introduction to proteomicstools.thermofisher.com/content/sfs/brochures/exactive... · 2016. 2....

193
Introduction in Proteomics 1 The world leader in serving science Introduction in Proteomics

Upload: others

Post on 25-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Introduction in Proteomics

    1

    The world leader in serving science

    Introduction in Proteomics

  • Overview

    • Proteomics definition

    • From genome to proteome

    • Aminoacids and proteins

    • What proteomics can do?

    • Peptide fragmentation

    • Proteomics and gel electrophoresis

    2

    • Post translational modifications

    • DD NL MS3 for phosphorylation identification

    • Intact protein analysis

    • Lock mass

    • Protein quantification

    • RP-HPLC basics

  • Proteins

    = molecules of amino acids that perform much of life’s function

    Proteome

    Easy to remember

    3

    = set of all proteins in a cell

    Proteomics

    = study of protein’s structure & function

  • 4

  • Proteomics represents the effort to establish the identities, quantities, structures, and biochemical and cellular functions of all proteins in an organism, organ, or organelle, and how these properties vary in space, time, or

    Not so easy to remember

    5

    organelle, and how these properties vary in space, time, or

    physiological state.

    MCP 1.10 pg 675 National Research Council

    Steering committee

  • A true multidiscipline science

    • Protein chemistry

    • Mass spectrometry

    • Genomics

    • Bioinformatics

    Proteomics

    6

    • Bioinformatics

    • Computer science

    • Separation science

  • From Genome to

    Proteome

    7

    Proteome

  • From cell to gene

    The genes, parts of the DNA (double helix), are the functional units of the genome.

    The human genome is located right in the heart of the cells, in the nucleus.

    8

    They hold all the information necessary to create the proteins you need.

    Genes are located along thread-like structures called chromosomes.

  • Protein Synthesis

    Protein synthesis

    is the transcriptionand translation of specific parts of

    DNA to form

    proteins.

    9

  • Codons set amino acids that are used

    10

  • One Genome, multiple Proteomes

    tagacgacct ggcccaacgc tgtgcccagt acaagaagga

    tggctgtgac ttcgccaaat ggcgttgtgt gctcaagatc ggcaagaaca

    ccccctccta ccaagctatc cttgagaatg ccaacgtact ggcacgctat

    gcgtccatct gccaatccca gcgcattgtg cccattgtagagcctgaggt

    gctgcctgat ggagatcacg accttgacag ggctcagaag

    gtcacagaga cagttctggc cgctgtgtac aaggcactca

    atgaccacca tgtcttcctg gagggcaccctcctgaagcc caacatggtg

    accgcaggac agtcctgctc caagaagtac aattatgagg

    acaacgctag agctacagtg ttggccctgt ccagaactgt gccagctgct

    gtccctggtgtgactttctt gtcaggaggt cagtcggagg aggatgcctc

    tgtcatttgg atgctatcaa caagatc

    11

    tagacgacct ggcccaacgc tgtgcccagt acaagaagga

    tggctgtgac ttcgccaaat ggcgttgtgt gctcaagatc

    ggcaagaaca ccccctccta ccaagctatc cttgagaatg

    ccaacgtact ggcacgctat gcgtccatct gccaatccca

    gcgcattgtg cccattgtagagcctgaggt gctgcctgat

    ggagatcacg accttgacag ggctcagaag gtcacagaga

    cagttctggc cgctgtgtac aaggcactca atgaccacca

    tgtcttcctg gagggcaccctcctgaagcc caacatggtg

    accgcaggac agtcctgctc caagaagtac aattatgagg

    acaacgctag agctacagtg ttggccctgt ccagaactgt

    gccagctgct gtccctggtgtgactttctt gtcaggaggt

    cagtcggagg aggatgcctc tgtcatttgg atgctatcaa

    caagatc

  • The building polypeptide chain

    12

  • Central Dogma of Biology

    13

    genome transcriptome proteome

  • Amino acids

    14

    Amino acids

  • Amino acid

    15

    • The human body needs 20 amino acids to be able to

    make (or synthesize) its thousands of proteins.

  • Levels of Protein StructureAminoacid structure

    16

  • What are Proteins?

    Where we find proteins?Cells and body tissues, hormones, antibodies, and enzymes.

    Protein functions?

    Proteins are strings of amino acids and are the active elements of cells.

    17

    • structure providing proteins (hair and fingernails).

    • help in digestion (stomach enzymes), detoxify poisons, or help fight disease.

    • cell membranes proteins and are important in controlling how substances pass

    through these membranes.

    • enzymes proteins are catalysts for biochemical reactions.

    • antibodies proteins react with foreign substances to defend the body.

  • Sourse of Proteins

    18

    • Grow cells and blow them up (lyses)

    • Dissect tissue sample, homogenize and lyse

    • Synthesize

  • Sourse of Proteins ( cell fractionation)

    nuclei

    + 0.25M NaClnuclei

    + 0.25M NaCl

    cells

    +hypotonic buffer

    +0.5% NP40

    cells

    +hypotonic buffer

    +0.5% NP40

    cytosolic proteins

    nucleosolic proteins cytosolic proteins

    nucleosolic proteins

    nuclei

    + 0.25M NaClnuclei

    + 0.25M NaCl

    cells

    +hypotonic buffer

    +0.5% NP40

    cells

    +hypotonic buffer

    +0.5% NP40

    cytosolic proteins

    nucleosolic proteins cytosolic proteins

    nucleosolic proteins

    19

    + 0.25M NaCl

    chromatin-bound Orc1chromatin-bound Orc1

    nuclei

    + 0.32M NaClnuclei

    + 0.32M NaCl

    pre-elution step

    immunoprecipitationimmunoprecipitation

    extracted nucleiextracted nuclei

    + 0.25M NaCl

    chromatin-bound Orc1chromatin-bound proteins

    nuclei

    + 0.32M NaClnuclei

    + 0.32M NaCl

    pre-elution step

    immunoprecipitationimmunoprecipitation

    extracted nucleiextracted nuclei

  • Protein Immunoprecipitation

    Immunoprecipitation (IP) is the technique of precipitating a protein antigen out of solution using an antibody that

    specifically binds to that particular protein.

    20

    specifically binds to that particular protein.

  • Biological fractionation

    • Necessary!! To decrease complexity before analytical

    fractionation

    – Abundant protein depletion

    – Membrane fraction

    – Soluble fraction

    21

    – Soluble fraction

    – Organellar fractionation

    – Affinity chromatography

    – Etc…

  • Separation techniques versus protein characteristics

    • Charge1. Ion exchange chromatography

    2. Electrophoresis

    3. Isoelectric focusing

    • Polarity1. Adsorption chromatography

    2. Paper chromatography

    3. RP chromatography

    22

    3. RP chromatography

    4. Hydrophobic interaction chromatography

    • Size1. Dialysis and ultrafiltration

    2. Gel electrophoresis

    3. Gel filtration chromatography (size exclusion chromatography)

    4. Ultracentrifugation

    • Specificity1. Affinity chromatography

  • PI Protocol

    • Lyse cells and prepare sample for immunoprecipitation.

    • Pre-clear the sample by passing the sample over beads that are not coated with antibody to soak up any proteins that non-specifically bind to the beads.

    • Incubate solution with antibody against the protein of interest. Antibody can be attached to solid support before this step (direct method) or after this step (indirect method). Continue the incubation to allow antibody-antigen complexes to form.

    • Precipitate the complex of interest, removing it from bulk solution.

    • Wash precipitated complex several times. Spin each time between washes or place tube on magnet when using superparamagnetic beads and then remove supernatant. After final wash, remove as much supernatant as possible.

    23

    supernatant. After final wash, remove as much supernatant as possible.

    • Elute proteins from solid support (using low-pH or SDS sample loading buffer).

    • Analyze complexes or antigens of interest. This can be done in a variety of ways:

    – SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) followed by gel staining.

    – SDS-PAGE followed by: staining the gel, cutting out individual stained protein bands, and sequencing the proteins in the bands by MALDI-Mass Spectrometry

    – Transfer and Western Blot using another antibody for proteins that were interacting with the antigen followed by chemiluminesent visualization.

  • Two amino acids can undergo a condensation reaction to form a dipeptide. Further condensation reactions result in a polypeptide.

