introduction into spectroscopic ellipsometry basics, data ... · ellipsometry vs. reflectometry •...

63
Introduction into Spectroscopic Ellipsometry Basics, Data Interpretation Considerations and Applications to Photovoltaics Thomas Wagner, L.O.T.-Oriel GmbH & Co. KG University of Twente, February 11 th 2010 1

Upload: others

Post on 14-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Introduction into

Spectroscopic Ellipsometry–

Basics, Data Interpretation Considerations and Applications

to PhotovoltaicsThomas Wagner, L.O.T.-Oriel GmbH & Co. KG

University of Twente, February 11th 20101

Page 2: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Outline

Part 1: Theory and Fundamentals

• What is Ellipsometry?

• Light and Polarization

• Measurements

• Optical Constants

• Models and Data Interpretation

Part 2: PV Applications• SiNx AR coatings• Amorphous, microcrystalline, and

poly-Si films• Transparent Conductive Oxides• CdTe and CdS• CIGS• Organic PV layers

2

Page 3: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

3

Theory & Fundamentals

• Light

• Materials (optical constants)

• Interaction between light and materials

• Ellipsometry Measurements

• Data Analysis

Page 4: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Electromagnetic Plane Wave• From Maxwell’s equations we can describe a plane wave

Direction

of propagation

X

Y

Z

Electric field E(z,t)

Magnetic field B(z,t)

+−−= ξ

λ

π)v(

2sin),( 0 tzEtzE

Velocity

arbitrary phase

Wavelength

Amplitude

λ

Light

4

Page 5: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

5

Intensity and Polarization

• Intensity = “Size” of Electric field.

• Polarization = “Shape” of Electric field travel.

X

Y

ELess

Intense

X

Y EMore Intense

2EI ∝

Different Size

(Intensity)

Same Shape!

(Polarization)

Page 6: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

6

What is Polarization?

• Describes how Electric Field travels through space and time.

X

Y

wave1

wave2Z

Page 7: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Describe how materials and light interact.

n = “refractive index”– phase velocity = c/n– direction of propagation (refraction)

k = “extinction coefficient”

– Loss of wave energy to the material

Together “Complex Refractive Index”:

or “Complex Dielectric Function”:

What are Optical Constants?

iknn +=~

21~ εεε i+=

2~~ n=ε

n , k

7

Page 8: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

8

Kramers-Kronig Relation

• Real and imaginary parts depend on each other.

• Bumps make wiggles.• Transparent range: Index increases

for shorter wavelengths – normal

dispersion

• When absorption increases, index will “turn” and decrease with decreasing wavelength - anormaldispersion

Frequency (energy)

nk

ε1

ε2( ) ( )

∫∞

′−′

′′+=

0 22

21

21 ω

ωω

ωεω

πωε dP

Page 9: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

9

Absorbing region

Absorptions in the various spectral regions have different shapes & root causes.

– Electronic Transitions– Molecular Vibrations– Lattice Vibrations

– Free-carriers Rutile TiO2

UV to IR

ε

Photon Energy (eV)0.03 0.1 0.3 1 3 10

ε 1 2

-50

-38

-25

-13

0

13

25

0

10

20

30

40

50

60

ε1ε2

LatticeVibrations

ElectronicTransitions

UVIR Visible

Transparent

Page 10: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

10

plane ofincidence

Ep

Es

Ep

EsEp

Es

Polarized light at interface

• Electric field either parallel (p) or perpendicular (s) to plane of incidence.

