[Erratum-ibid. D22 (1980) 1499].

6. L. Alvarez-Gaume and M. A. Vazquez-Mozo, An Invitation to Quantum Field Theory,

Springer Verlag 2012.

44

2Th

eA

xial

Ano

mal

y

The

right

-han

dsid

eof

this

anom

aly

equa

tion

isin

fact

ato

tald

eriv

ativ

e,th

atca

n

bew

ritte

nas

µ

Ax

A

1 4p2e

µ

n

s

l

µ

An

s

Al

2 3An

As

Al

.(2

.133

)

The

term

insid

eth

ebr

acke

tis

the

Cher

n-Si

mon

sfo

rm.T

heim

porta

ntth

ing

isth

at

we

see

that

the

right

-han

dsid

eco

ntai

nste

rmsw

ithtw

oan

dth

ree

gaug

efie

lds.

This

mea

nsth

at,d

iagr

amm

atic

ally

,the

com

puta

tion

ofth

ean

omal

ousd

iver

genc

esof

the

singl

eax

ial-v

ecto

rcur

rent

requ

ires

noto

nly

the

eval

uatio

nof

the

trian

gle

diag

ram

(ass

ocia

ted

with

the

term

with

two

gaug

efie

lds)

,but

also

the

squa

redi

agra

mw

ith

one

axia

l-vec

tora

ndth

ree

vect

orcu

rrent

inse

rtion

s

perm

utat

ions

(2.1

34)

Infa

ct,i

fwe

wan

tto

com

pute

the

anom

aly

usin

gFe

ynm

andi

agra

ms,

the

intro

duc-

tion

ofth

esq

uare

diag

ram

does

notm

ean

muc

hex

traw

ork.

Itsco

ntrib

utio

nis

fixed

byth

etri

angl

edi

agra

msin

ceth

eco

effic

ient

ofth

ecu

bic

term

inth

eCh

ern-

Sim

ons

form

isfu

llyde

term

ined

byga

uge

inva

rianc

e.

Ref

eren

ces

1.S.

L.A

dler

,Axi

al-V

ecto

rVer

tex

inSp

inor

Elec

trody

nam

ics,

Phys

.Rev

.177

(196

9)24

26.

2.J.

S.Be

llan

dR.

Jack

iw,A

PCAC

puzz

le:

p

0g

g

inth

esig

ma

mod

el,N

uovo

Cim

.A60

(196

9)47

.

3.S.

L.A

dler

and

W.A

.Bar

deen

,Abs

ence

ofhi

gher

orde

rco

rrec

tions

inth

ean

omal

ous

axia

l

vect

ordi

verg

ence

equa

tion,

Phys

.Rev

.182

(196

9)15

17.

4.A

.Zee

,Axi

alVe

ctor

Anom

alie

sAn

dTh

eSc

alin

gPr

oper

tyO

fFie

ldTh

eory

,Phy

s.Re

v.Le

tt.

29(1

972)

1198

.

K.H

igas

hijim

a,K

.Nish

ijim

aan

dM

.Oka

wa,

The

Adle

r-ba

rdee

nTh

eore

mIn

Qua

ntum

Elec

-

trody

nam

ics,

Prog

.The

or.P

hys.

67(1

982)

668.

5.K

.Fuj

ikaw

a,Pa

thIn

tegr

alM

easu

refo

rG

auge

Inva

riant

Ferm

ion

Theo

ries,

Phys

.Rev

.Let

t.

42(1

979)

1195

.

K.F

ujik

awa,

Path

Inte

gral

for

Gau

geTh

eorie

swi

thFe

rmio

ns,P

hys.

Rev.

D21

(198

0)28

48

[Erra

tum

-ibid

.D22

(198

0)14

99].

6.L.

Alv

arez

-Gau

me

and

M.

A.

Vaz

quez

-Moz

o,An

Invi

tatio

nto

Qua

ntum

Fiel

dTh

eory

,

Sprin

gerV

erla

g20

12.

44

2Th

eA

xial

Ano

mal

y

The

right

-han

dsid

eof

this

anom

aly

equa

tion

isin

fact

ato

tal d

eriv

ativ

e,th

atca

n

bew

ritte

nas µ

Jµ A

xA

14p

2e

µ

n

s

l

µ

An

s

Al

2 3A

n

As

Al

.(2

.133

)

The

term

insid

eth

ebr

acke

t is

the

Cher

n-Si

mon

sfo

rm. T

heim

porta

ntth

ing

isth

at

we

see

that

the

right

-han

dsid

eco

ntai

nste

rms w

ithtw

oan

dth

ree

gaug

efie

lds.

This

mea

nsth

at, d

iagr

amm

atic

ally

, the

com

puta

tion

ofth

ean

omal

ous d

iver

genc

esof

the

singl

eax

ial-v

ecto

r cur

rent

requ

ires

not o

nly

the

eval

uatio

nof

the

trian

gle

diag

ram

(ass

ocia

ted

with

the

term

with

two

gaug

efie

lds)

, but

also

the

squa

redi

agra

mw

ith

one

axia

l-vec

tor a

ndth

ree

vect

orcu

rrent

inse

rtion

s perm

utat

ions

(2.1

34)

Infa

ct, i

f we

wan

t to

com

pute

the

anom

aly

usin

gFe

ynm

andi

agra

ms,

the

intro

duc-

tion

ofth

esq

uare

diag

ram

does

not m

ean

muc

hex

traw

ork.

Itsco

ntrib

utio

nis

fixed

byth

etri

angl

edi

agra

msin

ceth

eco

effic

ient

ofth

ecu

bic

term

inth

eCh

ern-

Sim

ons

form

isfu

llyde

term

ined

byga

uge

inva

rianc

e.

Ref

eren

ces

1.S.