    R1-COOH + R2-NH2 R1-CO-NH-R2 + H2O

    Peptide bond formation

    24

    Amino acids are linked with the peptide bond, amide bond

  • The aliphatic amino acids

    Glycine, Gly, G Alanine, Ala, A Valine, Val, V Leucine, Leu, L

    25

    Glycine, Gly, G Alanine, Ala, A Valine, Val, V Leucine, Leu, L

    Isoleucine, Ile, I Proline, Pro, P

  • The aromatic amino acids

    26

    Phenylalanine, Phe, F Tyrosine, Tyr, Y Tryptophan, Trp, W

  • The sulfur containing amino acids

    27

    Cysteine, Cys, C Methionine, Met, M

  • S-S bond

    2Cysteines/oxidation=disulfide bond (only in extracellular and not intracellular proteins)

    28

    Disulfide bonds stabilize protein structure by providing crosslink

  • The hydroxyl amino acids

    29

    Serine, Ser, S Threonine, Thr, T

  • The acidic amino acids

    30

    Aspartate, Asp, D Glutamate, Glu, E

  • The amide amino acids

    31

    Asparagine, Asn, N Glutamine, Gln, Q

  • The basic amino acids

    32

    Lysine, Lys, K Arginine, Arg, R

  • The imidazole amino acid

    33

    Histidine, His, H

  • Amino acids that accept a positive charge

    34

    Histidine

    H

    His

    Lysine

    K

    Lys

    Arginine

    R

    Arg

  • Aminoacids clasification

    Side chains of aminoacids

    Responsible for many of the

    uniques properties of proteins

    • charged or polar groups

    35

    • charged or polar groups

    provide interesting catalytic

    groups

    • nonpolar amino acids - a

    protein folding issue

  • Amino acid 3LC SLC Average Monoisotopic

    Glycine Gly G 57.0519 57.02146

    Alanine Ala A 71.0788 71.03711

    Serine Ser S 87.0782 87.02303

    Proline Pro P 97.1167 97.05276

    Valine Val V 99.1326 99.06841

    Threonine Thr T 101.1051 101.04768

    Cysteine Cys C 103.1388 103.00919

    Leucine Leu L 113.1594 113.08406

    Isoleucine Ile I 113.1594 113.08406

    Monoisotopic and Average Mass

    36

    Isoleucine Ile I 113.1594 113.08406

    Asparagine Asn N 114.1038 114.04293

    Aspartic acid Asp D 115.0886 115.02694

    Glutamine Gln Q 128.1307 128.05858

    Lysine Lys K 128.1741 128.09496

    Glutamic acid Glu E 129.1155 129.04259

    Methionine Met M 131.1926 131.04049

    Histidine His H 137.1411 137.05891

    Phenyalanine Phe F 147.1766 147.06841

    Arginine Arg R 156.1875 156.10111

    Tyrosine Tyr Y 163.1760 163.06333

    Tryptophan Trp W 186.2132 186.07931

  • What Proteomics

    can do?

    37

    can do?

  • Types of Experiments; key questions of Proteomics

    Protein separation In order identify each protein in the mixture.

    Protein identificationMass spectrometry

    Antibody based assays can also be used, but are unique to one sequence motif.

    Edman degradation used to confirm sequence when MS unavailable.

    Protein quantificationGel-based methods, differential staining of gels with fluorescent dyes (difference gel electrophoresis).

    Gel-free, various tagging or chemical modification methods, label free methods.

    Protein sequence analysisSearching databases.

    38

    Searching databases.

    Structural proteomics High-throughput determination of protein structures in three-dimensional space. Methods are x-ray crystallography and

    NMR spectroscopy.

    Interaction proteomicsThe investigation of protein interactions on the atomic, molecular and cellular levels.

    Protein modification Phosphoproteomics and glycoproteomics.

    Cellular proteomicsThe goal is to map location of proteins and protein-protein interactions during key cell events. Uses techniques such as

    X-ray Tomography and optical fluorescence microscopy.

  • Methods for protein analysis

    High resolution mass spectrometry methodsTop down methods

    Intact proteins

    Bottom up methods

    Digested peptides

    39

    Digested peptides

    De Novo Sequencing

    Gel based methodsOne/Two-dimensional gel electrophoresis

  • Protein digestion

    40

  • Why Trypsin

    • Very Specific R/ K/ except R/P K/P

    • Very Active

    • Can buy it in a very pure form

    – Promega, Sigma, Princeton Scientific

    • Resistant to digesting itself

    41

    • Resistant to digesting itself

    • K and R residues in an average protein are optimally spaced

    – Peptides are usually 600-3000 Da

    • For electrospray, fragments are at least doubly charged because of C term basic AA’s K and R

  • Chemical and enzymatic cleavage reagents

    42

  • Proteomics and Mass

    Spectrometry

    43

    Spectrometry

  • Methods for protein analysis

    High resolution mass spectrometry methodsTop down methods

    Intact proteins

    Bottom up methods

    Digested peptides

    44

    Digested peptides

    De Novo Sequencing

    Gel based methods One/Two-dimensional gel electrophoresis

  • Schematic representation of the top-down approach

    Protein mixture

    RP-HPLC

    ESI-FTICR MS

    25.00 50.00 75.00 100.00 125.00 150.00 175.00 200.00 225.00 250.00 275.00 300.00 325.00Time-2

    100

    %

    45

    m/z

    +

    ++

    +

    isolate

    dissociate

    +

    +

    +

    m/z

    m/z

    Compare experimental

    deconvoluted spectra

    with predicted

    spectra

    Protein identification

  • Peptide fragments

    Peptide mass fingerprintingHPLCProtein mixture

    1) Denaturation2) Reduction3) Alkylation4) Trypsin digestion

    Schematic representation of the bottom-up approach

    Mascot

    ProFound

    46

    Mass spectrometer

    Selected ion

    G L F E

    MS/MS

    Peptide sequence tagging

    Protein identification

    Database

    MS

    m/z

    m/z

    ProFound

    MS-Fit

    Mascot

    XTandem

    Sequest

  • Mass Spectrometry based protein identification

    Peptide Mass Fingerprinting (PMF)

    • Determine m/z of the peptide ions only (MS)

    Product Ion Scanning

    47

    Product Ion Scanning

    • Determine the m/z of the peptide ions (Parent ions)

    • Fragment peptide ions

    • Determine m/z of fragments (Product Ions)

  • Peptide Mass Fingerprinting

    48

  • Finger Print limitations

    • You need a mass spectrometer capable of reasonable

    accurate masses

    • Genome must be pretty small

    49

    Yeast or smaller for good results

    • Mixtures of two or more proteins can be a problem

  • Finger Print Advantages

    • Usually can give you better coverage

    • Very Fast

    • Easy

    50

    • Easy

    • Good preliminary screening

  • Product Ion Scanning

    • Digest Protein with trypsin

    • Determine the m/z of a peptide ion

    – ESI, MALDI

    • Isolate the peptide ion from any other ions

    51

    • Fragment the peptide ion

    • Determine mass of fragments

    • Obtain amino acid sequence data from fragments

  • NR Database approx

    1 Million protein

    sequences

    50 million tryptic

    peptide sequences

    SEARCHING....

    52

    =

    Match!!!

    Time = 15 seconds

    200 300 400 500 600 700 800 900 1000 1100 1200 1300m/z0

    100

    %

    733.2870138

    263.068777

    235.076841

    147.12386

    270.146333 602.2563

    32362.141126

    271.15634

    565.234920

    494.195616

    433.1906;7

    602.758619

    702.276712

    733.7970105

    734.296074

    1104.406645734.8063

    31 1033.373324

    789.328120

    918.347016

    972.4068;6

    1105.413322

    1203.516213

  • Computer Programs

    Thermo Scientific application specific software

    - Xcalibur data system (operating platform, Protein

    Calculator, Xtract)

    - BioWorks protein identification software

    53

    - Proteome Discoverer

    - Mass Frontier (structure of compounds)

    - MetWorks (drug methabolism software)

    - SIEVE (differential expression software)

  • Search Engines

    • 4 general Types

    – Automated De novo sequencing

    � Peaks

    � Lutefisk XP

    – Peptide Sequence tags

    � Guten Tag

    54

    � Guten Tag

    – Cross Correlation

    � SEQUEST

    – Probability Based

    � Mascot

    � xTandem 2

    � OMSSA

    � PROTE_PROBE

  • Peptide

    55

    Fragmentation

  • Peptide FragmentationRoepstorff Nomenclature for Possible Peptide Fragments

    b1 b2 b3

    c3 c2 c1

    a3 a2 a1 H+

    56

    NH2 C H

    R1

    C

    OHN CH

    R2

    C

    OHN CH

    R3

    C

    OHN CH COOH

    R4

    y3 y2 y1

    z3 z2 z1

    x3 x2 x1

  • Fragmentation scheme of a tetrapeptide showing

    the formation of b and y ions

    NH2

    CH NH

    CH NH

    CH NH

    CH OH

    R1

    O

    O

    O

    OR3

    R4R2

    H+

    57

    NH2

    CH NH

    CH OH

    O

    OR3

    R4

    NH2

    CHC

    NH

    CH

    R1

    O R2

    CO

    H++b2

    y2

  • Peptide Fragmentation

    (Low-Energy Collision induced fragmentation)

    • Under low energy dissociation conditions, peptides primarily fragment at the C-N bond.

    • If the charge is retained on the N terminal fragment, the ion is classed as either a, b or c.

    • If the charge is retained on the C terminal, the ion type is either x, y or z.

    58

    • A subscript indicates the number of residues in the fragment.

    • The loss of CO from the b ion is known as a-type ion

    • In addition, peaks are seen for ions which have lost ammonia (-17 Da) denoted a*, b* and y* and water (-18 Da) denoted a°, b° and y°.