• Material differentiates between p- and s- light

Angle of Incidence (°)0 20 40 60 80 100

Ref

lect

ion

0.0

0.2

0.4

0.6

0.8

1.0RpRs

Page 11: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Fresnel Coefficients

• Describes reflection and transmission

• Depends on angle and polarization (p or s)

itti

tiit

pi

rp

nn

nn

E

Er

θθ

θθ

coscos

coscos

0

0

+

−=

=

ttii

ttii

si

rs

nn

nn

E

Er

θθ

θθ

coscos

coscos

0

0

+

−=

=

ttii

ii

si

ts

nn

n

E

Et

θθ

θ

coscos

cos2

0

0

+=

=

itti

ii

pi

tp

nn

n

E

Et

θθ

θ

coscos

cos2

0

0

+=

=

nt

ni

ts,p

rs,p

11

Page 12: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Light-Sample InteractionMultiple reflections in single film lead to aninfinite series

...ee-4i

1010

2

1201

-2i

10120101 +++= ββtrrttrtrrtot

β

β

2

),(12),(01

2

),(10),(01),(12),(01

),(1 i

spsp

i

spspspsp

sptoterr

ettrrr

+=

111 cos2 θ

λπβ n

d

=

FILM PHASE THICKNESS

N2

N1

No

t01t12 t01r12r10t12 t01r12r10r12r10t12

t01r12r10r12t10r10 t01r12t10

12

Page 13: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

13

What is Ellipsometry?

• Measures change in polarization of reflected light.

• Sample is defined by reflection of p- and s- polarized light.

plane of incidence

E

E

p-plane

p-plane

s-plane

s-plane

( ) ( ) ρδδ

=Ψ=== ∆− ii

s

p

s

p

in

s

out

s

in

p

out

pee

r

r

r

r

EE

EEsp tan~

~

=

in

s

in

p

s

p

out

s

out

p

E

E

r

r

E

E~0

0~

s

p

r

r=Ψ)tan(

sp δδ −=∆

Page 14: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

14

What can SE determine?

Psi (Ψ)Delta (∆)

Film Thickness

Refractive Index

Surface Roughness

Interfacial Mixing

Composition

Crystallinity

Anisotropy

Uniformity

Ellipsometry Measures:Properties of Interest:

Analysis

Page 15: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

15

Data Analysis Flowchart

Page 16: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Ellipsometry Advantages

• Repeatable & accurate:– Self-referencing, measures ratio of Ep/Es Thus,

reduced problems with:

• fluctuation of source intensity• light beam spilling over small samples

• Measure two parameters– Ψ and ∆ at each wavelength/angle combination.– increased sensitivity to multiple film parameters

16

Page 17: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Ellipsometry vs. Reflectometry

• Phase information gives Ellipsometry higher sensitivity to very thin films.

Wavelength (nm)200 400 600 800 1000

∆ in

deg

rees

0

30

60

90

120

150

180

Gen E 75° (1)Gen E 75° (2)

Generated Data

200 400 600 800 1000

Ψ in

deg

rees

0

10

20

30

40

Gen E 75° (1)Gen E 75° (2)

Generated Data

Wavelength (nm)200 400 600 800 1000

Ref

lect

ion

0.30

0.40

0.50

0.60

0.70

0.80

Gen sR 0° (1)Gen sR 0° (2)

Generated Data

Wavelength (nm)200 400 600 800 1000

Ref

lect

ion

0.30

0.40

0.50

0.60

0.70

0.80

Gen sR 0° (1)Gen sR 0° (2)

Ψ

R

1nm & 2nm oxide on Si

1nm & 2nm oxide on Si

1nm & 2nm oxide on Si

17

Page 18: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

18

Thin Film Interference

• Each reflected wave will have a different phase and amplitude.

• Coherent waves (same freq. and direction) combine constructively/destructively.

r01

t01 r12 t10e-2iβ

t01 r12 r10 r12 t10e-4iβ 0

~n

1~n

2~n

Page 19: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

19

Motivation• Data Interpretation:

– Estimate sample based on “raw” data.– Reduce analysis time and improve ability to

identify correct models.