L.A

dler

, Axi

al-V

ecto

r Ver

tex

inSp

inor

Elec

trody

nam

ics,

Phys

. Rev

. 177

(196

9)24

26.

2.J.

S.Be

llan

dR.

Jack

iw, A

PCAC

puzz

le:

p

0g

g

inth

esig

ma

mod

el, N

uovo

Cim

. A60

(196

9)47

.3.

S.L.

Adl

eran

dW

. A. B

arde

en, A

bsen

ceof

high

eror

der

corr

ectio

nsin

the

anom

alou

sax

ial

vect

ordi

verg

ence

equa

tion,

Phys

. Rev

. 182

(196

9)15

17.

4.A

. Zee

, Axi

alVe

ctor

Anom

alie

sAn

dTh

eSc

alin

gPr

oper

tyO

f Fie

ldTh

eory

, Phy

s.Re

v.Le

tt.

29(1

972)

1198

.K

. Hig

ashi

jima,

K. N

ishiji

ma

and

M. O

kaw

a,Th

eAd

ler-

bard

een

Theo

rem

InQ

uant

umEl

ec-

trody

nam

ics,

Prog

. The

or. P

hys.

67(1

982)

668.

5.K

. Fuj

ikaw

a,Pa

thIn

tegr

alM

easu

refo

rG

auge

Inva

riant

Ferm

ion

Theo

ries,

Phys

. Rev

. Let

t.

42(1

979)

1195

.K

. Fuj

ikaw

a,Pa

thIn

tegr

alfo

rG

auge

Theo

ries

with

Ferm

ions

, Phy

s.Re

v.D

21(1

980)

2848

[Erra

tum

-ibid

. D22

(198

0)14

99].

6.L.

Alv

arez

-Gau

me

and

M.

A.

Vaz

quez

-Moz

o,An

Invi

tatio

nto

Qua

ntum

Fiel

dTh

eory

,

Sprin

ger V

erla

g20

12.44

2Th

eAxi

alAn

omaly

Ther

ight

-han

dsid

eoft

hisa

nom

alyeq

uatio

nis

infa

ctat

otal

deriv

ative

,tha

tcan

bewr

itten

as

µ

Ax

A

1 4p2e

µ

n

s

l

µ

An

s

Al

23A

n

As

Al

.

(2.1

33)

The

term

insid

eth

ebr

acke

tist

heCh

ern-

Sim

onsf

orm

.The

impo

rtant

thin

gis

that

wese

etha

tthe

right

-han

dsid

econ

tains

term

swith

two

and

thre

egau

gefie

lds.

This

mea

nsth

at,di

agra

mm

atica

lly,t

heco

mpu

tatio

nof

thea

nom

alous

dive

rgen

ceso

fthe

singl

eax

ial-v

ecto

rcur

rent

requ

iresn

oton

lyth

eev

aluati

onof

the

trian

gle

diag

ram

(ass

ociat

edwi

thth

eter

mwi

thtw

oga

uge

field

s),bu

talso

the

squa

redi

agra

mwi

th

onea

xial-

vecto

rand

thre

evec

torc

urre

ntin

serti

ons

perm

utati

ons

(2.1

34)

Infa

ct,if

wewa

ntto

com

pute

thea

nom

alyus

ing

Feyn

man

diag

ram

s,th

eint

rodu

c-

tion

ofth

esqu

ared

iagra

mdo

esno

tmea

nm

uch

extra

work

.Its

cont

ribut

ion

isfix

ed

byth

etria

ngle

diag

ram

since

thec

oeffi

cient

ofth

ecub

icter

min

theC

hern

-Sim

ons

form

isfu

llyde

term

ined

byga

ugei

nvar

iance

.

Refe

renc

es

1.S.

L.Ad

ler,A

xial-V

ecto

rVer

texin

Spin

orEl

ectro

dyna

mics

,Phy

s.Re

v.17

7(19

69)2

426.

2.J.

S.Be

llan

dR.

Jack

iw,A

PCAC

puzz

le:p

0g

g

inth

esig

mamo

del,

Nuov

oCi

m.A

60

(196

9)47

.

3.S.

L.Ad

leran

dW

.A.B

arde

en,A

bsen

ceof

high

eror

derc

orre

ction

sin

the

anom

alou

saxia

l

vecto

rdive

rgen

ceeq

uatio

n,Ph

ys.R

ev.1

82(1

969)

1517

.

4.A.

Zee,

Axia

lVec

torA

noma

liesA

ndTh

eSc

alin

gPr

oper

tyOf

Field

Theo

ry,P

hys.

Rev.

Lett.

29(1

972)

1198

.

K.Hi

gash

ijim

a,K.

Nish

ijim

aand

M.O

kawa

,The

Adler

-bar

deen

Theo

rem

InQu

antu

mEl

ec-

trody

nami

cs,P

rog.

Theo

r.Ph

ys.6

7(19

82)6

68.

5.K.

Fujik

awa,

Path

Integ

ralM

easu

refo

rGau

geIn

varia

ntFe

rmio

nTh

eorie

s,Ph

ys.R

ev.L

ett.

42(1

979)

1195

.

K.Fu

jikaw

a,Pa

thIn

tegra

lfor

Gaug

eTh

eorie

swith

Ferm

ions

,Phy

s.Re

v.D2

1(1

980)

2848

[Erra

tum

-ibid

.D22

(198

0)14

99].

6.L.

Alva

rez-

Gaum

ean

dM

.A.

Vazq

uez-

Moz

o,An

Invit

atio

nto

Quan

tum

Field

Theo

ry,

Sprin

gerV

erlag

2012

.

44

2Th

e Axi

alAn

omaly

The r

ight

-han

dsid

e of t

his a

nom

alyeq

uatio

nis

infa

cta t

otal

deriv

ative

, tha

t can

bewr

itten

as

µ

Ax

A1

4p2

e

µ

n

s

l

µ

An

s

Al

23

An

As

Al

.