  • The structures of the six singly charged sequence ion

    59

    http://www.matrixscience.com/help/fragmentation_help.html

  • Example of y and b ions in BioWorks™

    60

  • MRFA fragmentation

    61

  • M R F A

    To better undersand

    b1 b2 b3

    62

  • HCD vs. CID on MRFAE:\MRFA_CID_HCD

    MRFA_CID_HCD #183-198 RT: 3.01-3.27 AV: 16 NL: 1.93E7

    T: FTMS + p ESI Full ms2 [email protected] [50.00-600.00]

    50 100 150 200 250 300 350 400 450 500

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Re

    lative

    Ab

    un

    da

    nce

    271.12236

    R=84953

    C 11 H 19 O 2 N 4 S

    0.12432 ppm

    104.05283

    R=137349

    C 4 H 10 N S

    -0.18450 ppm

    288.14883

    R=82484

    C 11 H 22 O 2 N 5 S

    -0.13978 ppm

    237.12335

    R=91142

    C 12 H 17 O 3 N 2

    -0.09154 ppm

    376.19787

    R=72159

    C 18 H 26 O 4 N 5

    -0.16048 ppm

    524.26458

    R=61277

    C 23 H 38 O 5 N 7 S

    -0.72984 ppm

    453.22758

    R=67571

    C 20 H 33 O 4 N 6 S

    -0.60473 ppm

    56.04941

    R=187947

    C 3 H 6 N

    -1.20621 ppm

    185.10318

    R=103452

    C 7 H 13 O 2 N 4

    -0.67809 ppm

    149.07424

    R=118738

    C 5 H 13 O N 2 S

    -0.45283 ppm

    454.23074

    R=63433

    121.08394

    R=122565

    HCD

    63

    50 100 150 200 250 300 350 400 450 500

    m/z

    MRFA_CID_HCD #133-152 RT: 2.18-2.49 AV: 20 NL: 3.56E7

    T: FTMS + p ESI Full ms2 [email protected] [140.00-600.00]

    50 100 150 200 250 300 350 400 450 500

    m/z

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Re

    lative

    Ab

    un

    da

    nce

    271.12230

    R=84435

    C 11 H 19 O 2 N 4 S

    -0.07701 ppm

    453.22767

    R=65916

    C 20 H 33 O 4 N 6 S

    -0.38973 ppm

    376.19793

    R=71240

    C 18 H 26 O 4 N 5

    0.00283 ppm

    489.22757

    R=62061

    C 23 H 33 O 4 N 6 S

    -0.57564 ppm

    418.19077

    R=67476

    C 20 H 28 O 3 N 5 S

    0.07745 ppm

    229.10048

    R=89238

    C 10 H 17 O 2 N 2 S

    -0.18034 ppm

    306.15940R=79572

    C 11 H 24 O 3 N 5 S

    -0.13604 ppm

    181.09710

    R=104712

    C 9 H 13 O 2 N 2

    -0.29719 ppm

    153.10215

    R=115156

    C 8 H 13 O N 2

    -0.60042 ppm

    CID

  • 0

    20

    40

    60

    80

    100

    Rela

    tive A

    bundance

    524.26473R=124753

    C23 H38 O5 N7 S

    -0.44024 ppm

    525.26739R=120897

    C22 13C H38 O5 N7 S

    -1.77174 ppm 526.26062R=124362

    C23 H38 O5 N7 34S

    -0.27554 ppm

    NL:1.17E8

    MRFA_CID_HCD#252-259 RT: 4.34-4.53 AV: 8 T: FTMS + p ESI SIM ms [514.30-534.30]

    Elemental composition on MRFA

    measured

    64

    524 525 526 527 528

    m/z

    0

    20

    40

    60

    80

    100

    0524.26496R=123889

    C23 H38 O5 N7 S

    0.00001 ppm

    525.26769R=120637

    C22 13C H38 O5 N7 S

    -1.19110 ppm 526.26101R=118269

    C23 H38 O5 N7 34S

    0.47332 ppm

    NL:1.67E4

    C23 H38 O5 N7 S: C23 H38 O5 N7 S1p (gss, s /p:40) Chrg 1R: 124000 Res.Pwr . @FWHM

    simulated

  • 0

    1

    2

    3

    4

    5

    6

    Re

    lativ

    e A

    bun

    da

    nce

    526.26062R=124362

    C 23 H 38 O 5 N 7 34S

    -0.27554 ppm526.27045R=130297

    C21 13C 2 H 38 O 5 N 7 S

    -2.32164 ppm

    NL:1.17E8

    MRFA_CID_HCD#252-259 RT: 4.34-4.53 AV: 8 T: FTMS + p ESI SIM ms [514.30-534.30]

    NL:

    Isotopic distribution of 526.26 on MRFA

    measured

    65

    526.25 526.26 526.27 526.28 526.29

    m/z

    0

    1

    2

    3

    4

    5

    6526.26101R=118269

    C 23 H 38 O 5 N 7 34S

    0.47332 ppm526.27075R=96228

    C 21 13C 2 H 38 O 5 N 7 S

    -1.75871 ppm

    NL:1.67E4

    C 23 H 38 O 5 N 7 S: C 23 H 38 O 5 N 7 S 1p (gss, s /p:40) Chrg 1R: 124000 Res .Pwr . @FWHM

    simulated

  • Isotopic contribution of 13C and 34S in MRFA

    66

  • Detection Time & Mass Resolution

    526.26112

    526.27090

    526.26112

    526.27090

    13C2 and 34S isotopes

    C23H38N7O534S 526.2607 u 13C2C21H38N7O5S 526.2716 u

    ∆m = 0.0109 RP (m/∆m) = 48,000

    524.0 525.0 526.0 527.0

    m/z

    0

    50

    100

    Rela

    tive A

    bundance

    524.26489

    525.26761

    526.26112527.26415

    MRFAMolecular ion region

    67

    526.20 526.25 526.30 526.35

    m/z

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Rela

    tive A

    bundance

    526.26551

    Detect time: 375 ms; RP: 28,000

    Detect time: 750 ms; RP: 55,000

    Detect time: 1500 ms; RP: 95,000

  • „Freedom of fragmentation“ (and detection)

    • Combination of three different and complementary

    fragmentation techniques CID, HCD, and ETD for sequence

    assignments with absolute confidence.

    • Most comprehensive solution for

    – complex PTM analysis

    68

    – complex PTM analysis

    – intelligent sequencing of peptides

    – top-down and middle-down analysis

    – protein quantitation via stable isotope labelling such as

    iTRAQ™ or label-free quantitation

  • [M + 2H]+•

    [M + 2H]2+ + A- [M + 2H]+• + A

    Electron Transfer Dissociation (ETD)

    [c+H]+ + [z+H]+•

    c z••••

    69

    c z

  • 5

    10

    15

    20

    25

    30

    35

    40

    Re

    lative A

    bu

    nd

    an

    ce

    1216.75003

    1094.416691347.50003899.58335624.58335496.50001

    751.41668

    856.66669552.50001424.41667 1003.75002 1172.75003

    NL: 9.46E4

    SubP_SA#1 RT: 4137.28 AV: 1 T: ITMS + p ESI sid=35.00 sa Full ms2 [email protected] [185.00-2000.00] with supplemental activation

    Unreacted precursor ions

    c4 c5 c6 c7c8

    c9c10

    Importance of supplemental activation for ETD

    70

    400 500 600 700 800 900 1000 1100 1200 1300

    m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0856.66669552.50001424.41667 1003.75002 1172.75003

    1364.58337

    1216.75003

    1103.66669 1319.50003899.66669

    752.58335 1171.66670624.58335 1001.66669854.66669496.58334

    NL: 1.13E5

    SubP_noSA#1 RT: 4136.94 AV: 1 T: ITMS + p ESI sid=35.00 Full ms2 [email protected] [185.00-2000.00]

    without supplemental activation

    Charge-reduced

    species

    c4 c5c6

    c7c8 c9

    c10

    Unreacted precursor ions

    Example: Substance P

  • • ETD has no low mass cut off and provides for a complete interpretation of the spectrum.

    • ETD enables sequencing of larger peptides.

    • Peptide sequence information from CID and ETD spectra are complementary.

    ETD vs CID

    71

    • CID/ETD toggle method improves sequence coverage and increases protein ID confidence.

    • With ETD, high quality spectra are obtained for >2+ precursor ions.

    • Supplemental activation improves ETD of 2+ ions.

    • Digestion with LysC, AspN and GluC may provide additional benefits for proteome analysis with ETD.

  • CID and HCD of 667.74852+ (Sulfatation)

    200 300 400 500 600 700 800 900 1000 1100 1200 1300

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Re

    lative

    Ab

    un

    da

    nce

    627.76886z=2

    CID

    NL: 79.9593qSDDyGHMRF-amid

    72

    100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

    m/z

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Re

    lative

    Ab

    un

    da

    nce

    646.32288z=1 809.38684

    z=1

    452.24274z=1

    428.14029z=1

    589.30151z=1

    924.41412z=1

    1039.44141z=1

    321.20282z=1

    136.07515z=1 537.20648

    z=2

    271.12192z=1 1126.47327

    z=1

    HCD

    m/z

  • 0

    2 0

    4 0

    6 0

    8 0

    1 0 0

    Rela

    tive

    Ab

    und

    an

    ce

    4 9 6 . 7 9 1 6 9

    7 7 2 . 4 8 2 3 6

    2 3 9 . 1 1 3 5 3 7 0 1 . 4 4 4 8 9 8 7 3 . 5 3 0 3 3

    3 8 4 . 2 7 1 2 1

    HCD vs CID HTAGFIPRL-amide

    CID

    73

    2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

    m / z

    0

    2 0

    4 0

    6 0

    8 0

    1 0 0

    01 1 0 . 0 7 0 6 9

    7 7 2 . 4 8 2 0 6

    8 8 3 . 5 1 4 5 3

    7 0 1 . 4 4 4 6 4

    4 9 6 . 7 9 1 5 63 6 7 . 2 4 4 4 8

    6 0 9 . 3 1 3 1 7

    HCDHimm

  • HCD MS/MS Spectrum of Perisulfakinin

    74

  • Methods for protein analysis

    High resolution mass spectrometry methodsTop-down methods

    Intact proteins

    Bottom-up methods

    Digested peptides

    75

    Digested peptides

    De Novo Sequencing

    Gel based methods One/Two-dimensional gel electrophoresis

  • Automated de novo Sequencing of DPGWNNLKGLWamide using PEAKS™ Software

    76

  • Problems !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

    • You have two ladders of overlapping masses

    • Cannot tell which is a b ion or which is a y ion• Incomplete fragmentation

    • Chemical noise

    • Mass accuracy of some instruments are not good

    77

    • Mass accuracy of some instruments are not good

    enough to determine R groups– Glutamine and lysine differ by 0.036 .