Experimental Data

Wavelength (nm)300 600 900 1200 1500 1800

Ψin

deg

rees

0

5

10

15

20

25

30

Exp E 65°Exp E 75°

Data interpretation not quantitative

Page 20: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

20

Role of Optical Constants• Index difference leads to reflection

– Large ∆N � Large Reflection– Small ∆N � Small Reflection

Material 1 Material 2 Reflectance

Air (N=1) SiO2 (N=1.5) ~3.3%

Air (N=1) Si (N=3.5) ~31%

a-Si (N=3.4) Si (N=3.5) ~0.02%

Page 21: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

21

Bare Substrates

• What do we expect?

– Psi features follow optical constant structure.

– Psi curves minimize at Brewster condition, but

remain higher when absorbing.

– Delta at 180° or 0°, except when absorbing or in

presence of surface film.

Page 22: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Substrate Optical Constants

• Dielectrics

• Semiconductors

• MetalsIndex of Refraction, N

Wavelength (nm)300 600 900 1200 1500 1800

Inde

x, n

1.4

1.6

1.8

2.0

2.2

SiO2Si3N4

Silicon

Wavelength (nm)200 400 600 800 1000 1200

Inde

x of

ref

ract

ion,

n

Extinction C

oefficient, k

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

NK

Aluminum

Wavelength (nm)

0 300 600 900 1200 1500 1800

Inde

x of

ref

ract

ion,

n

Extinction C

oefficient, k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

3

6

9

12

15

18

NK

Substrate

22

Page 23: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

23

Dielectrics

• Psi flat and smooth• Delta = 0°,180°- except for surface

films

0.5nm roughness

Wavelength (nm)200 400 600 800 1000 1200

Ψ in

deg

rees

0

5

10

15

20

25

30

Exp E 45°Exp E 55°Exp E 65°Exp E 75°

Wavelength (nm)200 400 600 800 1000 1200

∆ in

deg

rees

0

30

60

90

120

150

180

Exp E 45°Exp E 55°Exp E 65°Exp E 75°

Page 24: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

24

Semiconductors

• Psi follows shape of absorption• Delta between 0°or 180°when

absorbing

Wavelength (nm)200 400 600 800 1000 1200

Ψ in

deg

rees

0

10

20

30

40

50

Exp E 55°Exp E 65°Exp E 75°

Wavelength (nm)200 400 600 800 1000 1200

∆ i

n de

gree

s

0

50

100

150

200

Exp E 55°Exp E 65°Exp E 75°

Page 25: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

25

Metals

• Significant absorption:– Psi stays near 45°, Delta away from 0° or

180°.

Wavelength (nm)200 400 600 800 1000 1200

Psi

in d

egre

es

36

38

40

42

44

46

65°75°85°

Wavelength (nm)200 400 600 800 1000 1200

Del

ta in

deg

rees

0

30

60

90

120

150

180

65°75°85°

Page 26: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

26

“Pseudo Optical Constants”

� <n> & <k> or <ε1> & <ε2>

�Assumption: Optically thick bulk substrate with no surface layers or roughness

where, ρ = tan Ψ ei∆

ϕ = ΑΟΙ

( ) ( )

+

−⋅+⋅==

2

222

1

1tan1sin~

ρ

ρφφε n

Wavelength (nm)200 400 600 800 1000 1200

Ψ in

de

gree

s

∆ in

degree

s

20

25

30

35

40

45

40

60

80

100

120

140

160

Exp Ψ-E 70°Exp Ψ-E 75°Exp ∆-E 70°Exp ∆-E 75°

Wavelength (nm)200 400 600 800 1000 1200

<ε 1>

2 >

-80

-60

-40

-20

0

20

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Exp < ε1>-E 70°Exp < ε1>-E 75°Exp < ε2>-E 70°Exp < ε2>-E 75°

Page 27: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

27

“Pseudo Optical Constants”

• Angle independent way of viewing experimental data.