(2.1

33)

The

term

insid

eth

ebr

acke

t is t

heCh

ern-

Sim

ons f

orm

. The

impo

rtant

thin

gis

that

wese

e tha

t the

right

-han

dsid

e con

tains

term

s with

two

and

thre

e gau

gefie

lds.

This

mea

nsth

at,di

agra

mm

atica

lly, t

heco

mpu

tatio

nof

the a

nom

alous

dive

rgen

ces o

f the

singl

eax

ial-v

ecto

r cur

rent

requ

ires n

oton

lyth

eev

aluati

onof

the

trian

gle

diag

ram

(ass

ociat

edwi

thth

eter

mwi

thtw

oga

uge

field

s),bu

t also

the

squa

redi

agra

mwi

th

one a

xial-

vecto

r and

thre

e vec

tor c

urre

ntin

serti

ons

perm

utati

ons

(2.1

34)

Infa

ct,if

wewa

ntto

com

pute

the a

nom

alyus

ing

Feyn

man

diag

ram

s,th

e int

rodu

c-

tion

ofth

e squ

are d

iagra

mdo

esno

t mea

nm

uch

extra

work

. Its

cont

ribut

ion

isfix

ed

byth

e tria

ngle

diag

ram

since

the c

oeffi

cient

ofth

e cub

icter

min

the C

hern

-Sim

ons

form

isfu

llyde

term

ined

byga

uge i

nvar

iance

.

Refe

renc

es1.

S.L.

Adler

, Axia

l-Vec

tor V

ertex

inSp

inor

Elec

trody

nami

cs, P

hys.

Rev.

177 (

1969

) 242

6.

2.J.

S.Be

llan

dR.

Jack

iw, A

PCAC

puzz

le:p

0

g

g

inth

esig

mamo

del,

Nuov

oCi

m. A

60

(196

9)47

.

3.S.

L.Ad

leran

dW

. A. B

arde

en, A

bsen

ceof

high

eror

der c

orre

ction

s in

the

anom

alou

s axia

l

vecto

r dive

rgen

ceeq

uatio

n,Ph

ys. R

ev. 1

82(1

969)

1517

.

4.A.

Zee,

Axia

l Vec

tor A

noma

lies A

ndTh

eSc

alin

gPr

oper

tyOf

Field

Theo

ry, P

hys.

Rev.

Lett.

29(1

972)

1198

.

K.Hi

gash

ijim

a,K.

Nish

ijim

a and

M. O

kawa

, The

Adler

-bar

deen

Theo

rem

InQu

antu

mEl

ec-

trody

nami

cs, P

rog.

Theo

r.Ph

ys. 6

7 (19

82) 6

68.

5.K.

Fujik

awa,

Path

Integ

ral M

easu

refo

r Gau

geIn

varia

ntFe

rmio

nTh

eorie

s,Ph

ys. R

ev. L

ett.

42(1

979)

1195

.

K.Fu

jikaw

a,Pa

thIn

tegra

l for

Gaug

eTh

eorie

s with

Ferm

ions

, Phy

s.Re

v.D2

1(1

980)

2848

[Erra

tum

-ibid

. D22

(198

0)14

99].

6.L.

Alva

rez-

Gaum

ean

dM

.A.

Vazq

uez-

Moz

o,An

Invit

atio

nto

Quan

tum

Field

Theo

ry,

Sprin

ger V

erlag

2012

.

44

2TheAxialAnom

aly

Theright-handsideofthisanom

alyequation

isinfactatotalderivative,thatcan

bewrittenas

µ

Jµ Ax

A

1 4p2

e

µ

n

s

l

µ

An

sAl

23A

nAsA

l

.

(2.133)

Theterm

insidethe

bracketistheChern-Sim

onsform.The

importantthing

isthat

weseethattheright-handsidecontainsterm

swithtwo

andthreegaugefields.This

meansthat,diagram

matically,thecom

putationoftheanom

alousdivergencesofthe

singleaxial-vectorcurrentrequiresnotonly

theevaluation

ofthetriangle

diagram

(associatedwith

theterm

withtwo

gaugefields),butalso

thesquare

diagramwith

oneaxial-vectorandthreevectorcurrentinsertions

permutations

(2.134)

Infact,ifwewantto

computetheanom

alyusing

Feynman

diagrams,theintroduc-

tionofthesquarediagram

doesnotmean

much

extrawork.Itscontributionisfixed

bythetrianglediagram

sincethecoefficientofthecubictermin

theChern-Simons

formisfully

determined

bygaugeinvariance.

References

1.S.L.Adler,Axial-VectorVertexin

SpinorElectrodynamics,Phys.Rev.177(1969)2426.

2.J.S.Belland

R.Jackiw,APCAC

puzzle:p0

g

g

inthe

sigmamodel,Nuovo

Cim.A60

(1969)47.

3.S.L.Adlerand

W.A.Bardeen,Absence

ofhigherordercorrectionsinthe

anomalousaxial

vectordivergenceequation,Phys.Rev.182(1969)1517.

4.A.Zee,AxialVectorAnomaliesAnd

TheScaling

PropertyOfField

Theory,Phys.Rev.Lett.

29(1972)1198.

K.Higashijima,K.Nishijim

aandM

.Okawa,TheAdler-bardeenTheorem

InQuantum

Elec-

trodynamics,Prog.Theor.Phys.67(1982)668.

5.K.Fujikawa,Path

IntegralMeasure

forGaugeInvariantFermion

Theories,Phys.Rev.Lett.

42(1979)1195.

K.Fujikawa,PathIntegralforGauge

TheorieswithFermions,Phys.Rev.D21

(1980)2848

[Erratum-ibid.D22

(1980)1499].

6.L.

´ Alvarez-Gaume

andM

.´ A.