    – Phenylalanine and oxidized methionine differ by 0.033

    – Gly + Val = 156.090 u and Arg = 156.101

  • Big Problem

    • Can take you a very long time to “sequence” a “good”

    product ion spectra without a computer

    – 30 minutes if your good

    – 1-2 days to never if you are not

    78

    – 1-2 days to never if you are not

    • One experiment can generate 10,000 MS/MS spectra

  • • Proteins due to their nature are very complex

    eg. cysteine – cysteine cross-linking, tertiary structure

    formation and post-translational modifications)

    Beside the amount...

    79

    • Proteins can be very large in size and hard to handle.

  • Decrease complexity

    • Separate proteins (before digestion)– 2-d electrophoresis– 1-d electrophoresis– Chromatography (RP, cation/anion exchange, size excision)– Immunoafinity– Molecular weight-centrifugation, ultrafiltration, solvent precipitation

    • Separate peptides (after digestion)– Multidimensional chromatography (MUDPIT)

    80

    – Multidimensional chromatography (MUDPIT)

    Reducing agents – detergents (SDS, CHAPS), salts (urea, guandine), acids (formic)

    Break sulfur bridges – DTT and use iodoacetamide to keep them from reforming

    Heat

  • Proteomics and Gel

    81

    Electrophoresis

  • Methods for protein analysis

    High resolution mass spectrometry methodsTop down methods

    Intact proteins

    Bottom up methods

    Digested peptides

    82

    Digested peptides

    De Novo Sequencing

    Gel based methodsOne/Two-dimensional gel electrophoresis

  • 2-D electrophoresis

    2-DE is a powerful separation technique, which

    allows simultaneous resolution of thousands of

    proteins.

    83

  • 2-D electrophoresis

    Disadvantages– Modest detection limit

    – High abundance proteins

    – Protein bias (pI)

    – Difficult to automate

    – Labor intensive

    – Requires many more mass

    84

    – Requires many more mass spec runs

    Advantages– High resolution separation

    – Can get quantitation by staining

    – Good “snapshot” of the Proteome!

  • Approach used to identify a spot from a 2-D gel analysis

    Excision ofprotein spot

    2-D gel

    Peptide fragments

    Mass spectrometer

    Peptide mass fingerprinting

    Gel spot

    DigestionExtraction

    MS

    85

    spectrometer

    Selected ion

    G L F E

    MS/MS

    Peptide sequence taggingSearch

    Protein identification

    Database(NR, EST)Database(NR, EST)

    Searc

    h

  • 1-D electrophoresis

    • Disadvantages– Difficult to automate

    – Very limited expression profiling

    • Advantages– No staining necessary

    In gel trypsin digestion

    [65

    -78

    ]

    [57

    7-5

    96

    ]

    M IS S W1 W2 W3 E1 E2 E3

    94

    67

    45

    M IS S W1 W2 W3 E1 E2 E3

    94

    67

    45

    A

    In gel trypsin digestion

    [65

    -78

    ]

    [57

    7-5

    96

    ]

    [65

    -78

    ]

    [57

    7-5

    96

    ]

    M IS S W1 W2 W3 E1 E2 E3

    94

    67

    45

    M IS S W1 W2 W3 E1 E2 E3

    94

    67

    45

    A

    86

    – No staining necessary

    – High protein recovery

    – Decreased runs needed

    • 2-50 proteins can be identified per band or section

    1200 1700 2200 2700 m/z

    [20

    8-2

    15

    ][6

    16

    -623

    ][2

    35

    -242

    ][7

    49

    -756

    ]

    [38

    -46

    ]

    [75

    7-7

    67

    ]

    [47

    -55

    ]

    [42

    0-4

    30

    ][3

    92

    -403

    ][4

    7-5

    7]

    [27

    1-2

    83

    ]

    [33

    7-3

    51

    ]

    [46

    4-4

    78

    ]

    [37

    2-3

    91

    ]

    [47

    9-4

    95

    ]

    [18

    -35

    ]

    [19

    5-2

    15

    ]

    [47

    9-5

    03

    ]

    B

    1200 1700 2200 2700 m/z

    [20

    8-2

    15

    ][6

    16

    -623

    ][2

    35

    -242

    ][7

    49

    -756

    ]

    [38

    -46

    ]

    [75

    7-7

    67

    ]

    [47

    -55

    ]

    [42

    0-4

    30

    ][3

    92

    -403

    ][4

    7-5

    7]

    [27

    1-2

    83

    ]

    [33

    7-3

    51

    ]

    [46

    4-4

    78

    ]

    [37

    2-3

    91

    ]

    [47

    9-4

    95

    ]

    [18

    -35

    ]

    [19

    5-2

    15

    ]

    [47

    9-5

    03

    ]

    1200 1700 2200 2700 m/z

    [20

    8-2

    15

    ][6

    16

    -623

    ][2

    35

    -242

    ][7

    49

    -756

    ]

    [38

    -46

    ]

    [75

    7-7

    67

    ]

    [47

    -55

    ]

    [42

    0-4

    30

    ][3

    92

    -403

    ][4

    7-5

    7]

    [27

    1-2

    83

    ]

    [33

    7-3

    51

    ]

    [46

    4-4

    78

    ]

    [37

    2-3

    91

    ]

    [47

    9-4

    95

    ]

    [18

    -35

    ]

    [19

    5-2

    15

    ]

    [47

    9-5

    03

    ]

    B

  • Typical MUDPIT Preparation

    (Multidimensional Protein Identification Technology)

    Protein digest mixtures

    SCX fractionation

    CID

    Micro

    electrospray

    ionization

    RPfractionation

    • Advantages

    – Dynamic Range 105

    – Sensitivity! Low

    abundance proteins

    – Minimized protein bias

    – Highly automated

    87

    MS-1 MS-2

    Auto MS/MS detection

    Tandem Mass Spectra

    Database searchprotein I.D.

    • Disadvantages

    – Poor isoform &

    modification distinction

    – Still overwhelms the

    mass spectrometer

    – Does not give you a

    very good “snapshot”

  • Post Translational

    Modification

    88

    Modification

  • After Translation

    Post-translational modifications

    • Phosphorylation – Ser, Thr, Tyr

    • Methylation – Lys

    • Oxidation – Met

    89

    • Oxidation – Met

    • Deamidation – Asn, Gln

    • Glycosylation

  • PTM Scanning

    • Can search data for unexpected modifications from the

    unimod database

    www.unimod.org

    90

  • Ways to look for PTM’s

    • Mass spectrometry– Good for PTM’s with a stable mass

    • Phosphorylation

    • Methylation

    • Acetylation

    – Difficult to analyze large modifications

    • Large carbohydrates

    91

    • Large carbohydrates

    • Edman Sequencing• Phosphorylation

    • Radio-labeling– Very sensitive

    – Usually hard to get the identity or AA with PTM

  • The Trinity of Protein Phosphorylation Analysis

    II. Identify the sites of phosphorylation

    I. Identify the kinase responsible for phosphorylation

    � Predict potential phosphorylation sites with the Scansite program

    (http://scansite.mit.edu)

    � Gel kinase assay

    92

    II. Identify the sites of phosphorylation

    III. Identify the function of phosphorylation

    � Generate mutants forms of protein for in vitro testing

    � Separate phosphoproteins by SDS-PAGE

    � Digest in-gel the phosphoproteins to generate (phospho)peptides

    � MS/MS analysis

  • Most important part of finding PTM’s

    • Protein Coverage!

    93

  • Problems with Mass spec approach

    • Cannot prove a negative

    – Just because you do not see your PTM does not

    mean it is not there!

    94

  • Some common PTM’s

    95From Jensen et al. nature march 2003 vol 21

  • Data Dependent NL MS3 method setup for

    96

    method setup for phopshorylation

    identification

  • LTQ Orbitrap MS LTQ Orbitrap MS

    Instrument configuration settings

    97

  • Configuration window: important settings

    98

  • Data Dependent NL MS3

    99

  • NL in MS2 trigger MS3

    100

  • Scan events

    1. First scan

    event is the

    reference scan

    (usually a FTMS

    full scan)

    2. All subsequent

    scans events may

    be dependent on

    scan event 1.

    101

    scan event 1.

