introduction double layer

Upload: juan-david-reyes

Post on 03-Apr-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Introduction Double Layer

    1/36

    Introduccin a la doble capaelctrica

    MF Surez

  • 7/29/2019 Introduction Double Layer

    2/36

    Cmo podemos

    medir el pH deuna solucinacuosa?

  • 7/29/2019 Introduction Double Layer

    3/36

  • 7/29/2019 Introduction Double Layer

    4/36

  • 7/29/2019 Introduction Double Layer

    5/36

    Sensor de pH

    Sensor de Temperatura

  • 7/29/2019 Introduction Double Layer

    6/36

  • 7/29/2019 Introduction Double Layer

    7/36

    Unin p-n

  • 7/29/2019 Introduction Double Layer

    8/36

  • 7/29/2019 Introduction Double Layer

    9/36

    Energy Levels

  • 7/29/2019 Introduction Double Layer

    10/36

    Debye-Hckel

  • 7/29/2019 Introduction Double Layer

    11/36

    Doble capa elctrica

  • 7/29/2019 Introduction Double Layer

    12/36

    2

    =div grad=

    zr 0 E=grad=

    2=2

    x22

    y22

    z2=

    1

    r2

    d

    dr[r2

    ddr

    ]=zr 0

    Ci r=C*exp zi er kT

    ( )kT

    xez

    xi

    xii

    en

    n

    =

    ,

    ,

    Liquids, Solutions, and InterfacesFrom Classical Macroscopic Descriptions to Modern Microscopic DetailsW. RONALD FAWCETT, University of California, Davis, Oxford University press, 2004

    Interacciones ion-ion de acuerdo ala teora de DebyeHckel

  • 7/29/2019 Introduction Double Layer

    13/36

    =z+FC+*exp

    z+er kT z -FC-

    *exp

    z- er kT

    =i=1

    n

    z iFCi*

    exp

    zi er

    kT 1

    r2

    d

    dr

    [r2 d

    dr

    ]=

    1

    r 0i=1

    n

    z iFCi*exp

    zi er

    kT

  • 7/29/2019 Introduction Double Layer

    14/36

    =i=1

    n

    ziFCi*

    i=1

    n

    z i2

    F

    2

    Ci*

    rRT

    Expansin en una seriede Taylor

    I=1

    2

    i=1

    n

    z i2

    Ci* Fuerza inica

    1

    r2

    d

    dr

    [r2 d

    dr

    ]=

    r 0=

    2F2I

    r 0R T

    =2

  • 7/29/2019 Introduction Double Layer

    15/36

    y= r dydr=r d

    d r d2y

    dr2=2 d

    d rr d

    2d r

    2

    1r2 ddr [

    r2 ddr ]=2r

    dd r d

    2

    d r

    2

    d2y

    dr2 =2

    y

    y= r=k1exp r k2expr = k1rexp r

  • 7/29/2019 Introduction Double Layer

    16/36

    =r 0

    2

    a

    4 r2d r=zi e

    a

    4 r k1r 02exp r d r=zi e

    k1=zi e0expa

    4r 0 1

    1a =

    zi e0exp r 4r0 r

    exp a1a

  • 7/29/2019 Introduction Double Layer

    17/36

    self=zi e0

    4r 0 r

    El potencial debido nicamente a la atmsfera inicaa una distancia igual al radio inico es igual a:

    atm=zi e0exp a

    4r 0 a exp a

    1 a zi e0

    4r0 a

    atm=zi e0

    4r 0 1 a

  • 7/29/2019 Introduction Double Layer

    18/36

    0

    z i e0

    atm d zi eo= zi

    2

    e02

    8r 0 1 a

    RTlni=NLzi2

    e02

    8r 0 1 a

    2F2

    r 0R T

    1

    2i=1

    n

    zi

    2C

    i

    *

    =

  • 7/29/2019 Introduction Double Layer

    19/36

  • 7/29/2019 Introduction Double Layer

    20/36

    D bl l t i

  • 7/29/2019 Introduction Double Layer

    21/36

    Doble capa elctrica(Tratamiento fsico)