Vazquez-Mozo,

AnInvitation

toQuantum

FieldTheory,

SpringerVerlag2012.

44

2Th

eAxi

alAn

omaly

Ther

ight

-han

dsid

eoft

hisa

nom

alyeq

uatio

nis

infa

ctat

otal

deriv

ative

,tha

tcan

bewr

itten

as

µ

Ax

A

1 4p2e

µ

n

s

l

µ

An

s

Al

23A

n

As

Al

.

(2.1

33)

The

term

insid

eth

ebr

acke

tist

heCh

ern-

Sim

onsf

orm

.The

impo

rtant

thin

gis

that

wese

etha

tthe

right

-han

dsid

econ

tains

term

swith

two

and

thre

egau

gefie

lds.

This

mea

nsth

at,di

agra

mm

atica

lly,t

heco

mpu

tatio

nof

thea

nom

alous

dive

rgen

ceso

fthe

singl

eax

ial-v

ecto

rcur

rent

requ

iresn

oton

lyth

eev

aluati

onof

the

trian

gle

diag

ram

(ass

ociat

edwi

thth

eter

mwi

thtw

oga

uge

field

s),bu

talso

the

squa

redi

agra

mwi

th

onea

xial-

vecto

rand

thre

evec

torc

urre

ntin

serti

ons

perm

utati

ons

(2.1

34)

Infa

ct,if

wewa

ntto

com

pute

thea

nom

alyus

ing

Feyn

man

diag

ram

s,th

eint

rodu

c-

tion

ofth

esqu

ared

iagra

mdo

esno

tmea

nm

uch

extra

work

.Its

cont

ribut

ion

isfix

ed

byth

etria

ngle

diag

ram

since

thec

oeffi

cient

ofth

ecub

icter

min

theC

hern

-Sim

ons

form

isfu

llyde

term

ined

byga

ugei

nvar

iance

.

Refe

renc

es

1.S.

L.Ad

ler,A

xial-V

ecto

rVer

texin

Spin

orEl

ectro

dyna

mics

,Phy

s.Re

v.17

7(19

69)2

426.

2.J.

S.Be

llan

dR.

Jack

iw,A

PCAC

puzz

le:p

0g

g

inth

esig

mamo

del,

Nuov

oCi

m.A

60

(196

9)47

.

3.S.

L.Ad

leran

dW

.A.B

arde

en,A

bsen

ceof

high

eror

derc

orre

ction

sin

the

anom

alou

saxia

l

vecto

rdive

rgen

ceeq

uatio

n,Ph

ys.R

ev.1

82(1

969)

1517

.

4.A.

Zee,

Axia

lVec

torA

noma

liesA

ndTh

eSc

alin

gPr

oper

tyOf

Field

Theo

ry,P

hys.

Rev.

Lett.

29(1

972)

1198

.

K.Hi

gash

ijim

a,K.

Nish

ijim

aand

M.O

kawa

,The

Adler

-bar

deen

Theo

rem

InQu

antu

mEl

ec-

trody

nami

cs,P

rog.

Theo

r.Ph

ys.6

7(19

82)6

68.

5.K.

Fujik

awa,

Path

Integ

ralM

easu

refo

rGau

geIn

varia

ntFe

rmio

nTh

eorie

s,Ph

ys.R

ev.L

ett.

42(1

979)

1195

.

K.Fu

jikaw

a,Pa

thIn

tegra

lfor

Gaug

eTh

eorie

swith

Ferm

ions

,Phy

s.Re

v.D2

1(1

980)

2848

[Erra

tum

-ibid

.D22

(198

0)14

99].

6.L.

Alva

rez-

Gaum

ean

dM

.A.

Vazq

uez-

Moz

o,An

Invit

atio

nto

Quan

tum

Field

Theo

ry,

Sprin

gerV

erlag

2012

.

44 2 The Axial Anomaly

The right-hand side of this anomaly equation is in fact a total derivative, that canbe written as

µ

A x A1

4p

2 e

µnsl

µ

An s

Al

23A

n

As

Al

. (2.133)

The term inside the bracket is the Chern-Simons form. The important thing is thatwe see that the right-hand side contains terms with two and three gauge fields. Thismeans that, diagrammatically, the computation of the anomalous divergences of thesingle axial-vector current requires not only the evaluation of the triangle diagram(associated with the term with two gauge fields), but also the square diagram withone axial-vector and three vector current insertions

permutations (2.134)

In fact, if we want to compute the anomaly using Feynman diagrams, the introduc-tion of the square diagram does not mean much extra work. Its contribution is fixedby the triangle diagram since the coefficient of the cubic term in the Chern-Simonsform is fully determined by gauge invariance.

References

1. S. L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177 (1969) 2426.2. J. S. Bell and R. Jackiw, A PCAC puzzle: p

0gg in the sigma model, Nuovo Cim. A60

(1969) 47.3. S. L. Adler and W. A. Bardeen, Absence of higher order corrections in the anomalous axial

vector divergence equation, Phys. Rev. 182 (1969) 1517.4. A. Zee, Axial Vector Anomalies And The Scaling Property Of Field Theory, Phys. Rev. Lett.

29 (1972) 1198.K. Higashijima, K. Nishijima and M. Okawa, The Adler-bardeen Theorem In Quantum Elec-trodynamics, Prog. Theor. Phys. 67 (1982) 668.

5. K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett.42 (1979) 1195.K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D21 (1980) 2848[Erratum-ibid. D22 (1980) 1499].

6. L. Alvarez-Gaume and M. A. Vazquez-Mozo, An Invitation to Quantum Field Theory,Springer Verlag 2012.

D = 2 D = 4 D = 6 D = 8 D = 10

• The anomaly is exact at one loop.