    3. A scan

    depending on a MS

    scan will produce a

    MS/MS spectrum. A

    scan depending on

    a MS/MS scan will

    produce a MS3

    spectrum

  • Scan event 2

    102

  • Scan event 2. Settings

    103

  • NL masses

    104

  • Scan event 2 determined from Scan event 1

    .

    105

  • Scan event 3 (MS3 of the peaks which lost phosphate)

    106

  • Monoisotopic precursor selection toggle…

    see next slide

    107

  • … And What It Does

    • Problem: monoisotope signal is lower abundant than first isotope⇒ wrong precursor ion mass would be used for db searches ⇒ wrong results

    • Monoisotope Toggle reads the

    108

    • Monoisotope Toggle reads the charge state…

    • …calculates a theoretical pattern for the measured m/z…

    • …determines the correct monoisotope signal ⇒ correct results from db search

  • Non-Peptide Monoisotopic Recognition…

    see next slide

    109

  • …And What It Does

    • determines a charge state (isotope distance) for a

    detected signal cluster

    • looks for a signal left from the most abundant signal

    • this signal needs to have at least 60% intensity of the

    110

    • this signal needs to have at least 60% intensity of the

    highest one

    • the toggle will only work if the isotope cluster follows a

    ‚standard intensity deviation‘ → ‚Cl‘ or ‚Br‘ containing

    cluster will not work

  • New features

    • Use m/z values as Mass

    – Triggers only one charge state out of a CS distribution

    • Chromatography Trigger

    – Peak apex triggering

    111

    – Peak apex triggering

    • NL Triggered HCD

    – Performs HCD fragmentation on precursors, which carry modifications, which result in CID spectra with NL

  • “Use m/z values as Mass”

    112

    � triggers only the most intense charge state of a charge state distribution

  • “Use m/z values as Mass”

    60

    70

    80

    90

    100

    Rela

    tive A

    bu

    nd

    an

    ce702.11792

    z=4

    561.89581z=5

    539.08704z=5

    113

    400 500 600 700 800 900 1000

    m/z

    0

    10

    20

    30

    40

    50

    Rela

    tive A

    bu

    nd

    an

    ce

    673.85785z=4 722.35474

    z=3

    935.82166z=3803.94409

    z=2388.22092z=2

    897.80676z=3

  • Neutral Loss Triggered HCD

    OT-FS

    OT-CID1

    OT-CID2

    NL?OT-HCDno

    yes

    114

    OT-CID2

    OT-CID3

    OT-HCD

    OT-HCD

    NL?

    NL?

  • RT: 0.00000 - 39.96544

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

    Time (min)

    0

    20

    40

    60

    80

    100

    Re

    lative

    Ab

    un

    da

    nce

    30.99966478.31247

    31.07783478.31296

    11.53153589.80402

    13.32670495.75748

    31.23676478.31235

    15.00021717.86932

    28.56122353.1505717.43568

    678.8215310.94827

    410.19772 31.38696478.31326

    24.80037499.22260

    21.24148367.12732

    2.21873311.98303

    39.76065519.13251

    4.55575519.13116

    36.70453519.13214

    NL: 7.07E7

    Base Peak F: FTMS + p NSI Full ms [300.00-1400.00] MS ft051117_DEK_16_MDM_TBB_K25_ph

    ft051117_DEK_16_MDM_TBB_K25_ph #746 RT: 12.53 AV: 1 NL: 1.40E6T: FTMS + p NSI Full ms [300.00-1400.00]

    50

    100

    Re

    lative

    Ab

    un

    da

    nce

    633.36344R=65778

    z=3475.27383R=88272

    z=4

    802.42220R=51415

    z=11097.15152

    R=32148z=3

    707.28542R=57530

    z=3

    380.22460R=136210

    z=5

    944.39175R=44574

    z=2

    533.26548R=101970

    1144.00233R=29975

    z=?

    984.36977R=35330

    z=?

    852.89723R=34052

    z=?

    x10

    FTMS

    Base Peak Chromatogram

    *-1.02 ppm

    Identification of phosphorylated Ser-303 in DEK

    protein using NLMS3 method

    115

    300 400 500 600 700 800 900 1000 1100 1200 1300 1400

    m/z

    0

    Re

    lative

    Ab

    un

    da

    nce

    z=3z=3

    R=136210z=5

    z=2R=101970

    z=2 z=?R=35330

    z=?R=34052

    z=?

    ft051117_DEK_16_MDM_TBB_K25_ph #750 RT: 12.57 AV: 1 NL: 4.70E3T: ITMS + c NSI d Full ms2 [email protected] [250.00-1900.00]

    300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

    m/z

    0

    20

    40

    60

    80

    100

    Re

    lative

    Ab

    un

    da

    nce

    895.4

    886.5

    926.5 1289.1599.2470.2 1418.1877.4 1191.11003.2714.2 822.4581.2 1118.2 1741.31630.31532.4433.1

    967.2

    823.7

    345.2309.0

    ft051117_DEK_16_MDM_TBB_K25_ph #751 RT: 12.58 AV: 1 NL: 1.39E2T: ITMS + c NSI d Full ms3 [email protected] [email protected] [235.00-1805.00]

    300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

    m/z

    0

    20

    40

    60

    80

    100

    Re

    lative

    Ab

    un

    da

    nce

    1191.1886.4

    1320.2599.2 877.4

    470.1 714.2 787.1 1192.21076.2822.4 1003.2581.31643.21532.21321.31173.2765.6

    1118.3

    1302.41004.3 1661.4985.3700.6

    600.1

    474.1 1626.31514.5

    916.3

    1445.4373.2943.2

    327.3 1334.4

    1463.1

    529.7

    407.0

    ITMS2 (944.39)

    ITMS3 (895.43)

    299KESEpSEDSSDDEPLIK314

    299KESEDhaEDSSDDEPLIK314

    [M-H3PO4+2H]2+

  • 299KESEpSEDSSDDEPLIK314

    pm -H3PO4

    pm -H3PO4 -H2O

    Identification of phosphorylated Ser-303 in DEK protein

    using NLMS3 method and Bioworks

    IT MS2

    116

    299KESEDhaEDSSDDEPLIK314

    pm -H2O

    pm -2H2O

    IT MS3

  • Identification of the phosphorylation site Ser-39 from eIF3c subunit using neutral loss/MS3 method

    117

  • Multiphosphorylation of the N-terminal part of eIF3c

    118

  • Neutral Loss Scanning

    119

    (A) elimination of phosphate from phosphothreonine to produce dehydroamino-2-butyric acid (scheme isalso valid for phosphoserine where dehydroalanine forms) and phosphoryc acid

    (B) absence of the same mechanistic pathway for b-elimination of phosphate from phosphotyrosine.

  • Mechter_1880_3+_ETD_FT_Recal #1-20 RT: 0.01-0.31 AV: 20 NL: 3.18E5T: FTMS + p NSI Full ms2 [email protected] [120.00-1500.00]

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Re

    lative A

    bu

    nd

    an

    ce

    459.2254z=3

    LTQ Orbitrap XL ETD for Phosphopeptide Analysis

    RpSRGGKLGpSLGK

    [M+3H]3+

    [M+3H]2+•

    120

    200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

    m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    Re

    lative A

    bu

    nd

    an

    ce

    623.7946z=2

    1076.4759z=1

    688.8367z=2

    554.2560z=1

    1360.6494z=1

    341.1339z=1

    908.4700z=1798.3886

    z=1 1036.5426z=1

    739.3722z=1497.2346

    z=1

    301.2004z=1

    1247.5928z=1

    1343.6226z=1

    1150.5386z=1

    258.1456z=?

    426.5608z=3

    938.5614z=1

    ∆pS

    ∆pS

    [M+3H]2+•

    174.1356

    z=1

    Phosphopeptide standards courtesy of Karl Mechtler, IMP Vienna, Austria

  • LTQ Orbitrap XL ETD for Phosphopeptide Analysis

    using ETD

    121Phosphopeptide standards courtesy of Karl Mechtler, IMP Vienna, Austria

  • CID and HCD of 667.74852+ (Sulfatation)

    200 300 400 500 600 700 800 900 1000 1100 1200 1300

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Re

    lative

    Ab

    un

    da

    nce

    627.76886z=2

    CID

    NL: 79.9593qSDDyGHMRF-amid

    122

    100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

    m/z

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Re

    lative

    Ab

    un

    da

    nce

    646.32288z=1 809.38684

    z=1

    452.24274z=1

    428.14029z=1

    589.30151z=1

    924.41412z=1

    1039.44141z=1

    321.20282z=1

    136.07515z=1 537.20648

    z=2

    271.12192z=1 1126.47327

    z=1

    HCD

    m/z

  • Intact protein

    analysis

    123

    analysis

  • C1080 H1697 N268 O325 P5 S6

    Beta-casein (5x phosphorylated)