� All angles give same values implies:Light path is sameOptically thick bulk substrateNo film (or very thin surface layer)

Wavelength (nm)200 400 600 800 1000 1200

<ε1>

2 >

-80

-60

-40

-20

0

20

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Exp < ε 1>-E 70°Exp < ε 1>-E 75°Exp < ε 2>-E 70°Exp < ε 2>-E 75°

Page 28: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

28

Thin Films

• “Very Thin” ⇒ thickness < 100 Å

• determining thickness when OC’s are known– SE deals with this well

• determining OC’s– very difficult, if not impossible

Page 29: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

29

Determining Thickness

• mainly Delta (Phase) is sensitive to very thin films– 20, 40, 65, 80, 100 Å

Page 30: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

30

Very Thin Film Index?• Correlation prevents exact determination, beyond

whether higher or lower than substrate index.

Wavelength (nm)300 400 500 600 700 800 900

∆in

deg

rees

-30

-20

-10

0

10

20

n=1.25n=1.35n=1.45

n=1.55n=1.65n=1.75

5nm coating on Glass

Page 31: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Transparent Films

• Thicker films produce more interference oscillations.

500nm

Wavelength (nm)0 300 600 900 1200 1500 1800

Ψin

deg

rees

0

20

40

60

80

100

Exp E 75°

5 micron Oxide

Wavelength (nm)0 300 600 900 1200 1500 1800

Ψin

deg

rees

0

20

40

60

80

100

Exp E 75°

100nm Oxide

Wavelength (nm)0 300 600 900 1200 1500 1800

Ψin

deg

rees

0

20

40

60

80

100

Exp E 75°

31

Page 32: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Thickness Effects

• As thickness increases:*Interference shifts to red*Peaks closer together

Wavelength (nm)0 300 600 900 1200 1500 1800

Ψin

deg

rees

0

20

40

60

80

100

T

32

Page 33: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

33

Transparent Films

• Dispersion Relationship, such as Cauchy, can be used to reduce the number of “fit” parameters.

n(λ)=A+B/λ2+C/λ4

k(λ)=0

Wavelength (nm)200 400 600 800 1000 1200

Inde

x of

ref

ract

ion

'n'

1.44

1.47

1.50

1.53

1.56

1.59

1.62

1.65

Page 34: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

34

Amplitude (An)

• Adjust the An parameter to the approximate index.

42)(λλ

λ nnn

CBAn ++=

Wavelength (nm)300 400 500 600 700 800 900

Inde

x

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

An = 2.50An = 2.25An = 2.00

An = 1.50An = 1.75

Page 35: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

35

Dispersion (Bn and Cn)

• Bn & Cn provide curvature versus wavelength.

Wavelength (nm)300 400 500 600 700 800 900

Inde

x

1.25

1.50

1.75

2.00

Bn = 0.020Bn = 0.010

Bn = 0.000Bn = 0.005

42)(λλ

λ nnn

CBAn ++=

Bn = -0.01

Page 36: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Effect of Film Index

Index difference affects oscillations (75° AOI)

Wavelength (nm)0 300 600 900 1200 1500 1800

Ψin

deg

rees

0

20

40

60

80

100n=1.5n=1.75n=2.0

n=2.25n=2.5

n=2.75n=3.0

n=3.25n=3.5

n=3.75n=4.0

36

Page 37: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

37

Effects of Dispersion

• Oscillations are primarily due to thickness. Dispersion will affect oscillation position and amplitude slightly.

No Dispersion

Wavelength (nm)0 300 600 900 1200 1500 1800

Ψ in

deg

rees

0

10

20

30

40

50

0 n=4 1 mm1 n=2 500 nm

With Dispersion in Film

Wavelength (nm)0 300 600 900 1200 1500 1800

Ψ in

deg

rees

0

10

20

30

40

50

0 n=4 1 mm1 user 500 nm

Page 38: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

38

Multilayers- Envelope

• Oscillations for multilayers is a combination of each film envelope.