Page 23: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

But remember that gravity also contributes to the axial anomaly…

On the 2n-dimensional Euclidean manifold, we have the freedom to choose an orthonormal basis of the tangent (and cotangent) space at each point independently

ea · eb = �abTMx

:

TM⇤x

: ✓a(eb) = �ab

These relations are left invariant by SO(2n) rotations of the frame. It is with respect to these transformations that Dirac spinors are defined:

{�a, �b} = �2�abI �a† = ��a

�ab =i

4[�a, �b]

0(x) = e

� i2 ⇠ab(x)�

ab

(x)

Page 24: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

General relativity can be seen as a SO(2n) gauge theory for the choice of local frames [⇒ SO(1,2n −1) in Lorentzian signature]

To define the notion of parallel transport along a curve γ(t) we introduce the one-form spin connection

rv = d (v) +1

2!ab(v)�

ab

!ab

For a general field transforming in some representation of the local SO(2n) group, ⌃ab

�(x)

rv� = d�(v) +1

2!ab(v)⌃

ab�

In the case of a spinor, the representation is and⌃ab ⌘ �ab =i

4[�a, �b]

rv� = 0

Page 25: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

In terms of the spin connection, the curvature two-form is defined by

Taking the exterior derivative

and using

we arrive at the Bianchi identity

F = dA + A ^ A

dF � F ^ A + A ^ F = 0

Gauge theories Gravity

dRab � Ra

c ^ !cb + !a

c ^ Rcb = 0

dRab � Ra

c ^ !cb + !a

c ^ Rcb = 0

Rab = d!a

b + !ac ^ !c

b

Rab = d!a

b + !ac ^ !c

b

dRab = d!a

c ^ !cb � !a

c ^ d!cb

d!ab = Ra

b � !ac ^ !c

b

Page 26: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

The curvature two-form can be expressed in the basis of differentials

Rab =

1

2Ra

b,µ⌫dxµ ^ dx

Lorentz indices can be turned into Einstein ones by using the vielbein

which satisfy

�ab = e

µa (x)e ⌫

b (x)gµ⌫(x)

ea = e

µa (x)@µ @µ = e

aµ (x)ea

In terms of the vielbein, the Einstein components of the curvature tensor are

Rµ⌫,↵� = e µ

a e b⌫ Ra

b,↵�

gµ⌫(x) = e

aµ (x)e b

⌫ (x)⌘ab

Page 27: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

We can define invariant polynomials as we did with gauge theories

an,j 2 R

where the trace is over SO(2n) indices.

Given the transformation properties of and

! �! U�1dU + U�1!U R �! U�1R U

(Rn)ab = Rac1 ^ Rc1

c2 ^ . . . ^ Rcn�1

b

P (R) =X

n+jm

an,j⇣TrRn

⌘j

!ab Ra

b

• They are closed:

dP (R) = 0

• The integrals are topological invariants.Z

M2m

TrRm

• The polynomials are invariant under SO(2n) transformations:

P (R) = P (U�1RU)

Page 28: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

The curvature two-form takes values in the Lie algebra of SO(2n), i.e. it is an antisymmetric matrix. To diagonalize it requires a complex transformation.

However, there exist real similarity transformations bringing the curvature to the form

• The first invariant polynomial we define is the Pontrjagin index

p(R) = det

✓1 +

1

2⇡R

1

2⇡R =

0

BBBBB@

0 x1

�x1 00 x2

�x2 0. . .

1

CCCCCAxi 2 R

then

p(R) =nY

i=1

(1 + x

2i ) = 1 +

nX

i=1

x

2i +

nX

i<j

x

2ix

2j + . . .+

nY

i=1

x

2i

Page 29: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

1

2⇡R =

0

BBBBB@

0 x1

�x1 00 x2

�x2 0. . .

1

CCCCCA

To write the Pontrjagin index in a more useful form, we notice

Tr

✓1

2⇡R

◆2k

= 2(�1)knX

i=1

x

2ki

writing

p(R) = 1 + p1(R) + p2(R) + . . .+ pn(R)

with

p1(R) =nX

i=1

x

2i = � 1

8⇡2TrR2

p2(R) =nX

i<j

x

2ix

2j =

1

2

2

4

nX

i=1

x

2i

!2

�nX

i=1

x

4i

3

5 =1

128⇡4

h(TrR2)2 � 2TrR4

i

pn(R) =nY

i=1

x

2i =

✓1

2⇡

◆n

detR

Page 30: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

• The Â-genus (A-roof) is defined as

or using again Tr

✓1

2⇡R

◆2k

= 2(�1)knX

i=1

x

2ki

bA(M) =

nY

i=1

xi/2

sinh(xi/2)= 1� 1

24

nY

i=1

x

2i +

7

5760

nY

i=1

x

4i + . . .

bA(M) = 1 +1

(4⇡)21

12TrR2 +

1

(4⇡)4

1

288(TrR2)2 +

1

360TrR4

�+ . . .

• Euler class

e(M) =nY

i=1

xi

E.g., in a four-dimensional manifold, this is the “square root” of p2(R)

p2(R) = e(M) ^ e(M)

Page 31: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Isadore Singer (b. 1924)

Sir Michael Atiyah (b. 1929)

Atiyah-Singer index theorem

Let be a vector bundle defined on an even-dimensional curved manifold without boundary M.

The index of the Weyl operator is given now in terms of the Chern class and the Â-genus as

In four dimensions, the index has two contributions

(second version)

indD+

=

Z

M[ bA(M)ch(F )]

vol

indD+ = � 1

8⇡2

Z

M

⇣TrF 2 +

r

12TrR2

D± ⌘ D/ (A )P±

Page 32: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Global anomalies

We change convention and take the Euclidean Dirac matrices hermitian

Convention warning!