    Analysis of intact phosphoproteins reveals the

    number of phosphorylation sites

    124

    experimentalsimulated∆∆∆∆m = 1.3 ppm

    RELEELNVPGEIVESLSSSEESITRINKKIEKFQSEEQQQ

    TEDELQDKIHPFAQTQSLVYPFPGPIPNSLPQNIPPLTQT

    PVVVPPFLQPEVMGVSKVKEAMAPKHKEMPFPKYPVEPFT

    ESQSLTLTDVENLHLPLPLLQSWMHQPHQPLPPTVMFPPQ

    SVLSLSQSKVLPVPQKAVPYPQRDMPIQAFLLYQEPVLGP

    VRGPFPIIV

    1

    209

  • - 5 HPO3

    Alkaline Phosphatase

    Dephosphorylation by AP treatment reveals the number of

    phosphorylation sites

    125

  • Amino acid sequence of bovine Carbonic Anhydrase II

    SHHWGYGKHNGPEHWHKDFPIANGERQSPVDIDTKAVVQDPALKPLALVY

    GEATSRRMVNNGHSFNVEYDDSQDKAVLKDGPLTGTYRLVQFHFHWGSSD

    DQGSEHTVDRKKYAAELHLVHWNTKYGDFGTAAQQPDGLAVVGVFLKVGD

    ANPALQKVLDALDSIKTKGKSTDFPNFDPGSLLPNVLDYWTYPGSLTTPP

    LLESVTWIVLKEPISVSSQQMLKFRTLNFNAEGEPELLMLANWRPAQPLK

    Ac-

    126

    LLESVTWIVLKEPISVSSQQMLKFRTLNFNAEGEPELLMLANWRPAQPLK

    NRQVRGFPK

    Sum Formula: C1312H1996N358O384S3

    Monoisot. Mass: 29,006.682670

    N-Terminus: N-Acetylation

  • Full FTMS of the Bovine Carbonic Anhydrase II

    700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400

    m/z

    0

    50

    100

    Rela

    tive A

    bundance

    937.25580R=80000

    854.64618R=84404

    1001.82526R=80500807.22192

    R=843001076.03418

    R=71501 1161.95667R=70104

    1210.32898R=73100

    745.25647R=91604

    1320.17651R=65704 1383.28064

    R=65304

    0

    50

    100

    Rela

    tive A

    bundance

    937.25580R=80000

    907.99872R=78304

    968.46460R=76400

    1001.82526R=80500

    880.54437R=77500

    951.14423R=82400

    1007.26550R=83300

    127

    ∆∆∆∆m = 0.44 ppm

    880 900 920 940 960 980 1000

    m/z

    0

    Rela

    tive A

    bundance

    28955 28960 28965 28970 28975 28980 28985 28990 28995 29000 29005 29010

    m/z

    0

    50

    100

    Rela

    tive A

    bundance

    29006.66975

    29010 29015 29020 29025 29030 29035

    m/z

    0

    50

    100

    Rela

    tive A

    bundance

    29023.7186329026.72841

    29020.7163529028.73130

    29018.71561 29030.72314

    29032.7259629016.71637

  • CAIII_SIM_1001 #1 RT: 38.6 AV: 1 NL: 1.21E6T: FTMS + p ESI Full ms3 [email protected] [email protected] [275.00-1400.00]

    0

    20

    40

    60

    80

    100

    Rela

    tive A

    bundance

    1001.85901R=79200

    1033.56897R=63604

    951.12561R=67704

    436.66791R=108704

    866.92560R=39704

    1155.01184R=48704

    1320.69739R=45804

    527.01331R=88404

    337.77481R=104904

    673.80261R=72301

    Isolation of the [M+29H]29+ ion of the Bovine Carbonic

    Anhydrase II

    128

    300 400 500 600 700 800 900 1000 1100 1200 1300 1400

    m/z

    CAIII_SIM_1001 #1 RT: 38.6 AV: 1 NL: 1.21E6T: FTMS + p ESI Full ms3 [email protected] [email protected] [275.00-1400.00]

    1001.0 1001.5 1002.0 1002.5 1003.0 1003.5

    m/z

    0

    20

    40

    60

    80

    100

    Rela

    tive A

    bundance

    1001.85901R=79200

    1001.96216R=78904

    1001.68750R=76604

    1002.03101R=77304

    1001.61847R=77104 1002.10010

    R=75904

    1002.54681R=70604

    1003.20111R=75104

    1002.20349R=69404

    1002.75409R=71704

    1001.51563R=724041001.24005

    R=67204

    1003.44348R=755041000.99670

    R=67204

  • Higher Energy Collision Dissociation (HCD) of the [M+34H]34+ ion

    T: FTMS + p ESI Full ms2 [email protected] [100.00-1400.00]

    18

    20

    22

    24

    26

    28

    30

    Re

    lative

    Ab

    un

    da

    nce

    539.28272z=1

    159.09247z=1 519.04469

    HCD (854.0)

    129

    200 400 600 800 1000 1200 1400

    m/z

    0

    2

    4

    6

    8

    10

    12

    14

    16

    Re

    lative

    Ab

    un

    da

    nce

    z=1 519.04469z=5 836.80323

    z=?

    337.18795z=1

  • HCD Fragmentation Details using ProSight PTM

    130

  • HCD Fragmentation Details using ProSight PTM

    131

  • T: FTMS + p ESI Full ms2 [email protected] [235.00-1400.00]

    60

    70

    80

    90

    100

    Re

    lative

    Ab

    un

    da

    nce

    951.14404z=8

    592.93689z=5

    807.23987z=19

    1095.21057z=8

    CID (854.0)

    Collision Induced Dissociation (CID) of the [M+34H]34+ ion

    132

    400 600 800 1000 1200 1400

    m/z

    0

    10

    20

    30

    40

    50

    Re

    lative

    Ab

    un

    da

    nce

    1251.52588z=7

    1134.52502z=1

  • CID Fragmentation Details using ProSight PTM

    133

  • CID Fragmentation Details using ProSight PTM

    134

  • Ubiquitin_ETD_11 #1-106 RT: 0.01-6.13 AV: 106 NL: 1.10E3T: FTMS + p ESI Full ms2 [email protected] [210.00-2000.00]

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Re

    lative A

    bu

    nd

    an

    ce

    277.1328z=1

    948.1839z=3

    1136.6501z=1

    390.2168z=1 869.7391

    z=4

    ETD spectrum of Ubiquitin, 12+ charge state, with

    Orbitrap detection

    *

    135

    400 600 800 1000 1200 1400 1600 1800

    m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    Re

    lative A

    bu

    nd

    an

    ce

    z=4

    537.2850z=1

    1347.2301z=2790.4653

    z=2636.3535

    z=11012.2238

    z=3764.4484

    z=1

    1108.7627z=6

    1159.3174z=3

    1273.6870z=4

    669.3921z=2 1421.7778

    z=6433.2516z=2

    1702.7334z=5

    1486.8083z=5

    305.1328z=?1

    * http://upload.wikimedia.org/wikipedia/commons/a/ac/Ubiquitin_cartoon.png

  • FUNDAMENTAL: Mass Accuracy

    Parts per million = [Masstheor - Massexp ]

    Massx 106

    (PPM)

    136

    Masstheor(PPM)

  • Avandia_pos_05a #670 RT: 17.24 AV: 1 NL: 8.27E6F: FTMS + p ESI Full ms [100.00-1000.00]

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rela

    tive

    Abundance

    358.1217

    Mass Accuracy and Resolving Power

    N NO

    NH

    S

    O

    O

    Rosiglitazone

    C18H19N3O3S

    [M+H]+ 358.12199

    error: 0.77 ppm

    R 60,000 @m/z400

    ⇒⇒⇒⇒ R = 77,000

    137

    358.2 358.4 358.6 358.8 359.0 359.2 359.4 359.6 359.8 360.0 360.2

    m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    Rela

    tive

    Abundance

    359.1249

    360.1175

  • Mass Accuracy and Resolution: Clozapine

    Clozapine_Mix #2104 RT: 25.47 AV: 1 NL: 2.03E5T: FTMS + p NSI Full ms [90.00-800.00]

    326.5 327.0 327.5 328.0 328.5 329.0 329.5

    m/z

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Re

    lative A

    bu

    nd

    an

    ce

    327.1374R=9300

    329.1340

    R=9300328.1407

    R=9200

    Clozapine_Mix #813 RT: 2.93 AV: 1 NL: 4.15E5T: FTMS + p NSI Full ms [150.00-800.00]

    326.5 327.0 327.5 328.0 328.5 329.0 329.5

    m/z

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Re

    lative A

    bu

    nd

    an

    ce

    327.1371R=18400

    329.1338R=18800

    328.1406R=18600

    R 7,500 Scan 0.3 sec R 15,000 Scan 0.3 sec

    error: 0.9 ppm error:

  • Mass spectrometers do not measure mass, but m/z!

    � If a peptide with a mass of 700 Da gets ionized and

    acquires 2 protons at pH 3.0

    � The mass spectrometer sees

    700+2 = 702/2 = 351.00

    Mass to charge (m/z)

    139

    700+2 = 702/2 = 351.00

    � This mass is referred to as [M+2H]2+

  • 100

    60

    80

    648.82

    649.32

    Determining Charge State

    649.32-648.82=0.5

    1/0.5=2 (charge state)

    140

    648 649 650 651

    m/z

    0

    20

    40

    649.81

    650.31

    (648.82*2)-2 = M 1295.64

    m/z= 648.82

  • Lock Mass

    141

    Lock Mass

  • Ions which can be used as lock masses during

    online LC-MS analyses

    The

    polydimethylcyclosiloxane

    (PCM) ions generated in the

    electrospray process from

    ambient air (protonated

    (Si(CH3)2O))6; m/z 445.120025) were used for

    internal recalibration in real

    142Olsen, Mann et al. Mol. Cell. Proteomics 2005, 4: 2010-2021“Parts per million mass accuracy on an orbitrap mass

    spectrometer via lock-mass injection into a C-trap.”

    internal recalibration in real

    time.