Wavelength (nm)0 300 600 900 1200 1500 1800

Ψ in

deg

rees

0

20

40

60

80

MultilayerOxide OnlyNitride OnlySubstrate

0 substrate 1 mm1 oxide 500 nm2 nitride 200 nm

Page 39: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

39

Multilayer Example

• Both oscillation patterns are superimposed!

Multilayer Example

Wavelength (nm)0 300 600 900 1200 1500 1800

Ψ in

deg

rees

0

20

40

60

80

n=4 1 mmn=3 1000 nmn=1.5 200 nm

Page 40: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

40

Absorbing Thin Film

• If light is absorbed before returning to surface, only top reflection is ‘seen’ (Film appears as Substrate)

Wavelength (nm)120 150 180 210 240 270 300

∆in

deg

rees

-50

0

50

100

150

200

250

300

Page 41: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

41

Multilayer (Absorbing-Transparent)

• If 2-layer, but 1 is absorbing, then:

0 si 1 mm1 sio2 3000 nm2 a-si 300 nm

Generated Data

Wavelength (nm)0 300 600 900 1200 1500 1800

Ψ in

deg

rees

0

10

20

30

40

50

60Generated Data

Wavelength (nm)0 300 600 900 1200 1500 1800

Ψ in

deg

rees

0

20

40

60

80

100

0 si 1 mm1 a-si 300 nm2 sio2 3000 nm

Page 42: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

42

PV Applications

• SE is applied to most PV thin films:

– SiNx AR coatings

– Amorphous, microcrystalline, and poly-Si films

– Transparent Conductive Oxides

– CdTe and CdS

– CIGS

– Organic PV layers

– …

Page 43: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

43

Ellipsometric study of Photovoltaics

• Measurement challenges:– Textured/ Rough surface– Low reflection– Large samples– Industrial integration

• Modeling considerations:– Rough surfaces, Rough interfaces, Rough substrates– Parameter correlation

• Applications

Page 44: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

44

Wafer

treatment

Morphology

Polished, c-Si Smooth

Alkaline etched, c-Si

Alkaline etched,multi c-Si

Acid etched,multi c-Si

As-cut,multi c-Si

20 µm

50 µm

50 µm

20 µm

Textured Si coated with SiNy

Measurement Challenge:Textured surfaceHigh scatteringSpecular R ~ 0

Solution:Sample tilting mount

Improved light source and detection system

Including scattering factor

M. F. Saenger, M. Schubert, J. Hilfiker, J. Sun, J. A. Woollam, M. Schädel, IMRC 2008

Page 45: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Textured Si Wafer

M-2000X with Intensity Optimizer

45

Page 46: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

46

Large Area Mapping

ACCUMAP-SE

Flying-SE

Page 47: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

47

Modeling Considerations

• Modeling considerations for PV thin films:

– SiNx AR coatings

– Amorphous, microcrystalline, and poly-Si films

– Transparent Conductive Oxides

– CdTe and CdS

– CIGS

– Organic PV layers

Rough surfaces, Rough interfaces, Rough substrates, High absorption, Grading, Anisotropy, Superstrates, Complex sample structure, Parameter correlation, ..

Page 48: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Thin Film Interference

0~n

1~n

2~n

Transparent -

oscillations

Photon Energy (eV)1.8 2.1 2.4 2.7 3.0 3.3 3.6

Ψ in

deg

rees

0

5

10

15

20

25

30transparent

Absorbing-oscillation

suppressed

0~n

1~n

2~n

Photon Energy (eV)1.8 2.1 2.4 2.7 3.0 3.3 3.6

Ψ in

deg

rees

0

5

10

15

20

25

30transparentabsorbing

Rough Surface –

shifts in data

0~n

1~n

2~n

Photon Energy (eV)1.8 2.1 2.4 2.7 3.0 3.3 3.6

Ψ in

deg

rees

0

5

10

15

20

25

30transparentabsorbingrough surface

48

Page 49: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

49

Thickness determination - UV/VIS

• Difficult in UV/ Visible range due to high absorption/ surface roughness

Experimental Data

Wavelength (nm)200 300 400 500 600 700 800

Ψ in

deg

rees

∆ in degrees

5

10

15

20

25

30

-100

-50

0

50

100

150

200

250

Exp Ψ-Eb 65°Exp ∆-Eb 65°

Wavelength (nm)200 300 400 500 600 700 800

Inde

x of

Ref

ract

ion

'n'