Page 33: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

So far, we have considered anomalies with respect to infinitesimal gauge transformations…

In compactified four-dimensional Euclidean space, gauge transformations are maps

g(x) : S4 �! G

Then, the topology of gauge transformations is classified by the fourth homotopy group of the gauge group, ⇡4(G )

For some “popular groups”, we have

⇡4[SU(2)] = Z2

⇡4[SU(3)] = 0

⇡4[U(1)] = 0

Thus, in the standard model, we can have transformations of SU(2) which are not contractible to the identity (they wrap once around the gauge group).

Page 34: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

“Large” gauge transformations are important. They are not taken care of by the Fadeev-Popov trick in the functional integral. E.g., for SU(2)

overcount by a factor of 2

Since the space of connections is contractible:

In the absence of chiral fermions this is harmless, since the factor cancel out in expectation values.

In the case of a Dirac fermion

No problem: the determinant of the Dirac operator can be defined unambiguously and the result is gauge invariant.

Z =

ZDA

µ

ZD D e�

Rd

4x( 1

4TrFµ⌫Fµ⌫+ iD/ )

=

ZDA

µ

det(iD/ )e�14

Rd

4xTrFµ⌫Fµ⌫

ZDA

µ

e�14

Rd

4xTrFµ⌫Fµ⌫

Page 35: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

What about a SU(2) gauge theory with fundamental chiral fermions?(Witten, 1982)

Let us decompose the Dirac fermion into two Weyl spinors

= + + �

and write in terms of a charge-conjugated spinor �

= + + (�+)c

The Dirac action is nowZ

d

4x iD/ =

Zd

4x

h +iD/ + + (�+)ciD/ (�+)

ci

But since the fundamental representation of SU(2) is real we can drop the charge conjugation symbol

Zd

4x iD/ =

Zd

4x

⇣ +iD/ + + �+iD/�+

Page 36: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Zd

4x iD/ =

Zd

4x

⇣ +iD/ + + �+iD/�+

Then, a Dirac fermion in the fundamental of SU(2) is equivalent to two positive chirality Weyl fermions.

As a consequence,

det(iD/ ) =

ZD +D +

ZD�+D�+ e

�Rd

4x

⇣ +iD/ ++�+iD/�+

=

ZD +D +e

�Rd

4x +iD/ +

ZD�+D�+ e�

Rd

4x�+iD/�+

and we arrive atZ

D +D +e�

Rd

4x +iD/ + = ±[det iD/ ]

12

Page 37: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

There is an ambiguity in the sign of the square root but, can we fix it once and for all?

Let us take a gauge field for which the Dirac operator has no zero modes [in other words, ]. Then, the square root can be defined asdet(iD/ ) 6= 0

[det(iD/ )]12 =

Y

�n>0

�n

�1

�2

��2

��1

��3

��4

�3

�4

ZD +D +e

�Rd

4x +iD/ + = ±[det(iD/ )]

12

Remember: the eigenvalues of the Dirac operator are paired (λn,−λn)

Now we consider a family of connections

A tµ = (1� t)Aµ + tA U

µ0 t 1

where is a topologically nontrivial gauge transformation.U

How do the positive eigenvalues “move” with t?

Page 38: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

A tµ = (1� t)Aµ + tA U

µ 0 t 1

Varying t induces a spectral flow of eigenvalues in which some may change sign:

t = 0 t = 1

If an odd number of positive eigenvalues change sign, then

[det iD/ (A U )]12 = �[det iD/ (A )]

12

[det iD/ (A U )]12 =

Y

�n>0

�Un[det iD/ (A )]

12 =

Y

�n>0

�n

Page 39: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

[det iD/ (A U )]12 = �[det iD/ (A )]

12

This would be a disaster, since after integrating over all gauge fields, the correlation functions of any gauge invariant operators vanish!

and the theory become “empty”.

ZDA

µ

det[iD/ (A )]12 O1 . . .On

e�14

Rd

4xTrFµ⌫Fµ⌫

= 0

If the theory contains n SU(2) doublets, then the result of the fermionic integration is

det[iD/ (A )]n2

and the conclusion is avoided if n is even.

Page 40: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

But, is there really a global SU(2) anomaly?

A Uµ

We study a five-dimensional problem on the cylinder with an instanton-like configuration… S4

S4

S4 ⇥ R

… and define the Dirac operator

D/ (5) = �⌧ @

@⌧+D/

The zero-mode equation is

D/ (5) = 0@

@⌧= ��⌧D/

The operators and have the same spectrum:�⌧D/D/

D/ n = �n n �⌧D/ (I� �⌧ ) n = �n(I� �⌧ ) n

where and {�⌧ , �µ} = 0 (�⌧ )2 = I

Page 41: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Now, we assume that gauge field varies adiabatically with respect to ⌧

Aµ(x, ⌧)

(x, ⌧) = F (⌧) ⌧ (x) where �

⌧D/ ⌧ (x) = �(⌧) ⌧ (x)

@

@⌧= ��⌧D/

@

@⌧= ��⌧D/

In the adiabatic approximation, the zero-mode equation readsD/ (5) = 0

F 0(⌧) = ��(⌧)F (⌧)

and the zero-modes of the five-dimensional Dirac operator are

(x, ⌧) = F (0) ⌧ (x) exp

�Z ⌧

0dt

0�(t

0)

F (⌧) = F (0) exp

�Z ⌧

0dt0�(t0)

Page 42: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

This mode is normalizable only if:

(x, ⌧) = F (0) ⌧ (x) exp

�Z ⌧

0dt

0�(t

0)

�(⌧) > 0

�(⌧) < 0

for

for

⌧ �! 1

⌧ �! �1

With this adiabatic argument, we have shown that:

• The zero-modes of are in one-to-one correspondence with the eigenvectors of changing sign with the spectral flow.

D/ (5)

D/ (A )

The question now is:

How many zero-modes does have?D/ (5)

mod 2 Atiyah-Singer index theorem

Page 43: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

×

The operator is real and antisymmetric. Its eigenvalues are either zero or purely imaginary and come in complex conjugate pairs.