  • Detection

    Internal calibration = Lock Mass

    Injection of the calibrantInjection of analyte

    Mixing of ion populations and ejection

    143

    Olsen, Mann et al. Mol. Cell. Proteomics 2005, 4: 2010-2021

    “Parts per million mass accuracy on an orbitrap mass

    spectrometer via lock-mass injection into a C-trap.”

  • Internal Calibration

    • Lock masses are isolated in the LTQ with a reduced

    inject time.

    • The C-Trap is filled with them. The reduced inject time

    adjusts the lock mass intensity to appr. 5%.

    • The LTQ is filled for a second time using the full inject

    time.

    144

    time.

    • Ions from the second filling are moved to the C-trap and

    mixed with the previous ion population of the calibrant.

    • Ions are shot into the orbitrap.

    • After the transient acquisition and data processing an

    existing calibration function is adjusted based on the

    measured frequencies of the lock masses.

  • Getting the most from your lock mass

    • For a specific compound of interest use a lock mass

    close in mass

    • Note: if you have a lock mass at low m/z but your

    compound has high m/z, it might be better to use

    external calibration

    • Generally: we recommend using 1 lock mass only

    145

    • Generally: we recommend using 1 lock mass only

    • If you put more lock masses, you need fill time for each

    of them, and it does not necessarily improve the result

    • If no lock mass is found the system applies the last

    external calibration

    • Thus, you should keep your orbitrap externally well

    calibrated anyway!

  • Internal Calibration: Tune Setup

    146

    1. Locking ON

    2. Enter accurate mass of a known compound

  • Internal Calibration: Method Setup

    • Enable lock mass in the current method ‘L’

    • Can edit lock masses

    • A lock mass from the ‘method’ take preference over the

    lock mass from ‘Tune’ file

    147

  • Ionisation and desorption in ESI mass spectrometry

    Electrospray Solvated

    Macromolecular Ion

    Aerosol droplets Desolvated

    Macromolecular Ion

    spray

    Electrospray Solvated

    Macromolecular Ion

    Aerosol droplets Desolvated

    Macromolecular Ion

    spray

    148

    Ions are formed by spraying the solution from a fine needle into an electric field at

    atmospheric pressure.

    The droplets pick up charges, in the form of protons; solvent evaporates as the

    droplets enter the lower pressure regions of the instrument leaving “naked” intact

    peptides with varying numbers of charges

    (z =1,2,3,4…n).

  • Protein

    Quantification

    149

    Quantification

  • Why Quantitate on the protein level

    • There can be a big disconnect between the mRNA level

    and the protein level

    – Protein Turn over

    – Post-translational modifications

    150

  • • Gel based

    • LC-MS based

    • Label free approaches

    • Stable isotope labelling

    Quantitation in Proteomics

    151

    • Stable isotope labelling

  • Differential proteomics

    Comparison of the relative amounts of proteins between

    two or more biological samples

    - Diseased vs healthy

    - Larva vs pupa vs adult

    152

    - Larva vs pupa vs adult

    - Sepsis - die vs live

  • • Samples to be run in tandem

    • Labeled and unlabeled peptides to elute together (LC)

    • Labeled and unlabeled peptides ionize similarly (ESI)

    Labeling methods

    Allow to:

    153

    • Labeled and unlabeled peptides ionize similarly (ESI)

  • Quantitation with Isotope Labels

    • Incorporate a ‘mass tag’ into protein or peptide

    – Create heavy and light version

    • Mix the labeled samples

    • Analyse together

    • Use mass spectrometer to differentiate the heavy from

    light versions

    154

    • Compare to get the ratio

    Light (L)

    1036 1037 1040 1043 1044 10450

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Rela

    tive

    Abundance

    1039.5125z=2

    1043.0231z=2

    1038 1039

    1038.5087z=2

    1039.0102z=2

    1038.0074z=2

    Heavy (H)

    1041 1042m/z

    1041.0171z=2

    1042.0200z=2

    1042.5215z=2

    1041.5186z=2

    Ratio

    H:L = 2.1

  • General idea: Differential proteomics

    Enzymatic digestion (Trypsin)

    LC/MS/MS

    In the LC, heavy and light co-elute

    MS

    155m/z

    rela

    tive a

    bundance

    Normal (12C)

    Abnormal (13C)

    Peptide found to be

    up regulated in

    abnormal sample

    MS/MS

  • rela

    tive a

    bundance

    MS/MS

    Fragment ion masses

    help to identify

    peptide sequence

    belonging to a

    specific protein

    General idea: Differential proteomics

    fragment ions

    156

    m/z

    rela

    tive a

    bundance

    specific protein

    Protein determined to

    be up regulated in

    abnormal sample

  • Stable isotope labeling methods

    - Isotope-Coded Affinity Tagging (ICAT)

    - Hydrogen vs deuterium (8 Da separation)

    - 13C vs 12C (9 Da separation)

    - Isotope Tagging for Relative and Absolute protein Quantitation (iTRAQ)

    - Four isobaric reagents

    157

    - Four isobaric reagents

    - Compare quantity of reporter molecule in MS/MS

    - Stable Isotope Labeling of Amino acids in Cell culture (SILAC)

    -Cell growth in stable isotope-enriched media (13C Glucose, 15N Ammonium, 2H Water)

  • Isotope-Coded Affinity Tagging (ICAT)

    X = Hydrogen (Light)

    or

    Deuterium (Heavy)

    8 Da difference

    158

    http://dir.niehs.nih.gov/proteomics/emerg2.htm

    Binds to and modifies

    cysteine residues

    (alkylation)

    Used to affinity

    capture reacted

    cysteine containing

    peptides (avidin)

  • ICAT

    - Analyze only the peptides containing cysteine

    - Reduce complexity of sample

    - Cys relative abundance 2.5%

    - Problems with getting the hydrogen and deuterium labeled -

    - peptides to co-elute

    159

    - Changed linker chain so that carbons were isotopically

    labeled (13C vs 12C, 9 Da separation)

    - 13C and 12C peptides co-elute

    - Reducing complexity also means missing a lot of peptides

    and reduction in confidence in protein identification

  • Stable Isotope Labeling of Amino acids in Cell culture (SILAC)

    � SILAC uses in vivo metabolic incorporation of “heavy” 13C- or 15N-labeled amino acids into proteins followed by mass spectrometry-based analysis.

    � ‘Kits’ commercially available

    160

    Everly, P.A., et al. (2004).Quantitative cancer proteomics: Stable isotope labeling with amino acids (SILAC) as a tool for prostate cancer research. Mol & Cell Proteomics. 3.7: 729-735.

    Mann, M. (2006). Functional and quantitative proteomics using SILAC. Nature Reviews. 7:952-959.

  • SILAC workflow

    161Mann, M. (2006). Functional and quantitative proteomics using SILAC. Nature Reviews. 7:952-959.

  • Isotope Tagging for Relative and Absolute proteinQuantitation (iTraq)

    162

    iTraq is a registered Trademark od Applied Biosystems

  • iTraq-Chemistry

    163

    covalently links an iTRAQ™ reagent

    isobaric tag with each lysine side chain

    and N-terminal group of a peptide

    ensures that an iTRAQ™ reagent-labeled peptide,

    whether labeled with iTRAQ™reagent 114, 115,

    116, or 117, displays at the same mass

  • RT: 0.00000 - 47.89528

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rela

    tive A

    bundance

    10.06990721.39038

    21.85394778.72766

    16.06159854.79303

    26.23417883.45465

    6.41333446.94089

    Base peak chromatogram and MASCOT identification

    of proteins from the PRG study sample

    *

    ******

    *

    1640 5 10 15 20 25 30 35 40 45

    Time (min)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    Rela

    tive A

    bundance

    446.94089

    11.21418677.84949

    5.96203317.22058

    16.67878855.12280

    30.468841204.97388

    5.68283384.24384

    40.22073432.23828

    34.65009404.207492.31799

    323.16766

  • C:\Documents and Settings\...\ft050930_5 9/30/2005 3:43:18 PM itraq_1

    RT: 0.00000 - 47.89528

    0 5 10 15 20 25 30 35 40 45

    Time (min)

    0

    50

    100

    0

    50

    100

    Re

    lative

    Ab

    un

    da

    nce 10.06990

    721.3903821.85394

    778.7276616.06159854.79303

    26.23417883.45465

    6.41333446.94089 30.46884

    1204.97388 40.22073432.23828

    34.65009404.20749

    45.88895308.22272

    2.31799323.16766

    21.42729844.45465

    NL: 2.83E7

    Base Peak F: FTMS + p NSI Full ms [300.00-1600.00] MS ft050930_5

    NL: 7.87E6

    m/z= 844.44786-844.46474 F: FTMS + p NSI Full ms [300.00-1600.00] MS ft050930_5

    ft050930_5 #2288 RT: 21.43 AV: 1 NL: 7.72E6F: FTMS + p NSI Full ms [300.00-1600.00]

    50

    100

    Re

    lative

    Ab

    un

    da

    nce

    844.45465R=49220

    z=2563.30560R=74662

    z=3896.09943R=47783

    z=31132.62744 1522.14624672.07874 1388.82874831.95197 1001.13818545.85303 1206.24377436.46356380.55933

    MS2 identification of an iTRAQ labeled tryptic peptide from BSA

    and quantification of the tag in a subsequent MS3 scan

    FTMS

    *

    165

    300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

    m/z

    0

    Re

    lative

    Ab

    un

    da

    nce

    z=31132.62744

    R=35651z=?