Extinction C

oefficient 'k'

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0

0.5

1.0

1.5

2.0

2.5

nk

Page 50: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

Thickness determination- Near Infrared (NIR) or Infrared (IR)

Transparent region in NIR/IR spectra

easy to get thickness!

Experimental Data

Wavelength (nm)200 400 600 800 1000 1200 1400 1600

Ψ in

deg

rees

∆ in degrees

5

10

15

20

25

30

-100

0

100

200

300

Exp Ψ-E 65°Exp ∆-E 65°

Wavelength (nm)0 300 600 900 1200 1500 1800

Inde

x of

Ref

ract

ion

'n'

Extinction C

oefficient 'k'

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0

0.5

1.0

1.5

2.0

2.5

nk

UV –VIS - NIR

1

1.5

2

2.5

3

3.5

4

0 4000 8000 12000 16000 20000

Wavelength (nm)

Ind

ex

of

refr

ac

tio

n,

N

0

0.5

1

1.5

2

2.5

Ex

tin

cti

on

co

eff

icie

nt,

kn k

50

Page 51: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

51

Modeling of Rough Surfaces

• Bruggeman Effective Medium Approximation (EMA)– Mix the optical constants of surface layer with void

Rough Surface EMA approximation

t

Page 52: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

52

SiNx AntiReflection CoatingsΨ

in d

egre

es

0

10

20

30

40

50Textured Si - Exp DataTextured Si - MODELSiNx - Exp DataSiNx - MODEL

Wavelength (nm)

200 400 600 800 1000

∆in

deg

rees

-40

-20

0

20

40

60

80

Insert: SEM graph

SiNx Optical Constants

Wavelength (nm)200 400 600 800 1000

Inde

x of

Ref

ract

ion,

n

Extinction C

oefficient, k

1.84

1.86

1.88

1.90

1.92

1.94

1.96

0.00

0.05

0.10

0.15

0.20

nk

0 ema si_jaw/23% void 1 mm1 sin-tauc lorentz 70.500 nm

With Scattering Factor

Page 53: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

53

Amorphous, Microcrystalline, and Poly-Crystalline Silicon

Photon Energy (eV)1.0 2.0 3.0 4.0 5.0 6.0

Imag

(Die

lect

ricC

onst

ant)

, ε2

0

10

20

30

40

50

a-Si70% Poly-Si85% Poly-Sic-Si

For high crystalline %, the peak is narrower and eventually separates into two distinct regions.

Page 54: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

54

Transparent Conductive Oxides

∆in

deg

rees

0

100

200

300Model Fit Exp Eb 55°Exp Eb 65°Exp Eb 75°

Wavelength (nm)0 300 600 900 1200 1500 1800

Ψin

deg

rees

0

10

20

30

Glass Substrate

SnO2

SiO2

SnO2:F

30nm

320nm

23nm

� TEC-15 Glass– Characterize Multi-Layer

TCO structure– TCO intentionally rough -

hazy for light trapping

Page 55: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

55

Indium Tin Oxide

ITO Optical Constants during Deposition

0

0.5

1

1.5

2

2.5

400 600 800 1000 1200 1400 1600Wavelength in nm

Ind

ex

of

Refr

acti

on

, n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ex

tin

cti

on

Co

eff

icie

nt,

k

n, Middle of depositionn, After depositionn, After annealingk, Middle of depositionk, After depositionk, After annealing