D/ (5)

×

×

×

×

×

×

×

Re�Re�

Im�Im�

varying Aµ

The number or zero-modes changes with a pair of complex conjugate eigenvalues moves towards or away the real axis.

The number of zero-modes of mod 2 is a topological invariant.D/ (5)

Page 44: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

The number (mod 2 ) of zero-modes of can be computed using the mod 2 Atiyah-Singer index theorem for the gauge instanton-like configuration:

D/ (5)

# of zero-modes of = 1 (mod 2)D/ (5)

Thus, there is an odd number of eigenvalues of changing sign as we deform the connection from to

D/ (A )Aµ A U

µ

[det iD/ (A U )]12 = �[det iD/ (A )]

12

A theory with an odd number of chiral fermions transforming as doublets of SU(2) is anomalous!

Page 45: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Fortunately, the standard model is safe!

✓e⌫e

L

✓µ⌫µ

L

✓⌧⌫⌧

L

✓ud

L

✓tb

L

✓cs

L

)6 SU(2)L doublets

Both leptons and quarks are required to cancel the anomaly!

The MSSM is also safe due to the second Higgsino doublet eh01eh�1

!

L

) eh+2

eh02

!

L

+ 2 SU(2)L doublets

Page 46: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

An index theorem computation of the gauge anomaly

We change convention and take the Euclidean Dirac matrices hermitian

Convention warning!

Page 47: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

We have managed to reformulate the problem of computing the axial anomaly into the calculation of the index of the Dirac-Weyl operator

Let us try to do the same for the gauge anomaly in the simplest case of a chiral theory with a single right-handed Weyl spinor with gauge group G

We begin by computing the one-loop fermionic effective action in Euclidean space

e

��[A ]=

ZD D exp

�Z

d

4x iD/ (A )P+

D+ ⌘ D/ (A )P+

The gauge anomaly is given by the gauge variation of the effective action

�↵�[A ] = �Z

d

4x↵(x)DµhJµ

R(x)iA

Page 48: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

To find the origin of the anomaly, let us consider the fermion in a complex representation of the gauge group. R

This theory is anomalous

�↵�R[A ] 6= 0

The same happens if the fermion is in the complex conjugate representationR

�R[A ] = �R[A ]⇤ �↵�R[A ] 6= 0

The theory with two fermions in the representations and is, however, anomaly free

R R

�↵�R�R[A ] = 0�R�R[A ] = �R[A ] + �R[A ]

Thus, only the imaginary part of the effective action is anomalous

�↵⇣Re�R[A ]

⌘= 0 �↵

⇣Im�R[A ]

⌘6= 0

Page 49: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Being naive, we would just write

�[A ] = log detD+

e

��[A ]=

ZD D exp

�Z

d

4x iD/ (A )P+

The problem is that this determinant does not exist…

The identity

�5D+ ⌘ �5D/ (A )P+ = �D/ (A )�5P+ = �D/ (A )P+ = �D+

shows that maps positive chirality into negative chirality spinorsD+

D+ : S+ ⌦ E �! S� ⌦ E E = gauge bundle

Since it is not an endomorphism, there is no eigenvalue problem and the determinant cannot be defined.

D+ = D/P+( )

Page 50: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

@/� ⌘ @/P�( )

Instead, we work with a different operator

bD :⇣S+ � S�

⌘⌦ E �!

⇣S+ � S�

⌘⌦ E

where

bD =

✓0 @/�D+ 0

This operator has a well-defined eigenvalue problem and the determinant can be computed.

This modification of the Weyl operator does not affect the anomaly, since does not couple to the gauge field

Its modulus is gauge invariant

| det bD|2 = det bD det bD† = det⇣@/+@/�

⌘det

⇣D+D�

⌘= det

⇣@/+@/�

⌘detD/

�[A ] = � log det

bD(A )

Re�[A ] = � log | det bD(A )|

D/ =

✓0 D�D+ 0

Page 51: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Let us compactify our 2n-dimensional Euclidean space

R2n [ {1} �! S2n

and consider a one-parameter family of gauge transformations

Towards a topological interpretation of the gauge anomaly

g(x, ✓) 2 G

g(x, 0) = g(x, 2⇡) = I

This defines a family of gauge transformations

A ✓ = g(x, ✓)�1(d+ A )g(x, ✓)

The transformation of is

| det bD(A ✓)| = | det bD(A )|

det bD(A )

where is a reference connection such that has no zero modes.A D/ (A )

det bD(A ✓) = | det bD(A )|eiw(✓,A ) =pdetD/ (A ) eiw(✓,A )

(Álvarez-Gaumé & Ginsparg 1984)

Page 52: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

The phase of the determinant defines a map

eiw(✓,A ) : S1 �! S1

classified by its winding number

det bD(A ✓) =p

detD/ (A ) eiw(✓,A )

The anomaly is then given by the variation of the phase

�↵�[A ] = �i�✓@

@✓w(✓,A )

Thus, the anomaly is given by the winding number density!

The gauge anomaly admits a topological interpretation.

m =1

2⇡

Z 2⇡

0d✓

@

@✓w(✓,A ) 2 Z

�[A ] = � log det

bD(A )

Page 53: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

×

A✓

t

Is the winding number related with some kind of index theorem?

Let us consider the following connection defined on the manifold S2n ⇥D

DA t,✓(x) = tA ✓(x) = g(x, ✓)�1[d+ A (x)]g(x, ✓)

with .t 2 [0, 1]

By hypothesis, does not vanish at . However, it may vanish at various points in the interior of

det bD(A ) t = 1

D

A t,✓(x) = tA ✓(x)�

��

t = 0 t = 1

The vanishing of occurs when a pair of eigenvalues of the Dirac operator crosses zero.

det bD(A )

×

is not a gauge transformation!