    d2

    dx

    2 = 1r 0i=1

    n

    z iFCi*exp

    z i ex

    kT Para un ion monovalente se obtiene:

    d2

    dx2=

    FC*

    r 0 [expex

    kT exp ex

    kT ]d2

    dx

    2=2FC

    *

    r 0sinh

    ex kT

  • 7/29/2019 Introduction Double Layer

    22/36

    d2

    dx2 =

    [d

    d dd x ][

    dd x ]=

    1

    2 [d

    d dd x

    2

    ]1

    2

    [d

    d

    d

    d x

    2

    ]=

    FC*

    r 0

    [exp

    ex

    kT

    exp

    ex

    kT

    ][ dd E2]=2FC*

    r 0 [exp ex

    kT expex

    kT ]E

    2= 2FC*kT

    r 0 e [expex

    kT expex

    kT 2]lim0

    E=0

  • 7/29/2019 Introduction Double Layer

    23/36

    ex

    2e

    x

    2

    2

    =exex2

    E=2FC

    *kT

    r0 e

    [exp ex2kT exp

    ex

    2kT ]

    E=8C

    *RT

    r 0 [senhex

    2kT ]E

    2FC*

    kT

    r 0 e [ex

    kT ]

  • 7/29/2019 Introduction Double Layer

    24/36

    dd x

    2FC

    *

    kTr 0 e [

    exkT ]

    0

    d

    0

    x

    2FC*

    kT

    r 0 e [e

    kT

    ]dx =

    2FC*

    e

    r 0 kT

    ln

    ln0x 0exp x

  • 7/29/2019 Introduction Double Layer

    25/36

  • 7/29/2019 Introduction Double Layer

    26/36

  • 7/29/2019 Introduction Double Layer

    27/36

    q=0E.ds

  • 7/29/2019 Introduction Double Layer

    28/36

    M=

    sol=8r 0C

    *RT

    [senh z e02kT

    ]

    q=0

    Ex=0

    A

    dM

    d0=Cd=

    2r0z2

    C*F

    2

    RT

    [cosh

    z e0

    2kT

    ]

  • 7/29/2019 Introduction Double Layer

    29/36

  • 7/29/2019 Introduction Double Layer

    30/36

  • 7/29/2019 Introduction Double Layer

    31/36

    Differential capacitance vs. potential for

    NaF solutions in contact with mercury at

    25C. [Reprinted with permission from D.

    C. Grahame, Chem. Rev., 41, 441 (1947).

    Copyright 1947, American Chemical

    Society.]

  • 7/29/2019 Introduction Double Layer

    32/36

    (a) A view of the differentialcapacitance in theGouy-Chapman-Stern (GCS)model as a series network ofHelmholtz layer and diffuse-

    layer capacitances.

    (b) Potential profile through thesolution side of the doublelayer, according to GCS theory.

    Calculated for 1x10-2 M 1:1electrolyte in water at 25C.

  • 7/29/2019 Introduction Double Layer

    33/36

    Expected behavior of Cd according to GCS theoryas the electrolyte concentration changes.

    I i li id

  • 7/29/2019 Introduction Double Layer

    34/36

    Ionic liquids

  • 7/29/2019 Introduction Double Layer

    35/36

    Schematic representation of thedifferent type of interactions

    present in imidazolium based ILs

  • 7/29/2019 Introduction Double Layer

    36/36

    Full lines describe the predicted dependence on

    charge of the capacitance of the outer element,

    the inner layer, and the overall double layer, for a

    (metal)/(ionic liquid) interface. Dashed lines show

    corresponding predictions for a (metal)/

    (electrolyte solution) interface, the inner

    capacitance being the same for both systems.Parameters for both media: ionic and molecular

    radii, r = 1.00 nm; permittivity, 1.77 x 10-10 F m-1;

    bulk ionic concentration, c = 180 mM;

    temperature, T = 298 K.

    K.B. Oldham / Journal of Electroanalytical Chemistry 613 (2008) 131138