• NIR absorption used to monitor conductivity

Page 56: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

56

CdTe / CdS on Tec-15 Glass

Photon Energy (eV)0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

<ε 1

>

-3

0

3

6

9

12

15

Model Fit Exp Eb 60°Exp Eb 75°

Photon Energy (eV)0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

<ε 2

>

-9

-6

-3

0

3

6

9

Model Fit Exp Eb 60°Exp Eb 75°

CdTe 1458nm

CdS 210nm

Tec-15 Glass

CdTe –SEM micrograph-Courtesy: Nicola Romeo, University of Parma,

INFM, & ARENDI S.p.A. IMRC 2008

Page 57: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

57

CdTe and CdS Films

• Measure optical constants with changing morphology and process conditions.

CdTe Optical Constants

Photon Energy (eV)0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0R

eal(D

iele

ctri

c C

onst

ant)

, ε 1

Imag(D

ielectric Constant),

ε2-3

0

3

6

9

12

0

2

4

6

8

10

12

ε1ε2

CdS Optical Constants

Photon Energy (eV)0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0R

eal(D

iele

ctric

Con

stan

t),

ε 1

Imag(D

ielectric Constant),

ε2

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0ε1ε2

Page 58: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

58

CIGS

A.M. Hermann et al. “Fundamental studies on large area Cu(In,Ga)Se2 films for high efficiency solar cells”, Solar Energy Materials & Solar Cells 70 (2001) 345.

Page 59: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

59

Organic Solar Cells• Measurement similar to OLED• Films may exhibit anisotropy• SE + Transmission fit, OLED film:

Page 60: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

60

Organic Solar Cell Materials

• PEDOT:PSS• Multi-Sample fit:

Page 61: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

61

Organic Solar Cell Materials

• P3HT / 300nm SiO2 / Si• Multi-Sample fit:

Generated and Experimental

Photon Energy (eV)0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Ψ in

deg

ree

s

0

20

40

60

80

100Model Fit Exp E 45°Exp E 55°Exp E 65°Exp E 75°

Generated and Experimental

Photon Energy (eV)0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

∆ in

de

gre

es

-100

0

100

200

300

Model Fit Exp E 45°Exp E 55°Exp E 65°Exp E 75°

P3HT Optical Constants

Wavelength (nm)0 300 600 900 1200 1500 1800

Inde

x of

Ref

ract

ion

'n'

Extinction C

oefficient 'k'1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4nxynzkxykz

Page 62: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

62

PV Summary

• SE has many uses toward PV thin films:

– SiNx AR coatings

– Amorphous, microcrystalline, and poly-Si films

– Transparent Conductive Oxides

– CdTe and CdS

– CIGS

– Organic PV layers

– …

Page 63: Introduction into Spectroscopic Ellipsometry Basics, Data ... · Ellipsometry vs. Reflectometry • Phase information gives Ellipsometry higher sensitivity to very thin films. Wavelength

63

Further References on Ellipsometry

1. Hiroyuki Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, John Wiley & Sons, 2007.

2. Handbook of Ellipsometry, Tompkins and Irene, eds., William Andrew Publishing, NY, 2005.

3. H. G. Tompkins, and W.A.McGahan, Spectroscopic Ellipsometry and Reflectometry, John Wiley & Sons, New

York, 1999.

4. R.M.A. Azzam, and N.M.Bashara, Ellipsometry and Polarized Light, North Holland Press, Amsterdam 1977,

Second edition, 1987.

ICSE Conference Proceedings:

1. Thin Solid Films Vol. 455-456, (2004) M. Fried, K. Hingerl, and J. Humlicek, Editors, Elsevier Science.

2. Thin Solid Films Vol. 313-314 (1998) R.W.Collins, D.E.Aspnes, and E.A. Irene, Editors, Elsevier Science.

3. Spectroscopic Ellipsometry, A.C.Boccara, C.Pickering, J.Rivory, eds, Elsevier Publishing, Amsterdam, 1993.