Page 54: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

We can define an extension of the Dirac operator to the interior of the disk. Introducing the (D+2)-dimensional gauge field

aC(x, ✓, t) = (A ✓,tµ , 0, 0)

the new Dirac operator takes the form

D/ (a) =2n+2X

C=1

�C(@C + aC)

where

�µ = �1 ⌦ �µ

�2n+1 = �2 ⌦ �µ

�2n+2 = �1 ⌦ �5

and

�5 = �3 ⌦ I

C = 1, . . . , D + 2

Page 55: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

The total winding number of the phase of is the sum of the winding numbers of the vanishing eigenvalues.

m =X

i

mi

It can be shown (long calculation) that the zero modes of are in one-to-one correspondence with the zeroes of

detD/ 2n(A✓,t)

where

mi = ±1

detD/ 2n(A✓,t)

and moreover, equals the chirality of the corresponding zero mode of the (2n+2)-dimensional Dirac operator

mi

D/ 2n+2(a)

1

2⇡

Z 2⇡

0d✓

@

@✓w(✓,A ) = indD/ 2n+2(a)

D/ 2n+2(a)

Page 56: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

However, the Atiyah-Singer index theorem is not applicable because our manifold has a boundary!

We have two options:

• Use the Atiyah-Patodi-Singer index theorem (valid for manifold with boundary).

• Set the boundary conditions by gluing two disks together to define the Dirac operator on the closed manifold

[S2n ⇥D+] [ [S2n ⇥D�] �! S2n ⇥ S2

nontrivial transition functions on S2n ⇥ S1

D+

D�

1

2⇡

Z 2⇡

0d✓

@

@✓w(✓,A ) = indD/ 2n+2(a)

a+

a�

Page 57: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

D+

D�

Take the connection on the upper hemisphere to be ( )

while in the lower hemisphere we have

At the hemisphere t = s = 1, both connections are related by a gauge transformation

The field strength is given by

d✓ ⌘ d✓@✓a+

a�

a+(x, ✓, t) = tg(x, ✓)�1d✓g(x, ✓) + A t,✓(x)

a�(x, ✓, s) = A (x)

a+(x, ✓, 1) = g(x, ✓)�1d✓g(x, ✓) + g(x, ✓)�1

dg(x, ✓) + g(x, ✓)�1a�(x)g(x, ✓)

f+ = (d+ d✓ + dt)a+ + a+ ^ a+

f� = (d+ d✓ + dt)a� + a� ^ a�

Page 58: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

We can apply now the Atiyah-Singer index theorem to the Dirac operator in S2n ⇥ S2

The integral has to be computed as

Locally, is exact and on each hemisphere we have

and using Gauß’ theorem, the integral gives in terms of the Chern-Simons form

indD/2n+2

(a) =

Z

S2n⇥S2

[ch(f)]vol

=1

(n+ 1)!

✓i

2⇡

◆n+1

Z

S2n⇥S2

Tr fn+1

Z

S2n⇥S2

Tr fm+1 =

Z

S2n⇥D+

Tr (f+)m+1 +

Z

S2n⇥D�

Tr (f�)m+1

Tr fn+1 = dQ2n+1

Tr fn+1

Z

S2n⇥S2

Tr fm+1 =

Z

S2n⇥S1

Q2n+1(a+, f+)

���t=1

�Z

S2n⇥S1

Q2n+1(a�, f�)

���s=1

Page 59: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

We should recall that

so we are only interested in those terms proportional to dθ. Taking into account that

1

2⇡

Z 2⇡

0d✓

@

@✓w(✓,A ) = indD/ 2n+2

“Russian” formula

a� = A

a+ = A ✓ + g�1d✓g ⌘ A ✓ + bv f+(A ✓ + bv) = f+(A ✓) ⌘ F ✓

indD/ 2n+2 =1

(n+ 1)!

✓i

2⇡

◆n+1 Z

S2n⇥S1

Q2n+1(A✓ + bv,F ✓)

indD/ 2n+2 =1

(n+ 1)!

✓i

2⇡

◆n+1 Z

S2n⇥S1

Q2n+1(a+, f+)

���t=1

�Z

S2n⇥S1

Q2n+1(A ,F )

indD/ 2n+2 =1

(n+ 1)!

✓i

2⇡

◆n+1 Z

S2n⇥S1

Q2n+1(a+, f+)

���t=1

�Z

S2n⇥S1

Q2n+1(a�, f�)

���s=1

Page 60: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

indD/ =1

(n+ 1)!

✓i

2⇡

◆n+1 Z

S2n⇥S1

Q2n+1(A✓ + bv,F ✓)

From here we conclude

1

2⇡

Z 2⇡

0d✓

@

@✓w(✓,A ) = indD/ 2n+2

id✓w(✓,A ) =in+2

(2⇡)n(n+ 1)!

Z

S2n

Q12n+1(A

✓ + bv,F ✓)

where is the part of the Chern-Simons form linear in Q12n+1(A

✓ + bv,F ✓) bv

At the end of the calculation we can set and .✓ = 0 g(0, x) = I

Thus, the gauge anomaly in D=2n can be recast as the axial anomaly for a Dirac operator in D=2n+2

Page 61: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

We have reached the end of the course…

There are a number of things we did not have time to discuss. For example:

• Gravitational anomalies in D = 2, 6, and 10.

• Covariant vs. consistent anomalies.

• Wess-Zumino terms.

Green-Schwarz cancellation mechanism

• Other advanced topics (parity anomaly, anomalies on the lattice, anomaly inflow, etc.)

Page 62: Introduction to Anomalies in QFT - USALdiarium.usal.es/vazquez/files/2015/03/UAM_slides7.pdf · M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma

M.Á. Vázquez-Mozo Introduction to Anomalies in QFT PhD Course, Universidad Autónoma de Madrid

Thank you