    1522.14624R=26857

    z=?

    672.07874R=71282

    z=4

    1388.82874R=28179

    z=?

    831.95197R=57961

    z=2

    1001.13818R=38096

    z=?

    545.85303R=70488

    z=?

    1206.24377R=28228

    z=?

    436.46356R=78460

    z=?

    380.55933R=61628

    z=?

    ft050930_5 #2268 RT: 21.27 AV: 1 NL: 3.68E4T: ITMS + c NSI d Full ms2 [email protected] [220.00-1700.00]

    300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

    m/z

    0

    50

    100

    Re

    lative

    Ab

    un

    da

    nce

    965.2723.3866.3291.1

    822.4652.2 1083.41036.3719.3605.2 1397.5966.2

    1183.3724.3 867.2406.2 1212.4 1282.31084.4 1543.5505.3 969.4821.6653.2345.1 1442.5868.3466.1 534.2 1545.51085.5 1526.51019.4 1214.5246.1 761.3 1661.4

    ft050930_5 #2272 RT: 21.30 AV: 1 NL: 4.62E3T: ITMS + c NSI d Full ms3 [email protected] [email protected] [70.00-595.00]

    100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290

    m/z

    0

    50

    100

    Re

    lative

    Ab

    un

    da

    nce

    246.1

    116.9 274.1113.9 144.9

    230.2163.0

    228.0147.0 273.1100.8

    569TVMENFVAFVDK580

    ITMS2

    ITMS3

    FTMS

    y1

  • MS/MS identification of the iTRAQ labeled peptide 569TVMENFVAFVDK580

    166

  • Precursor Ion 1319.144 (2+)

    HCD MS/MS of iTRAQ labelled Peptide

    167

  • 50

    60

    70

    80

    90

    100

    Re

    lativ

    e A

    bu

    nd

    an

    ce

    Carbonic Anhydrase (1 : 0.5 : 0.2 : 0.03)

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Rela

    tive

    Ab

    und

    an

    ce

    114.11012

    115.10724

    116.11040

    117.11372

    # bSeq

    .y #

    1 244.1778 V 9

    2 357.2618 L 1018.5901 8

    3 472.2888 D 905.5060 7

    4 543.3259 A 790.4791 6

    168

    200 400 600 800 1000 1200

    m/z

    0

    10

    20

    30

    40

    50

    Re

    lativ

    e A

    bu

    nd

    an

    ce

    114 115 116 117

    m/z

    0 5 656.4099 L 719.4420 5

    6 771.4369 D 606.3579 4

    7 858.4689 S 491.3310 3

    8 971.5530 I 404.2989 2

    9 K 291.2149 1

  • HCD/iTRAQ

    • No „low mass cutoff“ with HCD fragmentation

    • Good quantitation in the low mass region

    • Good sensitivity

    169

    • Good sensitivity

    �No limits to detect reporter ions and

    fragments in one spectrum

    �Good peptide ID

    �Good quantitation

  • Label-Free Approach

    Sample 1

    Sample 2

    170

    • Align chromatographic traces (The quality of the alignment software is a key parameter in the comparative LC-MS procedure)• Match peptide mass/charge state• Quantify based on elution profile of each peptide• Identify using MS/MS spectra

  • 171Comparative LC-MS: A landscape of peaks and valleys, Proteomics, 2008Antoine H. P. America and Jan H. G. Cordewener

  • ABRF Competition PRG 2007

    Thermo Fisher: BRIMS (LTQ Orbitrap)

    Thermo Fisher: SJ Proteomics Marketing (LTQ Orbitrap)

    172

  • RP-HPLC basics

    173

    RP-HPLC basics

  • Analysis and purification of

    proteins and peptides by Reversed-Phase HPLC

    • Separation of peptide fragments from enzymatic digests.

    • Purification of natural and synthetic peptides.

    • Study enzyme subunits and research cell functions.

    174

    • Study enzyme subunits and research cell functions.

    • Analysis of protein therapeutic products.

    • To verify conformation and to determine degradation

    products in intact proteins.

  • Mechanism of interaction between polypeptides and

    RP-HPLC columns

    175

    RP-HPLC separates polypeptides based on subtle differences in

    the “hydrophobic foot” of the polypeptide being separated.

  • Isocratic versus gradient elution

    Shallow gradients can be used very effectively to separate

    similar polypeptides where isocratic separation would be

    impractical.

    176

  • The role of the column in polypeptide separations

    by RP-HPLC

    • The HPLC column provides the hydrophobic surface onto which the polypeptides adsorb.

    • Columns consist of stainless

    177

    • Columns consist of stainless steel tubes filled with small diameter, spherical adsorbent particles, generally composed of silica whose surface has been reacted with silane reagents to make them hydrophobic.

  • Adsorbent Pore DiameterPolypeptides must enter a pore in order to be adsorbed and separated.(pores of about 300 Å) Some peptides (

  • Column Dimensions: Length

    • Column length does not significantly affect separation and resolution of proteins.

    • Consequently, short columns of 5–15 cm length are often used for protein separations.

    179

    often used for protein separations.

    • Columns of 15–25 cm length are often used for the separation of synthetic and natural peptides and enzymatic digest maps.

  • • Column back-pressure is directly proportional to the column

    length.

    Column back-pressure

    180

    • In case of viscous solvents, such as isopropanol, shorter

    columns will result in more moderate back-pressures.

  • Column dimensions: diameter

    When the diameter of an HPLC column is reduced

    1. flow rate is decreased

    2. solvent used decreased

    3. detection sensitivity is increased (smaller amounts

    181

    3. detection sensitivity is increased (smaller amounts of polypeptide can be detected).

    Very small diameter HPLC columns ((75 µm Diameter)

    are particularly useful when coupling HPLC with mass spectrometry (LC/MS).

  • Columns, example

    182

  • Organic modifier

    The organic modifiers solubilizes and desorbs the polypeptide from the hydrophobic surface.

    183

  • Organic solvents used in LC/MS

    Acetonitrile (ACN)

    ■ It is volatile and easily removed from collected fractions.

    ■ It has a low viscosity, minimizing column back-pressure.

    ■ It has little UV adsorption at low wavelengths.

    184

    ■ It has little UV adsorption at low wavelengths.

    ■ It has a long history of proven reliability in RP-HPLC

    polypeptide separations.

  • Isopropanol

    ■ Used for large or very hydrophobic proteins.

    disadvantage of isopropanol is its high viscosity.

    Organic solvents used in LC/MS

    185

    ■ To reduce the viscosity of isopropanol - use a mixture of 50:50 acetonitrile: isopropanol. Adding 1–3% isopropanol to acetonitrile has been shown to increase protein recovery in some cases.

  • Ethanol

    ■ Elute hydrophobic, membrane-spanning proteins and is

    used in process purifications.

    Methanol

    Organic solvents used in LC/MS

    186

    Methanol

    Dichloromethane

    Clorofprm

    Hexane

  • The ion-pairing reagents or buffers sets the eluent pH and interacts with the polypeptide to enhance the separation.

    Ion-pairing reagents and buffers

    187

  • Ion-pairing reagents and buffers

    Trifluoroacetic acid

    ■ It is volatile and easily removed from collected fractions.

    ■ It has little UV adsorption at low wavelengths.

    ■ It has a long history of proven reliability in RP-HPLC

    188

    ■ It has a long history of proven reliability in RP-HPLC

    polypeptide separations.

    ■ Enhancement of chromatographyc resolution.

    ■ Adverse effect on ions formation in LC/MS

  • Heptafluorobutyric acid (HFBA)

    ■ Is effective in separating basic proteins.

    Triethylamine phosphate (TEAP)

    ■ Has been used for preparative separations.

    Ion-pairing reagents and buffers

    189

    Formic acid (FA)

    ■ In concentrations of 10 to 60%, has been used for the chromatography of very hydrophobic polypeptides.

  • Ion exchange chromatography orthogonal analytical

    techniques

    The benefits of ion exchange chromatography

    ■ high sample loading capacity.

    ■ crude solutions can be loaded

    The benefits of Reversed Phase chromatography

    ■ a high degree of selectivity based on differences in hydrophobicity or molecular conformation.

    190

    ■ crude solutions can be loaded onto ion-exchange columns.

    ■ addition of urea, acetonitrile or

    non-ionic detergents to break-up

    complexes.

    ■ optimization of elution selectivity

    ■ use of volatile buffers or ion-pairing agents.

    ■ freedom from interferences by

    salt or buffers from ion exchange.

  • LC/MS additives and buffers summary

    Protons donors

    Acetic acid

    Formic acid

    Proton acceptors

    Amonium hidroxid

    Amonia solutions

    191

    Ion-Pair reagents

    Trichloroaceticacid (low than 0.02% v/v)

    Trifloroaceticacid

    Triethylamine

    Trimethylamine

    Buffers

    Amonium acetate

    Amonium formate

  • How to make a gradient

    192

  • 193